/**
|
* @license
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
/// <amd-module name="@tensorflow/tfjs-core/dist/ops/boolean_mask" />
|
import { Tensor } from '../tensor';
|
import { TensorLike } from '../types';
|
/**
|
* Apply boolean mask to tensor.
|
*
|
* ```js
|
* const tensor = tf.tensor2d([1, 2, 3, 4, 5, 6], [3, 2]);
|
* const mask = tf.tensor1d([1, 0, 1], 'bool');
|
* const result = await tf.booleanMaskAsync(tensor, mask);
|
* result.print();
|
* ```
|
*
|
* @param tensor N-D tensor.
|
* @param mask K-D boolean tensor, K <= N and K must be known statically.
|
* @param axis A 0-D int Tensor representing the axis in tensor to mask from.
|
* By default, axis is 0 which will mask from the first dimension.
|
* Otherwise K + axis <= N.
|
*
|
* @doc {heading: 'Tensors', subheading: 'Slicing and Joining'}
|
*/
|
declare function booleanMaskAsync_(tensor: Tensor | TensorLike, mask: Tensor | TensorLike, axis?: number): Promise<Tensor>;
|
export declare const booleanMaskAsync: typeof booleanMaskAsync_;
|
export {};
|