import { __awaiter, __generator } from "tslib";
|
import * as tf from '@tensorflow/tfjs-core';
|
import { Point } from '../classes';
|
import { nonMaxSuppression } from '../ops';
|
import { extractImagePatches } from './extractImagePatches';
|
import { MtcnnBox } from './MtcnnBox';
|
import { ONet } from './ONet';
|
export function stage3(img, inputBoxes, scoreThreshold, params, stats) {
|
return __awaiter(this, void 0, void 0, function () {
|
var ts, onetInputs, onetOuts, scoresTensor, scores, _a, _b, indices, filteredRegions, filteredBoxes, filteredScores, finalBoxes, finalScores, points, indicesNms;
|
return __generator(this, function (_c) {
|
switch (_c.label) {
|
case 0:
|
ts = Date.now();
|
return [4 /*yield*/, extractImagePatches(img, inputBoxes, { width: 48, height: 48 })];
|
case 1:
|
onetInputs = _c.sent();
|
stats.stage3_extractImagePatches = Date.now() - ts;
|
ts = Date.now();
|
onetOuts = onetInputs.map(function (onetInput) {
|
var out = ONet(onetInput, params);
|
onetInput.dispose();
|
return out;
|
});
|
stats.stage3_onet = Date.now() - ts;
|
scoresTensor = onetOuts.length > 1
|
? tf.concat(onetOuts.map(function (out) { return out.scores; }))
|
: onetOuts[0].scores;
|
_b = (_a = Array).from;
|
return [4 /*yield*/, scoresTensor.data()];
|
case 2:
|
scores = _b.apply(_a, [_c.sent()]);
|
scoresTensor.dispose();
|
indices = scores
|
.map(function (score, idx) { return ({ score: score, idx: idx }); })
|
.filter(function (c) { return c.score > scoreThreshold; })
|
.map(function (_a) {
|
var idx = _a.idx;
|
return idx;
|
});
|
filteredRegions = indices.map(function (idx) {
|
var regionsData = onetOuts[idx].regions.arraySync();
|
return new MtcnnBox(regionsData[0][0], regionsData[0][1], regionsData[0][2], regionsData[0][3]);
|
});
|
filteredBoxes = indices
|
.map(function (idx, i) { return inputBoxes[idx].calibrate(filteredRegions[i]); });
|
filteredScores = indices.map(function (idx) { return scores[idx]; });
|
finalBoxes = [];
|
finalScores = [];
|
points = [];
|
if (filteredBoxes.length > 0) {
|
ts = Date.now();
|
indicesNms = nonMaxSuppression(filteredBoxes, filteredScores, 0.7, false);
|
stats.stage3_nms = Date.now() - ts;
|
finalBoxes = indicesNms.map(function (idx) { return filteredBoxes[idx]; });
|
finalScores = indicesNms.map(function (idx) { return filteredScores[idx]; });
|
points = indicesNms.map(function (idx, i) {
|
return Array(5).fill(0).map(function (_, ptIdx) {
|
var pointsData = onetOuts[idx].points.arraySync();
|
return new Point(((pointsData[0][ptIdx] * (finalBoxes[i].width + 1)) + finalBoxes[i].left), ((pointsData[0][ptIdx + 5] * (finalBoxes[i].height + 1)) + finalBoxes[i].top));
|
});
|
});
|
}
|
onetOuts.forEach(function (t) {
|
t.regions.dispose();
|
t.scores.dispose();
|
t.points.dispose();
|
});
|
return [2 /*return*/, {
|
boxes: finalBoxes,
|
scores: finalScores,
|
points: points
|
}];
|
}
|
});
|
});
|
}
|
//# sourceMappingURL=stage3.js.map
|