gx
chenyc
2025-02-12 ea42ff3ebee1eeb3fb29423aa848a249441db81c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
/**
 * @license
 * Copyright 2020 Google LLC. All Rights Reserved.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 * =============================================================================
 */
import * as tf from '../index';
import { ALL_ENVS, describeWithFlags } from '../jasmine_util';
import { expectArraysClose } from '../test_util';
describeWithFlags('acosh', ALL_ENVS, () => {
    it('basic', async () => {
        const values = [2, 3, 4, 5, 6];
        const a = tf.tensor1d(values);
        const result = tf.acosh(a);
        const expected = [];
        for (let i = 0; i < a.size; i++) {
            expected[i] = Math.acosh(values[i]);
        }
        expectArraysClose(await result.data(), expected);
    });
    it('scalar', async () => {
        const value = 2;
        const a = tf.scalar(value);
        const result = tf.acosh(a);
        const expected = [Math.acosh(value)];
        expectArraysClose(await result.data(), expected);
    });
    it('tensor2d', async () => {
        const values = [2, 3, 4, 5];
        const a = tf.tensor2d(values, [2, 2]);
        const result = tf.acosh(a);
        const expected = [];
        for (let i = 0; i < a.size; i++) {
            expected[i] = Math.acosh(values[i]);
        }
        expectArraysClose(await result.data(), expected);
    });
    it('propagates NaNs', async () => {
        const a = tf.tensor1d([4, NaN, 2]);
        const res = tf.acosh(a);
        expectArraysClose(await res.data(), [Math.acosh(4), NaN, Math.acosh(2)]);
    });
    it('NaN outside function domain', async () => {
        const a = tf.tensor1d([4, -1, 2]);
        const res = tf.acosh(a);
        expectArraysClose(await res.data(), [Math.acosh(4), NaN, Math.acosh(2)]);
    });
    it('gradients: Scalar', async () => {
        const a = tf.scalar(1.5);
        const dy = tf.scalar(8);
        const gradients = tf.grad(a => tf.acosh(a))(a, dy);
        expect(gradients.shape).toEqual(a.shape);
        expect(gradients.dtype).toEqual('float32');
        expectArraysClose(await gradients.data(), [8.0 / Math.sqrt(1.5 * 1.5 - 1.0)]);
    });
    it('gradient with clones', async () => {
        const a = tf.scalar(1.5);
        const dy = tf.scalar(8);
        const gradients = tf.grad(a => tf.acosh(a.clone()).clone())(a, dy);
        expect(gradients.shape).toEqual(a.shape);
        expect(gradients.dtype).toEqual('float32');
        expectArraysClose(await gradients.data(), [8.0 / Math.sqrt(1.5 * 1.5 - 1.0)]);
    });
    it('gradients: Tensor1D', async () => {
        const aValues = [2, 3, 5, 10];
        const dyValues = [1, 2, 3, 4];
        const a = tf.tensor1d(aValues);
        const dy = tf.tensor1d(dyValues);
        const gradients = tf.grad(a => tf.acosh(a))(a, dy);
        const expected = [];
        for (let i = 0; i < a.size; i++) {
            expected[i] = dyValues[i] / Math.sqrt(Math.pow(aValues[i], 2) - 1.0);
        }
        expect(gradients.shape).toEqual(a.shape);
        expect(gradients.dtype).toEqual('float32');
        expectArraysClose(await gradients.data(), expected);
    });
    it('gradients: Tensor2D', async () => {
        const aValues = [2, 3, 5, 7];
        const dyValues = [1, 2, 3, 4];
        const a = tf.tensor2d(aValues, [2, 2]);
        const dy = tf.tensor2d(dyValues, [2, 2]);
        const gradients = tf.grad(a => tf.acosh(a))(a, dy);
        const expected = [];
        for (let i = 0; i < a.size; i++) {
            expected[i] = dyValues[i] / Math.sqrt(Math.pow(aValues[i], 2) - 1.0);
        }
        expect(gradients.shape).toEqual(a.shape);
        expect(gradients.dtype).toEqual('float32');
        expectArraysClose(await gradients.data(), expected);
    });
    it('throws when passed a non-tensor', () => {
        expect(() => tf.acosh({}))
            .toThrowError(/Argument 'x' passed to 'acosh' must be a Tensor/);
    });
    it('accepts a tensor-like object', async () => {
        const values = [2, 3, 4, 5, 6];
        const result = tf.acosh(values);
        const expected = [];
        for (let i = 0; i < values.length; i++) {
            expected[i] = Math.acosh(values[i]);
        }
        expectArraysClose(await result.data(), expected);
    });
    it('throws for string tensor', () => {
        expect(() => tf.acosh('q'))
            .toThrowError(/Argument 'x' passed to 'acosh' must be numeric/);
    });
});
//# sourceMappingURL=data:application/json;base64,eyJ2ZXJzaW9uIjozLCJmaWxlIjoiYWNvc2hfdGVzdC5qcyIsInNvdXJjZVJvb3QiOiIiLCJzb3VyY2VzIjpbIi4uLy4uLy4uLy4uLy4uLy4uL3RmanMtY29yZS9zcmMvb3BzL2Fjb3NoX3Rlc3QudHMiXSwibmFtZXMiOltdLCJtYXBwaW5ncyI6IkFBQUE7Ozs7Ozs7Ozs7Ozs7OztHQWVHO0FBRUgsT0FBTyxLQUFLLEVBQUUsTUFBTSxVQUFVLENBQUM7QUFDL0IsT0FBTyxFQUFDLFFBQVEsRUFBRSxpQkFBaUIsRUFBQyxNQUFNLGlCQUFpQixDQUFDO0FBQzVELE9BQU8sRUFBQyxpQkFBaUIsRUFBQyxNQUFNLGNBQWMsQ0FBQztBQUUvQyxpQkFBaUIsQ0FBQyxPQUFPLEVBQUUsUUFBUSxFQUFFLEdBQUcsRUFBRTtJQUN4QyxFQUFFLENBQUMsT0FBTyxFQUFFLEtBQUssSUFBSSxFQUFFO1FBQ3JCLE1BQU0sTUFBTSxHQUFHLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDO1FBQy9CLE1BQU0sQ0FBQyxHQUFHLEVBQUUsQ0FBQyxRQUFRLENBQUMsTUFBTSxDQUFDLENBQUM7UUFDOUIsTUFBTSxNQUFNLEdBQUcsRUFBRSxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUUzQixNQUFNLFFBQVEsR0FBRyxFQUFFLENBQUM7UUFDcEIsS0FBSyxJQUFJLENBQUMsR0FBRyxDQUFDLEVBQUUsQ0FBQyxHQUFHLENBQUMsQ0FBQyxJQUFJLEVBQUUsQ0FBQyxFQUFFLEVBQUU7WUFDL0IsUUFBUSxDQUFDLENBQUMsQ0FBQyxHQUFHLElBQUksQ0FBQyxLQUFLLENBQUMsTUFBTSxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUM7U0FDckM7UUFDRCxpQkFBaUIsQ0FBQyxNQUFNLE1BQU0sQ0FBQyxJQUFJLEVBQUUsRUFBRSxRQUFRLENBQUMsQ0FBQztJQUNuRCxDQUFDLENBQUMsQ0FBQztJQUVILEVBQUUsQ0FBQyxRQUFRLEVBQUUsS0FBSyxJQUFJLEVBQUU7UUFDdEIsTUFBTSxLQUFLLEdBQUcsQ0FBQyxDQUFDO1FBQ2hCLE1BQU0sQ0FBQyxHQUFHLEVBQUUsQ0FBQyxNQUFNLENBQUMsS0FBSyxDQUFDLENBQUM7UUFDM0IsTUFBTSxNQUFNLEdBQUcsRUFBRSxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUUzQixNQUFNLFFBQVEsR0FBRyxDQUFDLElBQUksQ0FBQyxLQUFLLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQztRQUNyQyxpQkFBaUIsQ0FBQyxNQUFNLE1BQU0sQ0FBQyxJQUFJLEVBQUUsRUFBRSxRQUFRLENBQUMsQ0FBQztJQUNuRCxDQUFDLENBQUMsQ0FBQztJQUVILEVBQUUsQ0FBQyxVQUFVLEVBQUUsS0FBSyxJQUFJLEVBQUU7UUFDeEIsTUFBTSxNQUFNLEdBQUcsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQztRQUM1QixNQUFNLENBQUMsR0FBRyxFQUFFLENBQUMsUUFBUSxDQUFDLE1BQU0sRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQ3RDLE1BQU0sTUFBTSxHQUFHLEVBQUUsQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFFM0IsTUFBTSxRQUFRLEdBQUcsRUFBRSxDQUFDO1FBQ3BCLEtBQUssSUFBSSxDQUFDLEdBQUcsQ0FBQyxFQUFFLENBQUMsR0FBRyxDQUFDLENBQUMsSUFBSSxFQUFFLENBQUMsRUFBRSxFQUFFO1lBQy9CLFFBQVEsQ0FBQyxDQUFDLENBQUMsR0FBRyxJQUFJLENBQUMsS0FBSyxDQUFDLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO1NBQ3JDO1FBQ0QsaUJBQWlCLENBQUMsTUFBTSxNQUFNLENBQUMsSUFBSSxFQUFFLEVBQUUsUUFBUSxDQUFDLENBQUM7SUFDbkQsQ0FBQyxDQUFDLENBQUM7SUFFSCxFQUFFLENBQUMsaUJBQWlCLEVBQUUsS0FBSyxJQUFJLEVBQUU7UUFDL0IsTUFBTSxDQUFDLEdBQUcsRUFBRSxDQUFDLFFBQVEsQ0FBQyxDQUFDLENBQUMsRUFBRSxHQUFHLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUNuQyxNQUFNLEdBQUcsR0FBRyxFQUFFLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQ3hCLGlCQUFpQixDQUFDLE1BQU0sR0FBRyxDQUFDLElBQUksRUFBRSxFQUFFLENBQUMsSUFBSSxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsRUFBRSxHQUFHLEVBQUUsSUFBSSxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUM7SUFDM0UsQ0FBQyxDQUFDLENBQUM7SUFFSCxFQUFFLENBQUMsNkJBQTZCLEVBQUUsS0FBSyxJQUFJLEVBQUU7UUFDM0MsTUFBTSxDQUFDLEdBQUcsRUFBRSxDQUFDLFFBQVEsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQ2xDLE1BQU0sR0FBRyxHQUFHLEVBQUUsQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDeEIsaUJBQWlCLENBQUMsTUFBTSxHQUFHLENBQUMsSUFBSSxFQUFFLEVBQUUsQ0FBQyxJQUFJLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxFQUFFLEdBQUcsRUFBRSxJQUFJLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQztJQUMzRSxDQUFDLENBQUMsQ0FBQztJQUVILEVBQUUsQ0FBQyxtQkFBbUIsRUFBRSxLQUFLLElBQUksRUFBRTtRQUNqQyxNQUFNLENBQUMsR0FBRyxFQUFFLENBQUMsTUFBTSxDQUFDLEdBQUcsQ0FBQyxDQUFDO1FBQ3pCLE1BQU0sRUFBRSxHQUFHLEVBQUUsQ0FBQyxNQUFNLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFFeEIsTUFBTSxTQUFTLEdBQUcsRUFBRSxDQUFDLElBQUksQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLEVBQUUsRUFBRSxDQUFDLENBQUM7UUFFbkQsTUFBTSxDQUFDLFNBQVMsQ0FBQyxLQUFLLENBQUMsQ0FBQyxPQUFPLENBQUMsQ0FBQyxDQUFDLEtBQUssQ0FBQyxDQUFDO1FBQ3pDLE1BQU0sQ0FBQyxTQUFTLENBQUMsS0FBSyxDQUFDLENBQUMsT0FBTyxDQUFDLFNBQVMsQ0FBQyxDQUFDO1FBQzNDLGlCQUFpQixDQUNiLE1BQU0sU0FBUyxDQUFDLElBQUksRUFBRSxFQUFFLENBQUMsR0FBRyxHQUFHLElBQUksQ0FBQyxJQUFJLENBQUMsR0FBRyxHQUFHLEdBQUcsR0FBRyxHQUFHLENBQUMsQ0FBQyxDQUFDLENBQUM7SUFDbEUsQ0FBQyxDQUFDLENBQUM7SUFFSCxFQUFFLENBQUMsc0JBQXNCLEVBQUUsS0FBSyxJQUFJLEVBQUU7UUFDcEMsTUFBTSxDQUFDLEdBQUcsRUFBRSxDQUFDLE1BQU0sQ0FBQyxHQUFHLENBQUMsQ0FBQztRQUN6QixNQUFNLEVBQUUsR0FBRyxFQUFFLENBQUMsTUFBTSxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBRXhCLE1BQU0sU0FBUyxHQUFHLEVBQUUsQ0FBQyxJQUFJLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxLQUFLLEVBQUUsQ0FBQyxDQUFDLEtBQUssRUFBRSxDQUFDLENBQUMsQ0FBQyxFQUFFLEVBQUUsQ0FBQyxDQUFDO1FBRW5FLE1BQU0sQ0FBQyxTQUFTLENBQUMsS0FBSyxDQUFDLENBQUMsT0FBTyxDQUFDLENBQUMsQ0FBQyxLQUFLLENBQUMsQ0FBQztRQUN6QyxNQUFNLENBQUMsU0FBUyxDQUFDLEtBQUssQ0FBQyxDQUFDLE9BQU8sQ0FBQyxTQUFTLENBQUMsQ0FBQztRQUMzQyxpQkFBaUIsQ0FDYixNQUFNLFNBQVMsQ0FBQyxJQUFJLEVBQUUsRUFBRSxDQUFDLEdBQUcsR0FBRyxJQUFJLENBQUMsSUFBSSxDQUFDLEdBQUcsR0FBRyxHQUFHLEdBQUcsR0FBRyxDQUFDLENBQUMsQ0FBQyxDQUFDO0lBQ2xFLENBQUMsQ0FBQyxDQUFDO0lBRUgsRUFBRSxDQUFDLHFCQUFxQixFQUFFLEtBQUssSUFBSSxFQUFFO1FBQ25DLE1BQU0sT0FBTyxHQUFHLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsRUFBRSxDQUFDLENBQUM7UUFDOUIsTUFBTSxRQUFRLEdBQUcsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQztRQUM5QixNQUFNLENBQUMsR0FBRyxFQUFFLENBQUMsUUFBUSxDQUFDLE9BQU8sQ0FBQyxDQUFDO1FBQy9CLE1BQU0sRUFBRSxHQUFHLEVBQUUsQ0FBQyxRQUFRLENBQUMsUUFBUSxDQUFDLENBQUM7UUFFakMsTUFBTSxTQUFTLEdBQUcsRUFBRSxDQUFDLElBQUksQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLEVBQUUsRUFBRSxDQUFDLENBQUM7UUFFbkQsTUFBTSxRQUFRLEdBQUcsRUFBRSxDQUFDO1FBQ3BCLEtBQUssSUFBSSxDQUFDLEdBQUcsQ0FBQyxFQUFFLENBQUMsR0FBRyxDQUFDLENBQUMsSUFBSSxFQUFFLENBQUMsRUFBRSxFQUFFO1lBQy9CLFFBQVEsQ0FBQyxDQUFDLENBQUMsR0FBRyxRQUFRLENBQUMsQ0FBQyxDQUFDLEdBQUcsSUFBSSxDQUFDLElBQUksQ0FBQyxJQUFJLENBQUMsR0FBRyxDQUFDLE9BQU8sQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsR0FBRyxHQUFHLENBQUMsQ0FBQztTQUN0RTtRQUVELE1BQU0sQ0FBQyxTQUFTLENBQUMsS0FBSyxDQUFDLENBQUMsT0FBTyxDQUFDLENBQUMsQ0FBQyxLQUFLLENBQUMsQ0FBQztRQUN6QyxNQUFNLENBQUMsU0FBUyxDQUFDLEtBQUssQ0FBQyxDQUFDLE9BQU8sQ0FBQyxTQUFTLENBQUMsQ0FBQztRQUMzQyxpQkFBaUIsQ0FBQyxNQUFNLFNBQVMsQ0FBQyxJQUFJLEVBQUUsRUFBRSxRQUFRLENBQUMsQ0FBQztJQUN0RCxDQUFDLENBQUMsQ0FBQztJQUVILEVBQUUsQ0FBQyxxQkFBcUIsRUFBRSxLQUFLLElBQUksRUFBRTtRQUNuQyxNQUFNLE9BQU8sR0FBRyxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDO1FBQzdCLE1BQU0sUUFBUSxHQUFHLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUM7UUFDOUIsTUFBTSxDQUFDLEdBQUcsRUFBRSxDQUFDLFFBQVEsQ0FBQyxPQUFPLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUN2QyxNQUFNLEVBQUUsR0FBRyxFQUFFLENBQUMsUUFBUSxDQUFDLFFBQVEsRUFBRSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBRXpDLE1BQU0sU0FBUyxHQUFHLEVBQUUsQ0FBQyxJQUFJLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxFQUFFLEVBQUUsQ0FBQyxDQUFDO1FBRW5ELE1BQU0sUUFBUSxHQUFHLEVBQUUsQ0FBQztRQUNwQixLQUFLLElBQUksQ0FBQyxHQUFHLENBQUMsRUFBRSxDQUFDLEdBQUcsQ0FBQyxDQUFDLElBQUksRUFBRSxDQUFDLEVBQUUsRUFBRTtZQUMvQixRQUFRLENBQUMsQ0FBQyxDQUFDLEdBQUcsUUFBUSxDQUFDLENBQUMsQ0FBQyxHQUFHLElBQUksQ0FBQyxJQUFJLENBQUMsSUFBSSxDQUFDLEdBQUcsQ0FBQyxPQUFPLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLEdBQUcsR0FBRyxDQUFDLENBQUM7U0FDdEU7UUFFRCxNQUFNLENBQUMsU0FBUyxDQUFDLEtBQUssQ0FBQyxDQUFDLE9BQU8sQ0FBQyxDQUFDLENBQUMsS0FBSyxDQUFDLENBQUM7UUFDekMsTUFBTSxDQUFDLFNBQVMsQ0FBQyxLQUFLLENBQUMsQ0FBQyxPQUFPLENBQUMsU0FBUyxDQUFDLENBQUM7UUFDM0MsaUJBQWlCLENBQUMsTUFBTSxTQUFTLENBQUMsSUFBSSxFQUFFLEVBQUUsUUFBUSxDQUFDLENBQUM7SUFDdEQsQ0FBQyxDQUFDLENBQUM7SUFFSCxFQUFFLENBQUMsaUNBQWlDLEVBQUUsR0FBRyxFQUFFO1FBQ3pDLE1BQU0sQ0FBQyxHQUFHLEVBQUUsQ0FBQyxFQUFFLENBQUMsS0FBSyxDQUFDLEVBQWUsQ0FBQyxDQUFDO2FBQ2xDLFlBQVksQ0FBQyxpREFBaUQsQ0FBQyxDQUFDO0lBQ3ZFLENBQUMsQ0FBQyxDQUFDO0lBRUgsRUFBRSxDQUFDLDhCQUE4QixFQUFFLEtBQUssSUFBSSxFQUFFO1FBQzVDLE1BQU0sTUFBTSxHQUFHLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDO1FBQy9CLE1BQU0sTUFBTSxHQUFHLEVBQUUsQ0FBQyxLQUFLLENBQUMsTUFBTSxDQUFDLENBQUM7UUFFaEMsTUFBTSxRQUFRLEdBQUcsRUFBRSxDQUFDO1FBQ3BCLEtBQUssSUFBSSxDQUFDLEdBQUcsQ0FBQyxFQUFFLENBQUMsR0FBRyxNQUFNLENBQUMsTUFBTSxFQUFFLENBQUMsRUFBRSxFQUFFO1lBQ3RDLFFBQVEsQ0FBQyxDQUFDLENBQUMsR0FBRyxJQUFJLENBQUMsS0FBSyxDQUFDLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO1NBQ3JDO1FBQ0QsaUJBQWlCLENBQUMsTUFBTSxNQUFNLENBQUMsSUFBSSxFQUFFLEVBQUUsUUFBUSxDQUFDLENBQUM7SUFDbkQsQ0FBQyxDQUFDLENBQUM7SUFFSCxFQUFFLENBQUMsMEJBQTBCLEVBQUUsR0FBRyxFQUFFO1FBQ2xDLE1BQU0sQ0FBQyxHQUFHLEVBQUUsQ0FBQyxFQUFFLENBQUMsS0FBSyxDQUFDLEdBQUcsQ0FBQyxDQUFDO2FBQ3RCLFlBQVksQ0FBQyxnREFBZ0QsQ0FBQyxDQUFDO0lBQ3RFLENBQUMsQ0FBQyxDQUFDO0FBQ0wsQ0FBQyxDQUFDLENBQUMiLCJzb3VyY2VzQ29udGVudCI6WyIvKipcbiAqIEBsaWNlbnNlXG4gKiBDb3B5cmlnaHQgMjAyMCBHb29nbGUgTExDLiBBbGwgUmlnaHRzIFJlc2VydmVkLlxuICogTGljZW5zZWQgdW5kZXIgdGhlIEFwYWNoZSBMaWNlbnNlLCBWZXJzaW9uIDIuMCAodGhlIFwiTGljZW5zZVwiKTtcbiAqIHlvdSBtYXkgbm90IHVzZSB0aGlzIGZpbGUgZXhjZXB0IGluIGNvbXBsaWFuY2Ugd2l0aCB0aGUgTGljZW5zZS5cbiAqIFlvdSBtYXkgb2J0YWluIGEgY29weSBvZiB0aGUgTGljZW5zZSBhdFxuICpcbiAqIGh0dHA6Ly93d3cuYXBhY2hlLm9yZy9saWNlbnNlcy9MSUNFTlNFLTIuMFxuICpcbiAqIFVubGVzcyByZXF1aXJlZCBieSBhcHBsaWNhYmxlIGxhdyBvciBhZ3JlZWQgdG8gaW4gd3JpdGluZywgc29mdHdhcmVcbiAqIGRpc3RyaWJ1dGVkIHVuZGVyIHRoZSBMaWNlbnNlIGlzIGRpc3RyaWJ1dGVkIG9uIGFuIFwiQVMgSVNcIiBCQVNJUyxcbiAqIFdJVEhPVVQgV0FSUkFOVElFUyBPUiBDT05ESVRJT05TIE9GIEFOWSBLSU5ELCBlaXRoZXIgZXhwcmVzcyBvciBpbXBsaWVkLlxuICogU2VlIHRoZSBMaWNlbnNlIGZvciB0aGUgc3BlY2lmaWMgbGFuZ3VhZ2UgZ292ZXJuaW5nIHBlcm1pc3Npb25zIGFuZFxuICogbGltaXRhdGlvbnMgdW5kZXIgdGhlIExpY2Vuc2UuXG4gKiA9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PVxuICovXG5cbmltcG9ydCAqIGFzIHRmIGZyb20gJy4uL2luZGV4JztcbmltcG9ydCB7QUxMX0VOVlMsIGRlc2NyaWJlV2l0aEZsYWdzfSBmcm9tICcuLi9qYXNtaW5lX3V0aWwnO1xuaW1wb3J0IHtleHBlY3RBcnJheXNDbG9zZX0gZnJvbSAnLi4vdGVzdF91dGlsJztcblxuZGVzY3JpYmVXaXRoRmxhZ3MoJ2Fjb3NoJywgQUxMX0VOVlMsICgpID0+IHtcbiAgaXQoJ2Jhc2ljJywgYXN5bmMgKCkgPT4ge1xuICAgIGNvbnN0IHZhbHVlcyA9IFsyLCAzLCA0LCA1LCA2XTtcbiAgICBjb25zdCBhID0gdGYudGVuc29yMWQodmFsdWVzKTtcbiAgICBjb25zdCByZXN1bHQgPSB0Zi5hY29zaChhKTtcblxuICAgIGNvbnN0IGV4cGVjdGVkID0gW107XG4gICAgZm9yIChsZXQgaSA9IDA7IGkgPCBhLnNpemU7IGkrKykge1xuICAgICAgZXhwZWN0ZWRbaV0gPSBNYXRoLmFjb3NoKHZhbHVlc1tpXSk7XG4gICAgfVxuICAgIGV4cGVjdEFycmF5c0Nsb3NlKGF3YWl0IHJlc3VsdC5kYXRhKCksIGV4cGVjdGVkKTtcbiAgfSk7XG5cbiAgaXQoJ3NjYWxhcicsIGFzeW5jICgpID0+IHtcbiAgICBjb25zdCB2YWx1ZSA9IDI7XG4gICAgY29uc3QgYSA9IHRmLnNjYWxhcih2YWx1ZSk7XG4gICAgY29uc3QgcmVzdWx0ID0gdGYuYWNvc2goYSk7XG5cbiAgICBjb25zdCBleHBlY3RlZCA9IFtNYXRoLmFjb3NoKHZhbHVlKV07XG4gICAgZXhwZWN0QXJyYXlzQ2xvc2UoYXdhaXQgcmVzdWx0LmRhdGEoKSwgZXhwZWN0ZWQpO1xuICB9KTtcblxuICBpdCgndGVuc29yMmQnLCBhc3luYyAoKSA9PiB7XG4gICAgY29uc3QgdmFsdWVzID0gWzIsIDMsIDQsIDVdO1xuICAgIGNvbnN0IGEgPSB0Zi50ZW5zb3IyZCh2YWx1ZXMsIFsyLCAyXSk7XG4gICAgY29uc3QgcmVzdWx0ID0gdGYuYWNvc2goYSk7XG5cbiAgICBjb25zdCBleHBlY3RlZCA9IFtdO1xuICAgIGZvciAobGV0IGkgPSAwOyBpIDwgYS5zaXplOyBpKyspIHtcbiAgICAgIGV4cGVjdGVkW2ldID0gTWF0aC5hY29zaCh2YWx1ZXNbaV0pO1xuICAgIH1cbiAgICBleHBlY3RBcnJheXNDbG9zZShhd2FpdCByZXN1bHQuZGF0YSgpLCBleHBlY3RlZCk7XG4gIH0pO1xuXG4gIGl0KCdwcm9wYWdhdGVzIE5hTnMnLCBhc3luYyAoKSA9PiB7XG4gICAgY29uc3QgYSA9IHRmLnRlbnNvcjFkKFs0LCBOYU4sIDJdKTtcbiAgICBjb25zdCByZXMgPSB0Zi5hY29zaChhKTtcbiAgICBleHBlY3RBcnJheXNDbG9zZShhd2FpdCByZXMuZGF0YSgpLCBbTWF0aC5hY29zaCg0KSwgTmFOLCBNYXRoLmFjb3NoKDIpXSk7XG4gIH0pO1xuXG4gIGl0KCdOYU4gb3V0c2lkZSBmdW5jdGlvbiBkb21haW4nLCBhc3luYyAoKSA9PiB7XG4gICAgY29uc3QgYSA9IHRmLnRlbnNvcjFkKFs0LCAtMSwgMl0pO1xuICAgIGNvbnN0IHJlcyA9IHRmLmFjb3NoKGEpO1xuICAgIGV4cGVjdEFycmF5c0Nsb3NlKGF3YWl0IHJlcy5kYXRhKCksIFtNYXRoLmFjb3NoKDQpLCBOYU4sIE1hdGguYWNvc2goMildKTtcbiAgfSk7XG5cbiAgaXQoJ2dyYWRpZW50czogU2NhbGFyJywgYXN5bmMgKCkgPT4ge1xuICAgIGNvbnN0IGEgPSB0Zi5zY2FsYXIoMS41KTtcbiAgICBjb25zdCBkeSA9IHRmLnNjYWxhcig4KTtcblxuICAgIGNvbnN0IGdyYWRpZW50cyA9IHRmLmdyYWQoYSA9PiB0Zi5hY29zaChhKSkoYSwgZHkpO1xuXG4gICAgZXhwZWN0KGdyYWRpZW50cy5zaGFwZSkudG9FcXVhbChhLnNoYXBlKTtcbiAgICBleHBlY3QoZ3JhZGllbnRzLmR0eXBlKS50b0VxdWFsKCdmbG9hdDMyJyk7XG4gICAgZXhwZWN0QXJyYXlzQ2xvc2UoXG4gICAgICAgIGF3YWl0IGdyYWRpZW50cy5kYXRhKCksIFs4LjAgLyBNYXRoLnNxcnQoMS41ICogMS41IC0gMS4wKV0pO1xuICB9KTtcblxuICBpdCgnZ3JhZGllbnQgd2l0aCBjbG9uZXMnLCBhc3luYyAoKSA9PiB7XG4gICAgY29uc3QgYSA9IHRmLnNjYWxhcigxLjUpO1xuICAgIGNvbnN0IGR5ID0gdGYuc2NhbGFyKDgpO1xuXG4gICAgY29uc3QgZ3JhZGllbnRzID0gdGYuZ3JhZChhID0+IHRmLmFjb3NoKGEuY2xvbmUoKSkuY2xvbmUoKSkoYSwgZHkpO1xuXG4gICAgZXhwZWN0KGdyYWRpZW50cy5zaGFwZSkudG9FcXVhbChhLnNoYXBlKTtcbiAgICBleHBlY3QoZ3JhZGllbnRzLmR0eXBlKS50b0VxdWFsKCdmbG9hdDMyJyk7XG4gICAgZXhwZWN0QXJyYXlzQ2xvc2UoXG4gICAgICAgIGF3YWl0IGdyYWRpZW50cy5kYXRhKCksIFs4LjAgLyBNYXRoLnNxcnQoMS41ICogMS41IC0gMS4wKV0pO1xuICB9KTtcblxuICBpdCgnZ3JhZGllbnRzOiBUZW5zb3IxRCcsIGFzeW5jICgpID0+IHtcbiAgICBjb25zdCBhVmFsdWVzID0gWzIsIDMsIDUsIDEwXTtcbiAgICBjb25zdCBkeVZhbHVlcyA9IFsxLCAyLCAzLCA0XTtcbiAgICBjb25zdCBhID0gdGYudGVuc29yMWQoYVZhbHVlcyk7XG4gICAgY29uc3QgZHkgPSB0Zi50ZW5zb3IxZChkeVZhbHVlcyk7XG5cbiAgICBjb25zdCBncmFkaWVudHMgPSB0Zi5ncmFkKGEgPT4gdGYuYWNvc2goYSkpKGEsIGR5KTtcblxuICAgIGNvbnN0IGV4cGVjdGVkID0gW107XG4gICAgZm9yIChsZXQgaSA9IDA7IGkgPCBhLnNpemU7IGkrKykge1xuICAgICAgZXhwZWN0ZWRbaV0gPSBkeVZhbHVlc1tpXSAvIE1hdGguc3FydChNYXRoLnBvdyhhVmFsdWVzW2ldLCAyKSAtIDEuMCk7XG4gICAgfVxuXG4gICAgZXhwZWN0KGdyYWRpZW50cy5zaGFwZSkudG9FcXVhbChhLnNoYXBlKTtcbiAgICBleHBlY3QoZ3JhZGllbnRzLmR0eXBlKS50b0VxdWFsKCdmbG9hdDMyJyk7XG4gICAgZXhwZWN0QXJyYXlzQ2xvc2UoYXdhaXQgZ3JhZGllbnRzLmRhdGEoKSwgZXhwZWN0ZWQpO1xuICB9KTtcblxuICBpdCgnZ3JhZGllbnRzOiBUZW5zb3IyRCcsIGFzeW5jICgpID0+IHtcbiAgICBjb25zdCBhVmFsdWVzID0gWzIsIDMsIDUsIDddO1xuICAgIGNvbnN0IGR5VmFsdWVzID0gWzEsIDIsIDMsIDRdO1xuICAgIGNvbnN0IGEgPSB0Zi50ZW5zb3IyZChhVmFsdWVzLCBbMiwgMl0pO1xuICAgIGNvbnN0IGR5ID0gdGYudGVuc29yMmQoZHlWYWx1ZXMsIFsyLCAyXSk7XG5cbiAgICBjb25zdCBncmFkaWVudHMgPSB0Zi5ncmFkKGEgPT4gdGYuYWNvc2goYSkpKGEsIGR5KTtcblxuICAgIGNvbnN0IGV4cGVjdGVkID0gW107XG4gICAgZm9yIChsZXQgaSA9IDA7IGkgPCBhLnNpemU7IGkrKykge1xuICAgICAgZXhwZWN0ZWRbaV0gPSBkeVZhbHVlc1tpXSAvIE1hdGguc3FydChNYXRoLnBvdyhhVmFsdWVzW2ldLCAyKSAtIDEuMCk7XG4gICAgfVxuXG4gICAgZXhwZWN0KGdyYWRpZW50cy5zaGFwZSkudG9FcXVhbChhLnNoYXBlKTtcbiAgICBleHBlY3QoZ3JhZGllbnRzLmR0eXBlKS50b0VxdWFsKCdmbG9hdDMyJyk7XG4gICAgZXhwZWN0QXJyYXlzQ2xvc2UoYXdhaXQgZ3JhZGllbnRzLmRhdGEoKSwgZXhwZWN0ZWQpO1xuICB9KTtcblxuICBpdCgndGhyb3dzIHdoZW4gcGFzc2VkIGEgbm9uLXRlbnNvcicsICgpID0+IHtcbiAgICBleHBlY3QoKCkgPT4gdGYuYWNvc2goe30gYXMgdGYuVGVuc29yKSlcbiAgICAgICAgLnRvVGhyb3dFcnJvcigvQXJndW1lbnQgJ3gnIHBhc3NlZCB0byAnYWNvc2gnIG11c3QgYmUgYSBUZW5zb3IvKTtcbiAgfSk7XG5cbiAgaXQoJ2FjY2VwdHMgYSB0ZW5zb3ItbGlrZSBvYmplY3QnLCBhc3luYyAoKSA9PiB7XG4gICAgY29uc3QgdmFsdWVzID0gWzIsIDMsIDQsIDUsIDZdO1xuICAgIGNvbnN0IHJlc3VsdCA9IHRmLmFjb3NoKHZhbHVlcyk7XG5cbiAgICBjb25zdCBleHBlY3RlZCA9IFtdO1xuICAgIGZvciAobGV0IGkgPSAwOyBpIDwgdmFsdWVzLmxlbmd0aDsgaSsrKSB7XG4gICAgICBleHBlY3RlZFtpXSA9IE1hdGguYWNvc2godmFsdWVzW2ldKTtcbiAgICB9XG4gICAgZXhwZWN0QXJyYXlzQ2xvc2UoYXdhaXQgcmVzdWx0LmRhdGEoKSwgZXhwZWN0ZWQpO1xuICB9KTtcblxuICBpdCgndGhyb3dzIGZvciBzdHJpbmcgdGVuc29yJywgKCkgPT4ge1xuICAgIGV4cGVjdCgoKSA9PiB0Zi5hY29zaCgncScpKVxuICAgICAgICAudG9UaHJvd0Vycm9yKC9Bcmd1bWVudCAneCcgcGFzc2VkIHRvICdhY29zaCcgbXVzdCBiZSBudW1lcmljLyk7XG4gIH0pO1xufSk7XG4iXX0=