/**
|
* @license
|
* Copyright 2023 Google LLC.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
/// <amd-module name="@tensorflow/tfjs-core/dist/ops/bitwise_and" />
|
import { Tensor } from '../tensor';
|
import { Rank } from '../types';
|
/**
|
* Bitwise `AND` operation for input tensors.
|
*
|
* Given two input tensors, returns a new tensor
|
* with the `AND` calculated values.
|
*
|
* The method supports int32 values
|
*
|
*
|
* ```js
|
* const x = tf.tensor1d([0, 5, 3, 14], 'int32');
|
* const y = tf.tensor1d([5, 0, 7, 11], 'int32');
|
* tf.bitwiseAnd(x, y).print();
|
* ```
|
*
|
* @param x The input tensor to be calculated.
|
* @param y The input tensor to be calculated.
|
*
|
* @doc {heading: 'Operations', subheading: 'Logical'}
|
*/
|
declare function bitwiseAnd_<R extends Rank>(x: Tensor, y: Tensor): Tensor<R>;
|
export declare const bitwiseAnd: typeof bitwiseAnd_;
|
export {};
|