chenyc
2025-05-29 92f69c57b920cf62ecc9f15f9ed196fa26dbf2ac
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
/**
 * @license
 * Copyright 2020 Google Inc. All Rights Reserved.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 * =============================================================================
 */
import * as tf from '../index';
import { ALL_ENVS, describeWithFlags } from '../jasmine_util';
import { expectArraysClose } from '../test_util';
describeWithFlags('logSigmoid', ALL_ENVS, () => {
    it('basic', async () => {
        const values = [1, -3, 2, 7, -4];
        const a = tf.tensor1d(values);
        const result = tf.logSigmoid(a);
        const expected = [];
        for (let i = 0; i < a.size; i++) {
            expected[i] = Math.log(1 / (1 + Math.exp(-values[i])));
        }
        expectArraysClose(await result.data(), expected);
    });
    it('scalar', async () => {
        const a = tf.scalar(-2);
        const result = tf.logSigmoid(a);
        const expected = [Math.log(1 / (1 + Math.exp(2)))];
        expectArraysClose(await result.data(), expected);
    });
    it('tensor2D', async () => {
        const values = [1, 2, -3, 5];
        const a = tf.tensor2d(values, [2, 2]);
        const result = tf.logSigmoid(a);
        const expected = [];
        for (let i = 0; i < a.size; i++) {
            expected[i] = Math.log(1 / (1 + Math.exp(-values[i])));
        }
        expectArraysClose(await result.data(), expected);
    });
    it('larger magnitude negative inputs', async () => {
        const values = [-100, -200, -3000];
        const a = tf.tensor1d(values);
        const result = tf.logSigmoid(a);
        const expected = [-100, -200, -3000];
        expectArraysClose(await result.data(), expected);
    });
    it('larger magnitude positive inputs', async () => {
        const values = [100, 200, 3000, 50000];
        const a = tf.tensor1d(values);
        const result = tf.logSigmoid(a);
        const expected = [0, 0, 0, 0];
        expectArraysClose(await result.data(), expected);
    });
    it('propagates NaNs', async () => {
        const a = tf.tensor1d([3, NaN]);
        const res = tf.logSigmoid(a);
        expectArraysClose(await res.data(), [Math.log(1 / (1 + Math.exp(-3))), NaN]);
    });
    it('gradients: Scalar', async () => {
        const a = tf.scalar(3);
        const dy = tf.scalar(4);
        const dyVal = await dy.array();
        const da = tf.grad(a => tf.logSigmoid(a))(a, dy);
        const aVal = await a.array();
        const y = 1 / (1 + Math.exp(aVal));
        expectArraysClose(await da.data(), [dyVal * y]);
    });
    it('gradients: Tensor1D', async () => {
        const a = tf.tensor1d([1, 2, -3, 5]);
        const aVals = await a.array();
        const dy = tf.tensor1d([1, 2, 3, 4]);
        const dyVals = await dy.array();
        const da = tf.grad(a => tf.logSigmoid(a))(a, dy);
        const expected = [];
        for (let i = 0; i < a.size; i++) {
            const y = 1 / (1 + Math.exp(aVals[i]));
            expected[i] = dyVals[i] * y;
        }
        expectArraysClose(await da.data(), expected);
    });
    it('gradient with clones', async () => {
        const a = tf.tensor1d([1, 2, -3, 5]);
        const aVals = await a.array();
        const dy = tf.tensor1d([1, 2, 3, 4]);
        const dyVals = await dy.array();
        const da = tf.grad(a => tf.logSigmoid(a.clone()).clone())(a, dy);
        const expected = [];
        for (let i = 0; i < a.size; i++) {
            const y = 1 / (1 + Math.exp(aVals[i]));
            expected[i] = dyVals[i] * y;
        }
        expectArraysClose(await da.data(), expected);
    });
    it('gradients: Tensor2D', async () => {
        const a = tf.tensor2d([1, 2, -3, 5], [2, 2]);
        const dy = tf.tensor2d([1, 2, 3, 4], [2, 2]);
        const da = tf.grad(a => tf.logSigmoid(a))(a, dy);
        const expected = [];
        const aVals = await a.data();
        const dyVals = await dy.data();
        for (let i = 0; i < a.size; i++) {
            const y = 1 / (1 + Math.exp(aVals[i]));
            expected[i] = dyVals[i] * y;
        }
        expectArraysClose(await da.data(), expected);
    });
    it('throws when passed a non-tensor', () => {
        expect(() => tf.logSigmoid({}))
            .toThrowError(/Argument 'x' passed to 'logSigmoid' must be a Tensor/);
    });
    it('accepts a tensor-like object', async () => {
        const result = tf.logSigmoid(-2);
        const expected = [Math.log(1 / (1 + Math.exp(2)))];
        expectArraysClose(await result.data(), expected);
    });
    it('throws for string tensor', () => {
        expect(() => tf.logSigmoid('q'))
            .toThrowError(/Argument 'x' passed to 'logSigmoid' must be numeric/);
    });
});
//# sourceMappingURL=data:application/json;base64,eyJ2ZXJzaW9uIjozLCJmaWxlIjoibG9nX3NpZ21vaWRfdGVzdC5qcyIsInNvdXJjZVJvb3QiOiIiLCJzb3VyY2VzIjpbIi4uLy4uLy4uLy4uLy4uLy4uL3RmanMtY29yZS9zcmMvb3BzL2xvZ19zaWdtb2lkX3Rlc3QudHMiXSwibmFtZXMiOltdLCJtYXBwaW5ncyI6IkFBQUE7Ozs7Ozs7Ozs7Ozs7OztHQWVHO0FBRUgsT0FBTyxLQUFLLEVBQUUsTUFBTSxVQUFVLENBQUM7QUFDL0IsT0FBTyxFQUFDLFFBQVEsRUFBRSxpQkFBaUIsRUFBQyxNQUFNLGlCQUFpQixDQUFDO0FBQzVELE9BQU8sRUFBQyxpQkFBaUIsRUFBQyxNQUFNLGNBQWMsQ0FBQztBQUUvQyxpQkFBaUIsQ0FBQyxZQUFZLEVBQUUsUUFBUSxFQUFFLEdBQUcsRUFBRTtJQUM3QyxFQUFFLENBQUMsT0FBTyxFQUFFLEtBQUssSUFBSSxFQUFFO1FBQ3JCLE1BQU0sTUFBTSxHQUFHLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUNqQyxNQUFNLENBQUMsR0FBRyxFQUFFLENBQUMsUUFBUSxDQUFDLE1BQU0sQ0FBQyxDQUFDO1FBRTlCLE1BQU0sTUFBTSxHQUFHLEVBQUUsQ0FBQyxVQUFVLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFFaEMsTUFBTSxRQUFRLEdBQUcsRUFBRSxDQUFDO1FBQ3BCLEtBQUssSUFBSSxDQUFDLEdBQUcsQ0FBQyxFQUFFLENBQUMsR0FBRyxDQUFDLENBQUMsSUFBSSxFQUFFLENBQUMsRUFBRSxFQUFFO1lBQy9CLFFBQVEsQ0FBQyxDQUFDLENBQUMsR0FBRyxJQUFJLENBQUMsR0FBRyxDQUFDLENBQUMsR0FBRyxDQUFDLENBQUMsR0FBRyxJQUFJLENBQUMsR0FBRyxDQUFDLENBQUMsTUFBTSxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO1NBQ3hEO1FBQ0QsaUJBQWlCLENBQUMsTUFBTSxNQUFNLENBQUMsSUFBSSxFQUFFLEVBQUUsUUFBUSxDQUFDLENBQUM7SUFDbkQsQ0FBQyxDQUFDLENBQUM7SUFFSCxFQUFFLENBQUMsUUFBUSxFQUFFLEtBQUssSUFBSSxFQUFFO1FBQ3RCLE1BQU0sQ0FBQyxHQUFHLEVBQUUsQ0FBQyxNQUFNLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUV4QixNQUFNLE1BQU0sR0FBRyxFQUFFLENBQUMsVUFBVSxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBRWhDLE1BQU0sUUFBUSxHQUFHLENBQUMsSUFBSSxDQUFDLEdBQUcsQ0FBQyxDQUFDLEdBQUcsQ0FBQyxDQUFDLEdBQUcsSUFBSSxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUNuRCxpQkFBaUIsQ0FBQyxNQUFNLE1BQU0sQ0FBQyxJQUFJLEVBQUUsRUFBRSxRQUFRLENBQUMsQ0FBQztJQUNuRCxDQUFDLENBQUMsQ0FBQztJQUVILEVBQUUsQ0FBQyxVQUFVLEVBQUUsS0FBSyxJQUFJLEVBQUU7UUFDeEIsTUFBTSxNQUFNLEdBQUcsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDO1FBQzdCLE1BQU0sQ0FBQyxHQUFHLEVBQUUsQ0FBQyxRQUFRLENBQUMsTUFBTSxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFFdEMsTUFBTSxNQUFNLEdBQUcsRUFBRSxDQUFDLFVBQVUsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUVoQyxNQUFNLFFBQVEsR0FBRyxFQUFFLENBQUM7UUFDcEIsS0FBSyxJQUFJLENBQUMsR0FBRyxDQUFDLEVBQUUsQ0FBQyxHQUFHLENBQUMsQ0FBQyxJQUFJLEVBQUUsQ0FBQyxFQUFFLEVBQUU7WUFDL0IsUUFBUSxDQUFDLENBQUMsQ0FBQyxHQUFHLElBQUksQ0FBQyxHQUFHLENBQUMsQ0FBQyxHQUFHLENBQUMsQ0FBQyxHQUFHLElBQUksQ0FBQyxHQUFHLENBQUMsQ0FBQyxNQUFNLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUM7U0FDeEQ7UUFDRCxpQkFBaUIsQ0FBQyxNQUFNLE1BQU0sQ0FBQyxJQUFJLEVBQUUsRUFBRSxRQUFRLENBQUMsQ0FBQztJQUNuRCxDQUFDLENBQUMsQ0FBQztJQUVILEVBQUUsQ0FBQyxrQ0FBa0MsRUFBRSxLQUFLLElBQUksRUFBRTtRQUNoRCxNQUFNLE1BQU0sR0FBRyxDQUFDLENBQUMsR0FBRyxFQUFFLENBQUMsR0FBRyxFQUFFLENBQUMsSUFBSSxDQUFDLENBQUM7UUFDbkMsTUFBTSxDQUFDLEdBQUcsRUFBRSxDQUFDLFFBQVEsQ0FBQyxNQUFNLENBQUMsQ0FBQztRQUU5QixNQUFNLE1BQU0sR0FBRyxFQUFFLENBQUMsVUFBVSxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBRWhDLE1BQU0sUUFBUSxHQUFHLENBQUMsQ0FBQyxHQUFHLEVBQUUsQ0FBQyxHQUFHLEVBQUUsQ0FBQyxJQUFJLENBQUMsQ0FBQztRQUVyQyxpQkFBaUIsQ0FBQyxNQUFNLE1BQU0sQ0FBQyxJQUFJLEVBQUUsRUFBRSxRQUFRLENBQUMsQ0FBQztJQUNuRCxDQUFDLENBQUMsQ0FBQztJQUVILEVBQUUsQ0FBQyxrQ0FBa0MsRUFBRSxLQUFLLElBQUksRUFBRTtRQUNoRCxNQUFNLE1BQU0sR0FBRyxDQUFDLEdBQUcsRUFBRSxHQUFHLEVBQUUsSUFBSSxFQUFFLEtBQUssQ0FBQyxDQUFDO1FBQ3ZDLE1BQU0sQ0FBQyxHQUFHLEVBQUUsQ0FBQyxRQUFRLENBQUMsTUFBTSxDQUFDLENBQUM7UUFFOUIsTUFBTSxNQUFNLEdBQUcsRUFBRSxDQUFDLFVBQVUsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUVoQyxNQUFNLFFBQVEsR0FBRyxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDO1FBRTlCLGlCQUFpQixDQUFDLE1BQU0sTUFBTSxDQUFDLElBQUksRUFBRSxFQUFFLFFBQVEsQ0FBQyxDQUFDO0lBQ25ELENBQUMsQ0FBQyxDQUFDO0lBRUgsRUFBRSxDQUFDLGlCQUFpQixFQUFFLEtBQUssSUFBSSxFQUFFO1FBQy9CLE1BQU0sQ0FBQyxHQUFHLEVBQUUsQ0FBQyxRQUFRLENBQUMsQ0FBQyxDQUFDLEVBQUUsR0FBRyxDQUFDLENBQUMsQ0FBQztRQUNoQyxNQUFNLEdBQUcsR0FBRyxFQUFFLENBQUMsVUFBVSxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQzdCLGlCQUFpQixDQUNiLE1BQU0sR0FBRyxDQUFDLElBQUksRUFBRSxFQUFFLENBQUMsSUFBSSxDQUFDLEdBQUcsQ0FBQyxDQUFDLEdBQUcsQ0FBQyxDQUFDLEdBQUcsSUFBSSxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsRUFBRSxHQUFHLENBQUMsQ0FBQyxDQUFDO0lBQ2pFLENBQUMsQ0FBQyxDQUFDO0lBRUgsRUFBRSxDQUFDLG1CQUFtQixFQUFFLEtBQUssSUFBSSxFQUFFO1FBQ2pDLE1BQU0sQ0FBQyxHQUFHLEVBQUUsQ0FBQyxNQUFNLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDdkIsTUFBTSxFQUFFLEdBQUcsRUFBRSxDQUFDLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUN4QixNQUFNLEtBQUssR0FBRyxNQUFNLEVBQUUsQ0FBQyxLQUFLLEVBQUUsQ0FBQztRQUUvQixNQUFNLEVBQUUsR0FBRyxFQUFFLENBQUMsSUFBSSxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLFVBQVUsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsRUFBRSxFQUFFLENBQUMsQ0FBQztRQUNqRCxNQUFNLElBQUksR0FBRyxNQUFNLENBQUMsQ0FBQyxLQUFLLEVBQUUsQ0FBQztRQUM3QixNQUFNLENBQUMsR0FBRyxDQUFDLEdBQUcsQ0FBQyxDQUFDLEdBQUcsSUFBSSxDQUFDLEdBQUcsQ0FBQyxJQUFJLENBQUMsQ0FBQyxDQUFDO1FBQ25DLGlCQUFpQixDQUFDLE1BQU0sRUFBRSxDQUFDLElBQUksRUFBRSxFQUFFLENBQUMsS0FBSyxHQUFHLENBQUMsQ0FBQyxDQUFDLENBQUM7SUFDbEQsQ0FBQyxDQUFDLENBQUM7SUFFSCxFQUFFLENBQUMscUJBQXFCLEVBQUUsS0FBSyxJQUFJLEVBQUU7UUFDbkMsTUFBTSxDQUFDLEdBQUcsRUFBRSxDQUFDLFFBQVEsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUNyQyxNQUFNLEtBQUssR0FBRyxNQUFNLENBQUMsQ0FBQyxLQUFLLEVBQUUsQ0FBQztRQUM5QixNQUFNLEVBQUUsR0FBRyxFQUFFLENBQUMsUUFBUSxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUNyQyxNQUFNLE1BQU0sR0FBRyxNQUFNLEVBQUUsQ0FBQyxLQUFLLEVBQUUsQ0FBQztRQUNoQyxNQUFNLEVBQUUsR0FBRyxFQUFFLENBQUMsSUFBSSxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLFVBQVUsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsRUFBRSxFQUFFLENBQUMsQ0FBQztRQUVqRCxNQUFNLFFBQVEsR0FBRyxFQUFFLENBQUM7UUFDcEIsS0FBSyxJQUFJLENBQUMsR0FBRyxDQUFDLEVBQUUsQ0FBQyxHQUFHLENBQUMsQ0FBQyxJQUFJLEVBQUUsQ0FBQyxFQUFFLEVBQUU7WUFDL0IsTUFBTSxDQUFDLEdBQUcsQ0FBQyxHQUFHLENBQUMsQ0FBQyxHQUFHLElBQUksQ0FBQyxHQUFHLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQztZQUN2QyxRQUFRLENBQUMsQ0FBQyxDQUFDLEdBQUcsTUFBTSxDQUFDLENBQUMsQ0FBQyxHQUFHLENBQUMsQ0FBQztTQUM3QjtRQUVELGlCQUFpQixDQUFDLE1BQU0sRUFBRSxDQUFDLElBQUksRUFBRSxFQUFFLFFBQVEsQ0FBQyxDQUFDO0lBQy9DLENBQUMsQ0FBQyxDQUFDO0lBRUgsRUFBRSxDQUFDLHNCQUFzQixFQUFFLEtBQUssSUFBSSxFQUFFO1FBQ3BDLE1BQU0sQ0FBQyxHQUFHLEVBQUUsQ0FBQyxRQUFRLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDckMsTUFBTSxLQUFLLEdBQUcsTUFBTSxDQUFDLENBQUMsS0FBSyxFQUFFLENBQUM7UUFDOUIsTUFBTSxFQUFFLEdBQUcsRUFBRSxDQUFDLFFBQVEsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDckMsTUFBTSxNQUFNLEdBQUcsTUFBTSxFQUFFLENBQUMsS0FBSyxFQUFFLENBQUM7UUFDaEMsTUFBTSxFQUFFLEdBQUcsRUFBRSxDQUFDLElBQUksQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxVQUFVLENBQUMsQ0FBQyxDQUFDLEtBQUssRUFBRSxDQUFDLENBQUMsS0FBSyxFQUFFLENBQUMsQ0FBQyxDQUFDLEVBQUUsRUFBRSxDQUFDLENBQUM7UUFFakUsTUFBTSxRQUFRLEdBQUcsRUFBRSxDQUFDO1FBQ3BCLEtBQUssSUFBSSxDQUFDLEdBQUcsQ0FBQyxFQUFFLENBQUMsR0FBRyxDQUFDLENBQUMsSUFBSSxFQUFFLENBQUMsRUFBRSxFQUFFO1lBQy9CLE1BQU0sQ0FBQyxHQUFHLENBQUMsR0FBRyxDQUFDLENBQUMsR0FBRyxJQUFJLENBQUMsR0FBRyxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUM7WUFDdkMsUUFBUSxDQUFDLENBQUMsQ0FBQyxHQUFHLE1BQU0sQ0FBQyxDQUFDLENBQUMsR0FBRyxDQUFDLENBQUM7U0FDN0I7UUFFRCxpQkFBaUIsQ0FBQyxNQUFNLEVBQUUsQ0FBQyxJQUFJLEVBQUUsRUFBRSxRQUFRLENBQUMsQ0FBQztJQUMvQyxDQUFDLENBQUMsQ0FBQztJQUVILEVBQUUsQ0FBQyxxQkFBcUIsRUFBRSxLQUFLLElBQUksRUFBRTtRQUNuQyxNQUFNLENBQUMsR0FBRyxFQUFFLENBQUMsUUFBUSxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQzdDLE1BQU0sRUFBRSxHQUFHLEVBQUUsQ0FBQyxRQUFRLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBRTdDLE1BQU0sRUFBRSxHQUFHLEVBQUUsQ0FBQyxJQUFJLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsVUFBVSxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxFQUFFLEVBQUUsQ0FBQyxDQUFDO1FBRWpELE1BQU0sUUFBUSxHQUFHLEVBQUUsQ0FBQztRQUNwQixNQUFNLEtBQUssR0FBRyxNQUFNLENBQUMsQ0FBQyxJQUFJLEVBQUUsQ0FBQztRQUM3QixNQUFNLE1BQU0sR0FBRyxNQUFNLEVBQUUsQ0FBQyxJQUFJLEVBQUUsQ0FBQztRQUMvQixLQUFLLElBQUksQ0FBQyxHQUFHLENBQUMsRUFBRSxDQUFDLEdBQUcsQ0FBQyxDQUFDLElBQUksRUFBRSxDQUFDLEVBQUUsRUFBRTtZQUMvQixNQUFNLENBQUMsR0FBRyxDQUFDLEdBQUcsQ0FBQyxDQUFDLEdBQUcsSUFBSSxDQUFDLEdBQUcsQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO1lBQ3ZDLFFBQVEsQ0FBQyxDQUFDLENBQUMsR0FBRyxNQUFNLENBQUMsQ0FBQyxDQUFDLEdBQUcsQ0FBQyxDQUFDO1NBQzdCO1FBRUQsaUJBQWlCLENBQUMsTUFBTSxFQUFFLENBQUMsSUFBSSxFQUFFLEVBQUUsUUFBUSxDQUFDLENBQUM7SUFDL0MsQ0FBQyxDQUFDLENBQUM7SUFFSCxFQUFFLENBQUMsaUNBQWlDLEVBQUUsR0FBRyxFQUFFO1FBQ3pDLE1BQU0sQ0FBQyxHQUFHLEVBQUUsQ0FBQyxFQUFFLENBQUMsVUFBVSxDQUFDLEVBQWUsQ0FBQyxDQUFDO2FBQ3ZDLFlBQVksQ0FBQyxzREFBc0QsQ0FBQyxDQUFDO0lBQzVFLENBQUMsQ0FBQyxDQUFDO0lBRUgsRUFBRSxDQUFDLDhCQUE4QixFQUFFLEtBQUssSUFBSSxFQUFFO1FBQzVDLE1BQU0sTUFBTSxHQUFHLEVBQUUsQ0FBQyxVQUFVLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUNqQyxNQUFNLFFBQVEsR0FBRyxDQUFDLElBQUksQ0FBQyxHQUFHLENBQUMsQ0FBQyxHQUFHLENBQUMsQ0FBQyxHQUFHLElBQUksQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDbkQsaUJBQWlCLENBQUMsTUFBTSxNQUFNLENBQUMsSUFBSSxFQUFFLEVBQUUsUUFBUSxDQUFDLENBQUM7SUFDbkQsQ0FBQyxDQUFDLENBQUM7SUFFSCxFQUFFLENBQUMsMEJBQTBCLEVBQUUsR0FBRyxFQUFFO1FBQ2xDLE1BQU0sQ0FBQyxHQUFHLEVBQUUsQ0FBQyxFQUFFLENBQUMsVUFBVSxDQUFDLEdBQUcsQ0FBQyxDQUFDO2FBQzNCLFlBQVksQ0FBQyxxREFBcUQsQ0FBQyxDQUFDO0lBQzNFLENBQUMsQ0FBQyxDQUFDO0FBQ0wsQ0FBQyxDQUFDLENBQUMiLCJzb3VyY2VzQ29udGVudCI6WyIvKipcbiAqIEBsaWNlbnNlXG4gKiBDb3B5cmlnaHQgMjAyMCBHb29nbGUgSW5jLiBBbGwgUmlnaHRzIFJlc2VydmVkLlxuICogTGljZW5zZWQgdW5kZXIgdGhlIEFwYWNoZSBMaWNlbnNlLCBWZXJzaW9uIDIuMCAodGhlIFwiTGljZW5zZVwiKTtcbiAqIHlvdSBtYXkgbm90IHVzZSB0aGlzIGZpbGUgZXhjZXB0IGluIGNvbXBsaWFuY2Ugd2l0aCB0aGUgTGljZW5zZS5cbiAqIFlvdSBtYXkgb2J0YWluIGEgY29weSBvZiB0aGUgTGljZW5zZSBhdFxuICpcbiAqIGh0dHA6Ly93d3cuYXBhY2hlLm9yZy9saWNlbnNlcy9MSUNFTlNFLTIuMFxuICpcbiAqIFVubGVzcyByZXF1aXJlZCBieSBhcHBsaWNhYmxlIGxhdyBvciBhZ3JlZWQgdG8gaW4gd3JpdGluZywgc29mdHdhcmVcbiAqIGRpc3RyaWJ1dGVkIHVuZGVyIHRoZSBMaWNlbnNlIGlzIGRpc3RyaWJ1dGVkIG9uIGFuIFwiQVMgSVNcIiBCQVNJUyxcbiAqIFdJVEhPVVQgV0FSUkFOVElFUyBPUiBDT05ESVRJT05TIE9GIEFOWSBLSU5ELCBlaXRoZXIgZXhwcmVzcyBvciBpbXBsaWVkLlxuICogU2VlIHRoZSBMaWNlbnNlIGZvciB0aGUgc3BlY2lmaWMgbGFuZ3VhZ2UgZ292ZXJuaW5nIHBlcm1pc3Npb25zIGFuZFxuICogbGltaXRhdGlvbnMgdW5kZXIgdGhlIExpY2Vuc2UuXG4gKiA9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PVxuICovXG5cbmltcG9ydCAqIGFzIHRmIGZyb20gJy4uL2luZGV4JztcbmltcG9ydCB7QUxMX0VOVlMsIGRlc2NyaWJlV2l0aEZsYWdzfSBmcm9tICcuLi9qYXNtaW5lX3V0aWwnO1xuaW1wb3J0IHtleHBlY3RBcnJheXNDbG9zZX0gZnJvbSAnLi4vdGVzdF91dGlsJztcblxuZGVzY3JpYmVXaXRoRmxhZ3MoJ2xvZ1NpZ21vaWQnLCBBTExfRU5WUywgKCkgPT4ge1xuICBpdCgnYmFzaWMnLCBhc3luYyAoKSA9PiB7XG4gICAgY29uc3QgdmFsdWVzID0gWzEsIC0zLCAyLCA3LCAtNF07XG4gICAgY29uc3QgYSA9IHRmLnRlbnNvcjFkKHZhbHVlcyk7XG5cbiAgICBjb25zdCByZXN1bHQgPSB0Zi5sb2dTaWdtb2lkKGEpO1xuXG4gICAgY29uc3QgZXhwZWN0ZWQgPSBbXTtcbiAgICBmb3IgKGxldCBpID0gMDsgaSA8IGEuc2l6ZTsgaSsrKSB7XG4gICAgICBleHBlY3RlZFtpXSA9IE1hdGgubG9nKDEgLyAoMSArIE1hdGguZXhwKC12YWx1ZXNbaV0pKSk7XG4gICAgfVxuICAgIGV4cGVjdEFycmF5c0Nsb3NlKGF3YWl0IHJlc3VsdC5kYXRhKCksIGV4cGVjdGVkKTtcbiAgfSk7XG5cbiAgaXQoJ3NjYWxhcicsIGFzeW5jICgpID0+IHtcbiAgICBjb25zdCBhID0gdGYuc2NhbGFyKC0yKTtcblxuICAgIGNvbnN0IHJlc3VsdCA9IHRmLmxvZ1NpZ21vaWQoYSk7XG5cbiAgICBjb25zdCBleHBlY3RlZCA9IFtNYXRoLmxvZygxIC8gKDEgKyBNYXRoLmV4cCgyKSkpXTtcbiAgICBleHBlY3RBcnJheXNDbG9zZShhd2FpdCByZXN1bHQuZGF0YSgpLCBleHBlY3RlZCk7XG4gIH0pO1xuXG4gIGl0KCd0ZW5zb3IyRCcsIGFzeW5jICgpID0+IHtcbiAgICBjb25zdCB2YWx1ZXMgPSBbMSwgMiwgLTMsIDVdO1xuICAgIGNvbnN0IGEgPSB0Zi50ZW5zb3IyZCh2YWx1ZXMsIFsyLCAyXSk7XG5cbiAgICBjb25zdCByZXN1bHQgPSB0Zi5sb2dTaWdtb2lkKGEpO1xuXG4gICAgY29uc3QgZXhwZWN0ZWQgPSBbXTtcbiAgICBmb3IgKGxldCBpID0gMDsgaSA8IGEuc2l6ZTsgaSsrKSB7XG4gICAgICBleHBlY3RlZFtpXSA9IE1hdGgubG9nKDEgLyAoMSArIE1hdGguZXhwKC12YWx1ZXNbaV0pKSk7XG4gICAgfVxuICAgIGV4cGVjdEFycmF5c0Nsb3NlKGF3YWl0IHJlc3VsdC5kYXRhKCksIGV4cGVjdGVkKTtcbiAgfSk7XG5cbiAgaXQoJ2xhcmdlciBtYWduaXR1ZGUgbmVnYXRpdmUgaW5wdXRzJywgYXN5bmMgKCkgPT4ge1xuICAgIGNvbnN0IHZhbHVlcyA9IFstMTAwLCAtMjAwLCAtMzAwMF07XG4gICAgY29uc3QgYSA9IHRmLnRlbnNvcjFkKHZhbHVlcyk7XG5cbiAgICBjb25zdCByZXN1bHQgPSB0Zi5sb2dTaWdtb2lkKGEpO1xuXG4gICAgY29uc3QgZXhwZWN0ZWQgPSBbLTEwMCwgLTIwMCwgLTMwMDBdO1xuXG4gICAgZXhwZWN0QXJyYXlzQ2xvc2UoYXdhaXQgcmVzdWx0LmRhdGEoKSwgZXhwZWN0ZWQpO1xuICB9KTtcblxuICBpdCgnbGFyZ2VyIG1hZ25pdHVkZSBwb3NpdGl2ZSBpbnB1dHMnLCBhc3luYyAoKSA9PiB7XG4gICAgY29uc3QgdmFsdWVzID0gWzEwMCwgMjAwLCAzMDAwLCA1MDAwMF07XG4gICAgY29uc3QgYSA9IHRmLnRlbnNvcjFkKHZhbHVlcyk7XG5cbiAgICBjb25zdCByZXN1bHQgPSB0Zi5sb2dTaWdtb2lkKGEpO1xuXG4gICAgY29uc3QgZXhwZWN0ZWQgPSBbMCwgMCwgMCwgMF07XG5cbiAgICBleHBlY3RBcnJheXNDbG9zZShhd2FpdCByZXN1bHQuZGF0YSgpLCBleHBlY3RlZCk7XG4gIH0pO1xuXG4gIGl0KCdwcm9wYWdhdGVzIE5hTnMnLCBhc3luYyAoKSA9PiB7XG4gICAgY29uc3QgYSA9IHRmLnRlbnNvcjFkKFszLCBOYU5dKTtcbiAgICBjb25zdCByZXMgPSB0Zi5sb2dTaWdtb2lkKGEpO1xuICAgIGV4cGVjdEFycmF5c0Nsb3NlKFxuICAgICAgICBhd2FpdCByZXMuZGF0YSgpLCBbTWF0aC5sb2coMSAvICgxICsgTWF0aC5leHAoLTMpKSksIE5hTl0pO1xuICB9KTtcblxuICBpdCgnZ3JhZGllbnRzOiBTY2FsYXInLCBhc3luYyAoKSA9PiB7XG4gICAgY29uc3QgYSA9IHRmLnNjYWxhcigzKTtcbiAgICBjb25zdCBkeSA9IHRmLnNjYWxhcig0KTtcbiAgICBjb25zdCBkeVZhbCA9IGF3YWl0IGR5LmFycmF5KCk7XG5cbiAgICBjb25zdCBkYSA9IHRmLmdyYWQoYSA9PiB0Zi5sb2dTaWdtb2lkKGEpKShhLCBkeSk7XG4gICAgY29uc3QgYVZhbCA9IGF3YWl0IGEuYXJyYXkoKTtcbiAgICBjb25zdCB5ID0gMSAvICgxICsgTWF0aC5leHAoYVZhbCkpO1xuICAgIGV4cGVjdEFycmF5c0Nsb3NlKGF3YWl0IGRhLmRhdGEoKSwgW2R5VmFsICogeV0pO1xuICB9KTtcblxuICBpdCgnZ3JhZGllbnRzOiBUZW5zb3IxRCcsIGFzeW5jICgpID0+IHtcbiAgICBjb25zdCBhID0gdGYudGVuc29yMWQoWzEsIDIsIC0zLCA1XSk7XG4gICAgY29uc3QgYVZhbHMgPSBhd2FpdCBhLmFycmF5KCk7XG4gICAgY29uc3QgZHkgPSB0Zi50ZW5zb3IxZChbMSwgMiwgMywgNF0pO1xuICAgIGNvbnN0IGR5VmFscyA9IGF3YWl0IGR5LmFycmF5KCk7XG4gICAgY29uc3QgZGEgPSB0Zi5ncmFkKGEgPT4gdGYubG9nU2lnbW9pZChhKSkoYSwgZHkpO1xuXG4gICAgY29uc3QgZXhwZWN0ZWQgPSBbXTtcbiAgICBmb3IgKGxldCBpID0gMDsgaSA8IGEuc2l6ZTsgaSsrKSB7XG4gICAgICBjb25zdCB5ID0gMSAvICgxICsgTWF0aC5leHAoYVZhbHNbaV0pKTtcbiAgICAgIGV4cGVjdGVkW2ldID0gZHlWYWxzW2ldICogeTtcbiAgICB9XG5cbiAgICBleHBlY3RBcnJheXNDbG9zZShhd2FpdCBkYS5kYXRhKCksIGV4cGVjdGVkKTtcbiAgfSk7XG5cbiAgaXQoJ2dyYWRpZW50IHdpdGggY2xvbmVzJywgYXN5bmMgKCkgPT4ge1xuICAgIGNvbnN0IGEgPSB0Zi50ZW5zb3IxZChbMSwgMiwgLTMsIDVdKTtcbiAgICBjb25zdCBhVmFscyA9IGF3YWl0IGEuYXJyYXkoKTtcbiAgICBjb25zdCBkeSA9IHRmLnRlbnNvcjFkKFsxLCAyLCAzLCA0XSk7XG4gICAgY29uc3QgZHlWYWxzID0gYXdhaXQgZHkuYXJyYXkoKTtcbiAgICBjb25zdCBkYSA9IHRmLmdyYWQoYSA9PiB0Zi5sb2dTaWdtb2lkKGEuY2xvbmUoKSkuY2xvbmUoKSkoYSwgZHkpO1xuXG4gICAgY29uc3QgZXhwZWN0ZWQgPSBbXTtcbiAgICBmb3IgKGxldCBpID0gMDsgaSA8IGEuc2l6ZTsgaSsrKSB7XG4gICAgICBjb25zdCB5ID0gMSAvICgxICsgTWF0aC5leHAoYVZhbHNbaV0pKTtcbiAgICAgIGV4cGVjdGVkW2ldID0gZHlWYWxzW2ldICogeTtcbiAgICB9XG5cbiAgICBleHBlY3RBcnJheXNDbG9zZShhd2FpdCBkYS5kYXRhKCksIGV4cGVjdGVkKTtcbiAgfSk7XG5cbiAgaXQoJ2dyYWRpZW50czogVGVuc29yMkQnLCBhc3luYyAoKSA9PiB7XG4gICAgY29uc3QgYSA9IHRmLnRlbnNvcjJkKFsxLCAyLCAtMywgNV0sIFsyLCAyXSk7XG4gICAgY29uc3QgZHkgPSB0Zi50ZW5zb3IyZChbMSwgMiwgMywgNF0sIFsyLCAyXSk7XG5cbiAgICBjb25zdCBkYSA9IHRmLmdyYWQoYSA9PiB0Zi5sb2dTaWdtb2lkKGEpKShhLCBkeSk7XG5cbiAgICBjb25zdCBleHBlY3RlZCA9IFtdO1xuICAgIGNvbnN0IGFWYWxzID0gYXdhaXQgYS5kYXRhKCk7XG4gICAgY29uc3QgZHlWYWxzID0gYXdhaXQgZHkuZGF0YSgpO1xuICAgIGZvciAobGV0IGkgPSAwOyBpIDwgYS5zaXplOyBpKyspIHtcbiAgICAgIGNvbnN0IHkgPSAxIC8gKDEgKyBNYXRoLmV4cChhVmFsc1tpXSkpO1xuICAgICAgZXhwZWN0ZWRbaV0gPSBkeVZhbHNbaV0gKiB5O1xuICAgIH1cblxuICAgIGV4cGVjdEFycmF5c0Nsb3NlKGF3YWl0IGRhLmRhdGEoKSwgZXhwZWN0ZWQpO1xuICB9KTtcblxuICBpdCgndGhyb3dzIHdoZW4gcGFzc2VkIGEgbm9uLXRlbnNvcicsICgpID0+IHtcbiAgICBleHBlY3QoKCkgPT4gdGYubG9nU2lnbW9pZCh7fSBhcyB0Zi5UZW5zb3IpKVxuICAgICAgICAudG9UaHJvd0Vycm9yKC9Bcmd1bWVudCAneCcgcGFzc2VkIHRvICdsb2dTaWdtb2lkJyBtdXN0IGJlIGEgVGVuc29yLyk7XG4gIH0pO1xuXG4gIGl0KCdhY2NlcHRzIGEgdGVuc29yLWxpa2Ugb2JqZWN0JywgYXN5bmMgKCkgPT4ge1xuICAgIGNvbnN0IHJlc3VsdCA9IHRmLmxvZ1NpZ21vaWQoLTIpO1xuICAgIGNvbnN0IGV4cGVjdGVkID0gW01hdGgubG9nKDEgLyAoMSArIE1hdGguZXhwKDIpKSldO1xuICAgIGV4cGVjdEFycmF5c0Nsb3NlKGF3YWl0IHJlc3VsdC5kYXRhKCksIGV4cGVjdGVkKTtcbiAgfSk7XG5cbiAgaXQoJ3Rocm93cyBmb3Igc3RyaW5nIHRlbnNvcicsICgpID0+IHtcbiAgICBleHBlY3QoKCkgPT4gdGYubG9nU2lnbW9pZCgncScpKVxuICAgICAgICAudG9UaHJvd0Vycm9yKC9Bcmd1bWVudCAneCcgcGFzc2VkIHRvICdsb2dTaWdtb2lkJyBtdXN0IGJlIG51bWVyaWMvKTtcbiAgfSk7XG59KTtcbiJdfQ==