/**
|
* @license
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
/// <amd-module name="@tensorflow/tfjs-core/dist/gradients" />
|
import { CustomGradientFunc } from './engine';
|
import { Scalar, Tensor, Variable } from './tensor';
|
import { NamedTensorMap } from './tensor_types';
|
import { TensorLike } from './types';
|
/**
|
* Provided `f(x)`, returns another function `g(x, dy?)`, which gives the
|
* gradient of `f(x)` with respect to `x`.
|
*
|
* If `dy` is provided, the gradient of `f(x).mul(dy).sum()` with respect to
|
* `x` is computed instead. `f(x)` must take a single tensor `x` and return a
|
* single tensor `y`. If `f()` takes multiple inputs, use `tf.grads` instead.
|
*
|
* ```js
|
* // f(x) = x ^ 2
|
* const f = x => x.square();
|
* // f'(x) = 2x
|
* const g = tf.grad(f);
|
*
|
* const x = tf.tensor1d([2, 3]);
|
* g(x).print();
|
* ```
|
*
|
* ```js
|
* // f(x) = x ^ 3
|
* const f = x => x.pow(tf.scalar(3, 'int32'));
|
* // f'(x) = 3x ^ 2
|
* const g = tf.grad(f);
|
* // f''(x) = 6x
|
* const gg = tf.grad(g);
|
*
|
* const x = tf.tensor1d([2, 3]);
|
* gg(x).print();
|
* ```
|
*
|
* @param f The function f(x), to compute gradient for.
|
*
|
* @doc {heading: 'Training', subheading: 'Gradients'}
|
*/
|
declare function grad(f: (x: Tensor) => Tensor): (x: TensorLike | Tensor, dy?: TensorLike | Tensor) => Tensor;
|
/**
|
* Provided `f(x1, x2,...)`, returns another function `g([x1, x2,...], dy?)`,
|
* which gives an array of gradients of `f()` with respect to each input
|
* [`x1`,`x2`,...].
|
*
|
* If `dy` is passed when calling `g()`, the gradient of
|
* `f(x1,...).mul(dy).sum()` with respect to each input is computed instead.
|
* The provided `f` must take one or more tensors and return a single tensor
|
* `y`. If `f()` takes a single input, we recommend using `tf.grad` instead.
|
*
|
* ```js
|
* // f(a, b) = a * b
|
* const f = (a, b) => a.mul(b);
|
* // df / da = b, df / db = a
|
* const g = tf.grads(f);
|
*
|
* const a = tf.tensor1d([2, 3]);
|
* const b = tf.tensor1d([-2, -3]);
|
* const [da, db] = g([a, b]);
|
* console.log('da');
|
* da.print();
|
* console.log('db');
|
* db.print();
|
* ```
|
*
|
* @param f The function `f(x1, x2,...)` to compute gradients for.
|
*
|
* @doc {heading: 'Training', subheading: 'Gradients'}
|
*/
|
declare function grads(f: (...args: Tensor[]) => Tensor): (args: Array<Tensor | TensorLike>, dy?: Tensor | TensorLike) => Tensor[];
|
/**
|
* Like `tf.grad`, but also returns the value of `f()`. Useful when `f()`
|
* returns a metric you want to show.
|
*
|
* The result is a rich object with the following properties:
|
* - grad: The gradient of `f(x)` w.r.t. `x` (result of `tf.grad`).
|
* - value: The value returned by `f(x)`.
|
*
|
* ```js
|
* // f(x) = x ^ 2
|
* const f = x => x.square();
|
* // f'(x) = 2x
|
* const g = tf.valueAndGrad(f);
|
*
|
* const x = tf.tensor1d([2, 3]);
|
* const {value, grad} = g(x);
|
*
|
* console.log('value');
|
* value.print();
|
* console.log('grad');
|
* grad.print();
|
* ```
|
*
|
* @doc {heading: 'Training', subheading: 'Gradients'}
|
*/
|
declare function valueAndGrad<I extends Tensor, O extends Tensor>(f: (x: I) => O): (x: I, dy?: O) => {
|
value: O;
|
grad: I;
|
};
|
/**
|
* Like `tf.grads`, but returns also the value of `f()`. Useful when `f()`
|
* returns a metric you want to show.
|
*
|
* The result is a rich object with the following properties:
|
* - grads: The gradients of `f()` w.r.t. each input (result of `tf.grads`).
|
* - value: The value returned by `f(x)`.
|
*
|
* ```js
|
* // f(a, b) = a * b
|
* const f = (a, b) => a.mul(b);
|
* // df/da = b, df/db = a
|
* const g = tf.valueAndGrads(f);
|
*
|
* const a = tf.tensor1d([2, 3]);
|
* const b = tf.tensor1d([-2, -3]);
|
* const {value, grads} = g([a, b]);
|
*
|
* const [da, db] = grads;
|
*
|
* console.log('value');
|
* value.print();
|
*
|
* console.log('da');
|
* da.print();
|
* console.log('db');
|
* db.print();
|
* ```
|
*
|
* @doc {heading: 'Training', subheading: 'Gradients'}
|
*/
|
declare function valueAndGrads<O extends Tensor>(f: (...args: Tensor[]) => O): (args: Tensor[], dy?: O) => {
|
grads: Tensor[];
|
value: O;
|
};
|
/**
|
* Computes and returns the gradient of f(x) with respect to the list of
|
* trainable variables provided by `varList`. If no list is provided, it
|
* defaults to all trainable variables.
|
*
|
* ```js
|
* const a = tf.variable(tf.tensor1d([3, 4]));
|
* const b = tf.variable(tf.tensor1d([5, 6]));
|
* const x = tf.tensor1d([1, 2]);
|
*
|
* // f(a, b) = a * x ^ 2 + b * x
|
* const f = () => a.mul(x.square()).add(b.mul(x)).sum();
|
* // df/da = x ^ 2, df/db = x
|
* const {value, grads} = tf.variableGrads(f);
|
*
|
* Object.keys(grads).forEach(varName => grads[varName].print());
|
* ```
|
*
|
* @param f The function to execute. f() should return a scalar.
|
* @param varList The list of variables to compute the gradients with respect
|
* to. Defaults to all trainable variables.
|
* @returns An object with the following keys and values:
|
* - `value`: The value of the function `f`.
|
* - `grads`: A map from the names of the variables to the gradients.
|
* If the `varList` argument is provided explicitly and contains a subset of
|
* non-trainable variables, this map in the return value will contain keys
|
* that map the names of the non-trainable variables to `null`.
|
*
|
* @doc {heading: 'Training', subheading: 'Gradients'}
|
*/
|
declare function variableGrads(f: () => Scalar, varList?: Variable[]): {
|
value: Scalar;
|
grads: NamedTensorMap;
|
};
|
/**
|
* Overrides the gradient computation of a function `f`.
|
*
|
* Takes a function
|
* `f(...inputs, save) => {value: Tensor, gradFunc: (dy, saved) => Tensor[]}`
|
* and returns another function `g(...inputs)` which takes the same inputs as
|
* `f`. When called, `g` returns `f().value`. In backward mode, custom gradients
|
* with respect to each input of `f` are computed using `f().gradFunc`.
|
*
|
* The `save` function passed to `f` should be used for saving tensors needed
|
* in the gradient. And the `saved` passed to the `gradFunc` is a
|
* `NamedTensorMap`, which contains those saved tensors.
|
*
|
* ```js
|
* const customOp = tf.customGrad((x, save) => {
|
* // Save x to make sure it's available later for the gradient.
|
* save([x]);
|
* // Override gradient of our custom x ^ 2 op to be dy * abs(x);
|
* return {
|
* value: x.square(),
|
* // Note `saved.x` which points to the `x` we saved earlier.
|
* gradFunc: (dy, saved) => [dy.mul(saved[0].abs())]
|
* };
|
* });
|
*
|
* const x = tf.tensor1d([-1, -2, 3]);
|
* const dx = tf.grad(x => customOp(x));
|
*
|
* console.log(`f(x):`);
|
* customOp(x).print();
|
* console.log(`f'(x):`);
|
* dx(x).print();
|
* ```
|
*
|
* @param f The function to evaluate in forward mode, which should return
|
* `{value: Tensor, gradFunc: (dy, saved) => Tensor[]}`, where `gradFunc`
|
* returns the custom gradients of `f` with respect to its inputs.
|
*
|
* @doc {heading: 'Training', subheading: 'Gradients'}
|
*/
|
declare function customGrad<T extends Tensor>(f: CustomGradientFunc<T>): (...args: Tensor[]) => T;
|
export { customGrad, variableGrads, valueAndGrad, valueAndGrads, grad, grads, };
|