/**
|
* @license
|
* Copyright 2018 Google Inc. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
|
import {ENGINE} from '../engine';
|
import {Tensor} from '../tensor';
|
import {convertToTensor} from '../tensor_util_env';
|
import {TensorLike} from '../types';
|
import * as util from '../util';
|
|
import {op} from './operation';
|
import {scalar, zerosLike} from './tensor_ops';
|
|
/**
|
* Computes `-1 * x` element-wise.
|
*
|
* ```js
|
* const x = tf.tensor2d([1, 2, -2, 0], [2, 2]);
|
*
|
* x.neg().print(); // or tf.neg(x)
|
* ```
|
*
|
* @param x The input tensor.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Basic math'} */
|
function neg_<T extends Tensor>(x: T|TensorLike): T {
|
const $x = convertToTensor(x, 'x', 'neg');
|
|
const grad = (dy: T) => {
|
return {x: () => dy.neg()};
|
};
|
|
const attrs = {};
|
const inputsToSave = [$x];
|
return ENGINE.runKernelFunc(
|
backend => backend.neg($x), {x: $x}, grad, 'Neg', attrs, inputsToSave);
|
}
|
|
/**
|
* Computes ceiling of input `tf.Tensor` element-wise: `ceil(x)`
|
*
|
* ```js
|
* const x = tf.tensor1d([.6, 1.1, -3.3]);
|
*
|
* x.ceil().print(); // or tf.ceil(x)
|
* ```
|
* @param x The input Tensor.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Basic math'} */
|
function ceil_<T extends Tensor>(x: T|TensorLike): T {
|
const $x = convertToTensor(x, 'x', 'ceil');
|
|
// TODO(manrajgrover): Return null for gradients when backprop supports it.
|
const grad = (dy: T) => {
|
return {$x: () => zerosLike(dy)};
|
};
|
return ENGINE.runKernelFunc(backend => backend.ceil($x), {$x}, grad);
|
}
|
|
/**
|
* Computes floor of input `tf.Tensor` element-wise: `floor(x)`.
|
*
|
* ```js
|
* const x = tf.tensor1d([.6, 1.1, -3.3]);
|
*
|
* x.floor().print(); // or tf.floor(x)
|
* ```
|
* @param x The input tensor.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Basic math'} */
|
function floor_<T extends Tensor>(x: T|TensorLike): T {
|
const $x = convertToTensor(x, 'x', 'floor');
|
|
// TODO(nsthorat): Let gradients be null for cases where we want to stop
|
// backpropgation.
|
const grad = (dy: T) => {
|
return {$x: () => zerosLike(dy)};
|
};
|
return ENGINE.runKernelFunc(backend => backend.floor($x), {$x}, grad);
|
}
|
|
/**
|
* Returns an element-wise indication of the sign of a number.
|
*
|
* ```js
|
* const x = tf.tensor1d([.6, 1.1, -3.3, NaN, 0]);
|
*
|
* x.sign().print(); // or tf.sign(x)
|
* ```
|
* @param x The input Tensor.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Basic math'} */
|
function sign_<T extends Tensor>(x: T|TensorLike): T {
|
const $x = convertToTensor(x, 'x', 'sign');
|
|
const grad = (dy: T) => {
|
return {$x: () => zerosLike(dy)};
|
};
|
return ENGINE.runKernelFunc(backend => backend.sign($x), {$x}, grad);
|
}
|
|
/**
|
* RReturns which elements of x are NaN.
|
*
|
* ```js
|
* const x = tf.tensor1d([NaN, Infinity, -Infinity, 0, 1]);
|
*
|
* x.isNaN().print(); // or tf.isNaN(x)
|
* ```
|
* @param x The input Tensor.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Basic math'} */
|
function isNaN_<T extends Tensor>(x: T|TensorLike): T {
|
const $x = convertToTensor(x, 'x', 'isNaN');
|
|
// TODO(nsthorat): Let gradients be null for cases where we want to stop
|
// backpropgation.
|
const grad = (dy: T) => {
|
return {$x: () => zerosLike(dy)};
|
};
|
return ENGINE.runKernelFunc(backend => backend.isNaN($x), {$x}, grad);
|
}
|
|
/**
|
* Returns which elements of x are Infinity or -Infinity.
|
*
|
* ```js
|
* const x = tf.tensor1d([NaN, Infinity, -Infinity, 0, 1]);
|
*
|
* x.isInf().print(); // or tf.isNaN(x)
|
* ```
|
* @param x The input Tensor.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Basic math'} */
|
function isInf_<T extends Tensor>(x: T|TensorLike): T {
|
const $x = convertToTensor(x, 'x', 'isInf');
|
|
// TODO(nsthorat): Let gradients be null for cases where we want to stop
|
// backpropgation.
|
const grad = (dy: T) => {
|
return {$x: () => zerosLike(dy)};
|
};
|
return ENGINE.runKernelFunc(backend => backend.isInf($x), {$x}, grad);
|
}
|
|
/**
|
* Returns which elements of x are finite.
|
*
|
* ```js
|
* const x = tf.tensor1d([NaN, Infinity, -Infinity, 0, 1]);
|
*
|
* x.isFinite().print(); // or tf.isNaN(x)
|
* ```
|
* @param x The input Tensor.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Basic math'} */
|
function isFinite_<T extends Tensor>(x: T|TensorLike): T {
|
const $x = convertToTensor(x, 'x', 'isFinite');
|
|
// TODO(nsthorat): Let gradients be null for cases where we want to stop
|
// backpropgation.
|
const grad = (dy: T) => {
|
return {$x: () => zerosLike(dy)};
|
};
|
return ENGINE.runKernelFunc(backend => backend.isFinite($x), {$x}, grad);
|
}
|
|
/**
|
* Computes round of input `tf.Tensor` element-wise: `round(x)`.
|
* It implements banker's rounding.
|
*
|
* ```js
|
* const x = tf.tensor1d([.6, 1.1, -3.3]);
|
*
|
* x.round().print(); // or tf.round(x)
|
* ```
|
* @param x The input tensor.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Basic math'} */
|
function round_<T extends Tensor>(x: T|TensorLike): T {
|
const $x = convertToTensor(x, 'x', 'round');
|
|
// TODO(nsthorat): Let gradients be null for cases where we want to stop
|
// backpropgation.
|
const grad = (dy: T) => {
|
return {$x: () => zerosLike(dy)};
|
};
|
return ENGINE.runKernelFunc(backend => backend.round($x), {$x}, grad);
|
}
|
|
/**
|
* Computes exponential of the input `tf.Tensor` element-wise. `e ^ x`
|
*
|
* ```js
|
* const x = tf.tensor1d([1, 2, -3]);
|
*
|
* x.exp().print(); // or tf.exp(x)
|
* ```
|
* @param x The input tensor.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Basic math'} */
|
function exp_<T extends Tensor>(x: T|TensorLike): T {
|
const $x = convertToTensor(x, 'x', 'exp');
|
|
const bck = (dy: T, saved: Tensor[]) => {
|
return {x: () => dy.mulStrict(saved[0] as T)};
|
};
|
const attrs = {};
|
const inputsToSave: Tensor[] = [];
|
const outputsToSave = [true];
|
return ENGINE.runKernelFunc((backend, save) => {
|
const y = backend.exp($x);
|
save([y]);
|
return y;
|
}, {x: $x}, bck, 'Exp', attrs, inputsToSave, outputsToSave);
|
}
|
|
/**
|
* Computes exponential of the input `tf.Tensor` minus one element-wise.
|
* `e ^ x - 1`
|
*
|
* ```js
|
* const x = tf.tensor1d([1, 2, -3]);
|
*
|
* x.expm1().print(); // or tf.expm1(x)
|
* ```
|
* @param x The input tensor.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Basic math'} */
|
function expm1_<T extends Tensor>(x: T|TensorLike): T {
|
const $x = convertToTensor(x, 'x', 'expm1');
|
|
const grad = (dy: T, saved: Tensor[]) => {
|
const [$x] = saved;
|
return {$x: () => dy.mul($x.exp())} as {$x: () => T};
|
};
|
return ENGINE.runKernelFunc((backend, save) => {
|
const res = backend.expm1($x);
|
save([$x]);
|
return res;
|
}, {$x}, grad);
|
}
|
|
/**
|
* Computes natural logarithm of the input `tf.Tensor` element-wise: `ln(x)`
|
*
|
* ```js
|
* const x = tf.tensor1d([1, 2, Math.E]);
|
*
|
* x.log().print(); // or tf.log(x)
|
* ```
|
* @param x The input tensor.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Basic math'} */
|
function log_<T extends Tensor>(x: T|TensorLike): T {
|
const $x = convertToTensor(x, 'x', 'log');
|
|
const grad = (dy: T, saved: Tensor[]) => {
|
const [$x] = saved;
|
return {x: () => dy.div($x.toFloat())} as {x: () => T};
|
};
|
|
const attrs = {};
|
const inputsToSave = [$x];
|
|
return ENGINE.runKernelFunc((backend, save) => {
|
const res = backend.log($x);
|
save([$x]);
|
return res;
|
}, {x: $x}, grad, 'Log', attrs, inputsToSave);
|
}
|
|
/**
|
* Computes natural logarithm of the input `tf.Tensor` plus one
|
* element-wise: `ln(1 + x)`
|
*
|
* ```js
|
* const x = tf.tensor1d([1, 2, Math.E - 1]);
|
*
|
* x.log1p().print(); // or tf.log1p(x)
|
* ```
|
* @param x The input tensor.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Basic math'} */
|
function log1p_<T extends Tensor>(x: T|TensorLike): T {
|
const $x = convertToTensor(x, 'x', 'log1p');
|
|
const grad = (dy: T, saved: Tensor[]) => {
|
const [$x] = saved;
|
return {$x: () => dy.div($x.add(1))} as {$x: () => T};
|
};
|
return ENGINE.runKernelFunc((backend, save) => {
|
const res = backend.log1p($x);
|
save([$x]);
|
return res;
|
}, {$x}, grad);
|
}
|
|
/**
|
* Computes square root of the input `tf.Tensor` element-wise: `y = sqrt(x)`
|
*
|
* ```js
|
* const x = tf.tensor1d([1, 2, 4, -1]);
|
*
|
* x.sqrt().print(); // or tf.sqrt(x)
|
* ```
|
* @param x The input tensor.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Basic math'} */
|
function sqrt_<T extends Tensor>(x: T|TensorLike): T {
|
const $x = convertToTensor(x, 'x', 'sqrt');
|
|
const grad = (dy: T, saved: Tensor[]) => {
|
const [$x] = saved;
|
return {$x: () => dy.div($x.toFloat().sqrt().mul(2))} as {$x: () => T};
|
};
|
return ENGINE.runKernelFunc((backend, save) => {
|
const res = backend.sqrt($x);
|
save([$x]);
|
return res;
|
}, {$x}, grad);
|
}
|
|
/**
|
* Computes reciprocal of square root of the input `tf.Tensor` element-wise:
|
* `y = 1 / sqrt(x)`
|
*
|
* ```js
|
* const x = tf.tensor1d([1, 2, 4, -1]);
|
*
|
* x.rsqrt().print(); // or tf.rsqrt(x)
|
* ```
|
* @param x The input tensor.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Basic math'} */
|
function rsqrt_<T extends Tensor>(x: T|TensorLike): T {
|
const $x = convertToTensor(x, 'x', 'rsqrt');
|
|
const grad = (dy: T, saved: Tensor[]) => {
|
const [$x] = saved;
|
return {x: () => dy.div($x.pow(1.5).mul(2)).neg() as T};
|
};
|
const inputsToSave = [$x];
|
return ENGINE.runKernelFunc((backend, save) => {
|
const res = backend.rsqrt($x);
|
save([$x]);
|
return res;
|
}, {x: $x}, grad, 'Rsqrt', {} /* attrs */, inputsToSave);
|
}
|
|
/**
|
* Computes reciprocal of x element-wise: `1 / x`
|
*
|
* ```js
|
* const x = tf.tensor1d([0, 1, 2]);
|
*
|
* x.reciprocal().print(); // or tf.reciprocal(x)
|
* ```
|
* @param x The input tensor.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Basic math'} */
|
function reciprocal_<T extends Tensor>(x: T|TensorLike): T {
|
const $x = convertToTensor(x, 'x', 'reciprocal');
|
|
const grad = (dy: T, saved: Tensor[]) => {
|
const [$x] = saved;
|
return {$x: () => dy.div($x.square().neg())} as {$x: () => T};
|
};
|
return ENGINE.runKernelFunc((backend, save) => {
|
const res = backend.reciprocal($x);
|
save([$x]);
|
return res;
|
}, {$x}, grad);
|
}
|
|
/**
|
* Computes absolute value element-wise: `abs(x)`
|
*
|
* ```js
|
* const x = tf.tensor1d([-1, 2, -3, 4]);
|
*
|
* x.abs().print(); // or tf.abs(x)
|
* ```
|
* @param x The input `tf.Tensor`.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Basic math'} */
|
function abs_<T extends Tensor>(x: T|TensorLike): T {
|
const $x = convertToTensor(x, 'x', 'abs');
|
|
if ($x.dtype === 'complex64') {
|
return ENGINE.runKernelFunc(backend => backend.complexAbs($x), {$x});
|
}
|
|
const grad = (dy: T, saved: Tensor[]) => {
|
const [$x] = saved;
|
return {x: () => dy.mul($x.toFloat().step(-1))} as {x: () => T};
|
};
|
return ENGINE.runKernelFunc((backend, save) => {
|
const res = backend.abs($x);
|
save([$x]);
|
return res;
|
}, {x: $x}, grad, 'Abs');
|
}
|
|
/**
|
* Clips values element-wise. `max(min(x, clipValueMax), clipValueMin)`
|
*
|
* ```js
|
* const x = tf.tensor1d([-1, 2, -3, 4]);
|
*
|
* x.clipByValue(-2, 3).print(); // or tf.clipByValue(x, -2, 3)
|
* ```
|
* @param x The input tensor.
|
* @param clipValueMin Lower-bound of range to be clipped to.
|
* @param clipValueMax Upper-bound of range to be clipped to.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Basic math'} */
|
function clipByValue_<T extends Tensor>(
|
x: T|TensorLike, clipValueMin: number, clipValueMax: number): T {
|
const $x = convertToTensor(x, 'x', 'clipByValue');
|
util.assert(
|
(clipValueMin <= clipValueMax),
|
() => `Error in clip: min (${clipValueMin}) must be ` +
|
`less than or equal to max (${clipValueMax}).`);
|
|
const grad = (dy: T, saved: Tensor[]) => {
|
const [$x] = saved;
|
return {
|
x: () => dy.where(
|
$x.greaterEqual(clipValueMin)
|
.logicalAnd($x.lessEqual(clipValueMax)),
|
zerosLike(dy)) as T,
|
};
|
};
|
const inputsToSave = [$x];
|
const attr = {min: clipValueMin, max: clipValueMax};
|
return ENGINE.runKernelFunc((backend, save) => {
|
const res = backend.clip($x, clipValueMin, clipValueMax);
|
save([$x]);
|
return res;
|
}, {x: $x}, grad, 'ClipByValue', attr, inputsToSave);
|
}
|
|
/**
|
* Computes sigmoid element-wise, `1 / (1 + exp(-x))`
|
*
|
* ```js
|
* const x = tf.tensor1d([0, -1, 2, -3]);
|
*
|
* x.sigmoid().print(); // or tf.sigmoid(x)
|
* ```
|
* @param x The input tensor.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Basic math'} */
|
function sigmoid_<T extends Tensor>(x: T|TensorLike): T {
|
const $x = convertToTensor(x, 'x', 'sigmoid');
|
|
const grad = (dy: T, saved: Tensor[]) => {
|
const [y] = saved;
|
return {x: () => dy.mul(y.mul(scalar(1).sub(y)))} as {x: () => T};
|
};
|
return ENGINE.runKernelFunc((backend, save) => {
|
const y = backend.sigmoid($x);
|
save([y]);
|
return y;
|
}, {x: $x}, grad, 'Sigmoid');
|
}
|
|
/**
|
* Computes log sigmoid of the input `tf.Tensor` element-wise:
|
* `logSigmoid(x)`. For numerical stability, we use `-tf.softplus(-x)`.
|
*
|
* ```js
|
* const x = tf.tensor1d([0, 1, -1, .7]);
|
*
|
* x.logSigmoid().print(); // or tf.logSigmoid(x)
|
* ```
|
* @param x The input tensor.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Basic math'} */
|
function logSigmoid_<T extends Tensor>(x: T|TensorLike): T {
|
const $x = convertToTensor(x, 'x', 'logSigmoid');
|
|
const grad = (dy: T, saved: Tensor[]) => {
|
const [$x] = saved;
|
return {$x: () => dy.mul($x.neg().sigmoid())} as {$x: () => T};
|
};
|
return ENGINE.runKernelFunc((backend, save) => {
|
const res = backend.softplus($x.neg()).neg();
|
save([$x]);
|
return res;
|
}, {$x}, grad);
|
}
|
|
/**
|
* Computes softplus of the input `tf.Tensor` element-wise: `log(exp(x) + 1)`
|
*
|
* ```js
|
* const x = tf.tensor1d([0, 1, -1, .7]);
|
*
|
* x.softplus().print(); // or tf.softplus(x)
|
* ```
|
* @param x The input tensor.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Basic math'} */
|
function softplus_<T extends Tensor>(x: T|TensorLike): T {
|
const $x = convertToTensor(x, 'x', 'softplus');
|
|
const grad = (dy: T, saved: Tensor[]) => {
|
const [$x] = saved;
|
return {$x: () => dy.mul($x.sigmoid())} as {$x: () => T};
|
};
|
return ENGINE.runKernelFunc((backend, save) => {
|
const res = backend.softplus($x);
|
save([$x]);
|
return res;
|
}, {$x}, grad);
|
}
|
|
/**
|
* Computes sin of the input Tensor element-wise: `sin(x)`
|
*
|
* ```js
|
* const x = tf.tensor1d([0, Math.PI / 2, Math.PI * 3 / 4]);
|
*
|
* x.sin().print(); // or tf.sin(x)
|
* ```
|
* @param x The input tensor.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Basic math'} */
|
function sin_<T extends Tensor>(x: T|TensorLike): T {
|
const $x = convertToTensor(x, 'x', 'sin');
|
|
const grad = (dy: T, saved: Tensor[]) => {
|
const [$x] = saved;
|
return {x: () => $x.toFloat().cos().mul(dy)} as {x: () => T};
|
};
|
const inputsToSave = [$x];
|
return ENGINE.runKernelFunc((backend, save) => {
|
const res = backend.sin($x);
|
save([$x]);
|
return res;
|
}, {x: $x}, grad, 'Sin', {} /* attrs */, inputsToSave);
|
}
|
|
/**
|
* Computes cos of the input `tf.Tensor` element-wise: `cos(x)`
|
*
|
* ```js
|
* const x = tf.tensor1d([0, Math.PI / 2, Math.PI * 3 / 4]);
|
*
|
* x.cos().print(); // or tf.cos(x)
|
* ```
|
* @param x The input tensor.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Basic math'} */
|
function cos_<T extends Tensor>(x: T|TensorLike): T {
|
const $x = convertToTensor(x, 'x', 'cos');
|
|
const grad = (dy: T, saved: Tensor[]) => {
|
const [$x] = saved;
|
return {x: () => $x.toFloat().sin().neg().mul(dy)} as {x: () => T};
|
};
|
const inputsToSave = [$x];
|
return ENGINE.runKernelFunc((backend, save) => {
|
const res = backend.cos($x);
|
save([$x]);
|
return res;
|
}, {x: $x}, grad, 'Cos', {} /* attrs */, inputsToSave);
|
}
|
|
/**
|
* Computes tan of the input `tf.Tensor` element-wise, `tan(x)`
|
*
|
* ```js
|
* const x = tf.tensor1d([0, Math.PI / 2, Math.PI * 3 / 4]);
|
*
|
* x.tan().print(); // or tf.tan(x)
|
* ```
|
* @param x The input tensor.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Basic math'} */
|
function tan_<T extends Tensor>(x: T|TensorLike): T {
|
const $x = convertToTensor(x, 'x', 'tan');
|
|
const grad = (dy: T, saved: Tensor[]) => {
|
const [$x] = saved;
|
return {$x: () => dy.div($x.cos().square())} as {$x: () => T};
|
};
|
return ENGINE.runKernelFunc((backend, save) => {
|
const res = backend.tan($x);
|
save([$x]);
|
return res;
|
}, {$x}, grad);
|
}
|
|
/**
|
* Computes asin of the input `tf.Tensor` element-wise: `asin(x)`
|
*
|
* ```js
|
* const x = tf.tensor1d([0, 1, -1, .7]);
|
*
|
* x.asin().print(); // or tf.asin(x)
|
* ```
|
* @param x The input tensor.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Basic math'} */
|
function asin_<T extends Tensor>(x: T|TensorLike): T {
|
const $x = convertToTensor(x, 'x', 'asin');
|
|
const grad = (dy: T, saved: Tensor[]) => {
|
const [$x] = saved;
|
return {
|
$x: () => dy.divStrict(scalar(1).sub($x.toFloat().square()).sqrt() as T)
|
};
|
};
|
return ENGINE.runKernelFunc((backend, save) => {
|
const res = backend.asin($x);
|
save([$x]);
|
return res;
|
}, {$x}, grad);
|
}
|
|
/**
|
* Computes acos of the input `tf.Tensor` element-wise: `acos(x)`
|
*
|
* ```js
|
* const x = tf.tensor1d([0, 1, -1, .7]);
|
*
|
* x.acos().print(); // or tf.acos(x)
|
* ```
|
* @param x The input tensor.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Basic math'} */
|
function acos_<T extends Tensor>(x: T|TensorLike): T {
|
const $x = convertToTensor(x, 'x', 'acos');
|
|
const grad = (dy: T, saved: Tensor[]) => {
|
const [$x] = saved;
|
return {
|
$x: () =>
|
dy.divStrict(scalar(1).sub($x.toFloat().square()).sqrt() as T).neg()
|
};
|
};
|
return ENGINE.runKernelFunc((backend, save) => {
|
const res = backend.acos($x);
|
save([$x]);
|
return res;
|
}, {$x}, grad);
|
}
|
|
/**
|
* Computes atan of the input `tf.Tensor` element-wise: `atan(x)`
|
*
|
* ```js
|
* const x = tf.tensor1d([0, 1, -1, .7]);
|
*
|
* x.atan().print(); // or tf.atan(x)
|
* ```
|
* @param x The input tensor.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Basic math'} */
|
function atan_<T extends Tensor>(x: T|TensorLike): T {
|
const $x = convertToTensor(x, 'x', 'atan');
|
|
const grad = (dy: T, saved: Tensor[]) => {
|
const [$x] = saved;
|
return {$x: () => dy.div($x.toFloat().square().add(1))} as {$x: () => T};
|
};
|
return ENGINE.runKernelFunc((backend, save) => {
|
const res = backend.atan($x);
|
save([$x]);
|
return res;
|
}, {$x}, grad);
|
}
|
|
/**
|
* Computes hyperbolic sin of the input `tf.Tensor` element-wise: `sinh(x)`
|
*
|
* ```js
|
* const x = tf.tensor1d([0, 1, -1, .7]);
|
*
|
* x.sinh().print(); // or tf.sinh(x)
|
* ```
|
* @param x The input tensor.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Basic math'} */
|
function sinh_<T extends Tensor>(x: T|TensorLike): T {
|
const $x = convertToTensor(x, 'x', 'sinh');
|
|
const grad = (dy: T, saved: Tensor[]) => {
|
const [$x] = saved;
|
return {$x: () => $x.toFloat().cosh().mulStrict(dy) as T};
|
};
|
return ENGINE.runKernelFunc((backend, save) => {
|
const res = backend.sinh($x);
|
save([$x]);
|
return res;
|
}, {$x}, grad);
|
}
|
|
/**
|
* Computes hyperbolic cos of the input `tf.Tensor` element-wise: `cosh(x)`
|
*
|
* ```js
|
* const x = tf.tensor1d([0, 1, -1, .7]);
|
*
|
* x.cosh().print(); // or tf.cosh(x)
|
* ```
|
* @param x The input tensor.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Basic math'} */
|
function cosh_<T extends Tensor>(x: T|TensorLike): T {
|
const $x = convertToTensor(x, 'x', 'cosh');
|
|
const grad = (dy: T, saved: Tensor[]) => {
|
const [$x] = saved;
|
return {$x: () => $x.toFloat().sinh().mulStrict(dy) as T};
|
};
|
return ENGINE.runKernelFunc((backend, save) => {
|
const res = backend.cosh($x);
|
save([$x]);
|
return res;
|
}, {$x}, grad);
|
}
|
|
/**
|
* Computes hyperbolic tangent of the input `tf.Tensor` element-wise: `tanh(x)`
|
*
|
* ```js
|
* const x = tf.tensor1d([0, 1, -1, 70]);
|
*
|
* x.tanh().print(); // or tf.tanh(x)
|
* ```
|
* @param x The input tensor.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Basic math'} */
|
function tanh_<T extends Tensor>(x: T|TensorLike): T {
|
const $x = convertToTensor(x, 'x', 'tanh');
|
|
const grad = (dy: T, saved: Tensor[]) => {
|
const [y] = saved;
|
return {x: () => scalar(1).sub(y.square()).mulStrict(dy) as T};
|
};
|
const outputsToSave = [true];
|
return ENGINE.runKernelFunc(
|
(backend, save) => {
|
const y = backend.tanh($x);
|
save([y]);
|
return y;
|
},
|
{x: $x}, grad, 'Tanh', {} /* attrs */, null /* inputsToSave */,
|
outputsToSave);
|
}
|
|
/**
|
* Computes inverse hyperbolic sin of the input `tf.Tensor` element-wise:
|
* `asinh(x)`
|
*
|
* ```js
|
* const x = tf.tensor1d([0, 1, -1, .7]);
|
*
|
* x.asinh().print(); // or tf.asinh(x)
|
* ```
|
* @param x The input tensor.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Basic math'} */
|
function asinh_<T extends Tensor>(x: T|TensorLike): T {
|
const $x = convertToTensor(x, 'x', 'asinh');
|
|
const grad = (dy: T, saved: Tensor[]) => {
|
const [$x] = saved;
|
return {
|
$x: () => dy.divStrict(scalar(1).add($x.toFloat().square()).sqrt() as T)
|
};
|
};
|
return ENGINE.runKernelFunc((backend, save) => {
|
const res = backend.asinh($x);
|
save([$x]);
|
return res;
|
}, {$x}, grad);
|
}
|
|
/**
|
* Computes the inverse hyperbolic cos of the input `tf.Tensor` element-wise:
|
* `acosh(x)`
|
*
|
* ```js
|
* const x = tf.tensor1d([10, 1, 3, 5.7]);
|
*
|
* x.acosh().print(); // or tf.acosh(x)
|
* ```
|
* @param x The input tensor.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Basic math'} */
|
function acosh_<T extends Tensor>(x: T|TensorLike): T {
|
const $x = convertToTensor(x, 'x', 'acosh');
|
|
const grad = (dy: T, saved: Tensor[]) => {
|
const [$x] = saved;
|
return {$x: () => dy.divStrict($x.toFloat().square().sub(1).sqrt() as T)};
|
};
|
return ENGINE.runKernelFunc((backend, save) => {
|
const res = backend.acosh($x);
|
save([$x]);
|
return res;
|
}, {$x}, grad);
|
}
|
|
/**
|
* Computes inverse hyperbolic tan of the input `tf.Tensor` element-wise:
|
* `atanh(x)`
|
*
|
* ```js
|
* const x = tf.tensor1d([0, .1, -.1, .7]);
|
*
|
* x.atanh().print(); // or tf.atanh(x)
|
* ```
|
* @param x The input tensor.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Basic math'} */
|
function atanh_<T extends Tensor>(x: T|TensorLike): T {
|
const $x = convertToTensor(x, 'x', 'atanh');
|
|
const grad = (dy: T, saved: Tensor[]) => {
|
const [$x] = saved;
|
return {$x: () => dy.div(scalar(1).sub($x.toFloat().square()))} as
|
{$x: () => T};
|
};
|
return ENGINE.runKernelFunc((backend, save) => {
|
const res = backend.atanh($x);
|
save([$x]);
|
return res;
|
}, {$x}, grad);
|
}
|
|
/**
|
* Computes gause error function of the input `tf.Tensor` element-wise:
|
* `erf(x)`
|
*
|
* ```js
|
* const x = tf.tensor1d([0, .1, -.1, .7]);
|
*
|
* x.erf().print(); // or tf.erf(x);
|
* ```
|
* @param x The input tensor.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Basic math'} */
|
function erf_<T extends Tensor>(x: T|TensorLike): T {
|
let $x = convertToTensor(x, 'x', 'erf');
|
util.assert(
|
$x.dtype === 'int32' || $x.dtype === 'float32',
|
() => 'Input dtype must be `int32` or `float32`.');
|
|
if ($x.dtype === 'int32') {
|
$x = $x.toFloat();
|
}
|
|
const grad = (dy: T, saved: Tensor[]) => {
|
const [$x] = saved;
|
return {
|
$x: () => dy.mul($x.square().neg().exp().mul(2 / Math.sqrt(Math.PI)))
|
} as {$x: () => T};
|
};
|
return ENGINE.runKernelFunc((backend, save) => {
|
const res = backend.erf($x);
|
save([$x]);
|
return res;
|
}, {$x}, grad);
|
}
|
|
/**
|
* Computes step of the input `tf.Tensor` element-wise: `x > 0 ? 1 : alpha * x`
|
*
|
* ```js
|
* const x = tf.tensor1d([0, 2, -1, -3]);
|
*
|
* x.step(.5).print(); // or tf.step(x, .5)
|
* ```
|
* @param x The input tensor.
|
* @param alpha The gradient when input is negative.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Basic math'} */
|
function step_<T extends Tensor>(x: T|TensorLike, alpha = 0.0): T {
|
const $x = convertToTensor(x, 'x', 'step');
|
|
// TODO(manrajgrover): Return null for gradients when backprop supports
|
// it.
|
const grad = (dy: T) => {
|
return {$x: () => zerosLike(dy)};
|
};
|
return ENGINE.runKernelFunc(backend => backend.step($x, alpha), {$x}, grad);
|
}
|
|
export const abs = op({abs_});
|
export const acos = op({acos_});
|
export const acosh = op({acosh_});
|
export const asin = op({asin_});
|
export const asinh = op({asinh_});
|
export const atan = op({atan_});
|
export const atanh = op({atanh_});
|
export const ceil = op({ceil_});
|
export const clipByValue = op({clipByValue_});
|
export const cos = op({cos_});
|
export const cosh = op({cosh_});
|
export const erf = op({erf_});
|
export const exp = op({exp_});
|
export const expm1 = op({expm1_});
|
export const floor = op({floor_});
|
export const log = op({log_});
|
export const log1p = op({log1p_});
|
export const logSigmoid = op({logSigmoid_});
|
export const neg = op({neg_});
|
export const reciprocal = op({reciprocal_});
|
export const round = op({round_});
|
export const rsqrt = op({rsqrt_});
|
export const sigmoid = op({sigmoid_});
|
export const sign = op({sign_});
|
export const isNaN = op({isNaN_});
|
export const isInf = op({isInf_});
|
export const isFinite = op({isFinite_});
|
export const sin = op({sin_});
|
export const sinh = op({sinh_});
|
export const softplus = op({softplus_});
|
export const sqrt = op({sqrt_});
|
export const step = op({step_});
|
export const tan = op({tan_});
|
export const tanh = op({tanh_});
|