/**
|
* @license
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
/// <amd-module name="@tensorflow/tfjs-core/dist/ops/avg_pool" />
|
import { Tensor3D, Tensor4D } from '../tensor';
|
import { TensorLike } from '../types';
|
import * as conv_util from './conv_util';
|
/**
|
* Computes the 2D average pooling of an image.
|
*
|
* @param x The input tensor, of rank 4 or rank 3 of shape
|
* `[batch, height, width, inChannels]`. If rank 3, batch of 1 is assumed.
|
* @param filterSize The filter size: `[filterHeight, filterWidth]`. If
|
* `filterSize` is a single number, then `filterHeight == filterWidth`.
|
* @param strides The strides of the pooling: `[strideHeight, strideWidth]`. If
|
* `strides` is a single number, then `strideHeight == strideWidth`.
|
* @param pad The type of padding algorithm:
|
* - `same` and stride 1: output will be of same size as input,
|
* regardless of filter size.
|
* - `valid`: output will be smaller than input if filter is larger
|
* than 1x1.
|
* - For more info, see this guide:
|
* [https://www.tensorflow.org/api_docs/python/tf/nn/convolution](
|
* https://www.tensorflow.org/api_docs/python/tf/nn/convolution)
|
* @param dimRoundingMode A string from: 'ceil', 'round', 'floor'. If none is
|
* provided, it will default to truncate.
|
*
|
* @doc {heading: 'Operations', subheading: 'Convolution'}
|
*/
|
declare function avgPool_<T extends Tensor3D | Tensor4D>(x: T | TensorLike, filterSize: [number, number] | number, strides: [number, number] | number, pad: 'valid' | 'same' | number | conv_util.ExplicitPadding, dimRoundingMode?: 'floor' | 'round' | 'ceil'): T;
|
export declare const avgPool: typeof avgPool_;
|
export {};
|