gx
chenyc
2025-02-12 ea42ff3ebee1eeb3fb29423aa848a249441db81c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
/**
 * @license
 * Copyright 2019 Google LLC. All Rights Reserved.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 * =============================================================================
 */
import { ENGINE } from '../../engine';
import { customGrad } from '../../gradients';
import { FusedConv2D } from '../../kernel_names';
import { makeTypesMatch } from '../../tensor_util';
import { convertToTensor } from '../../tensor_util_env';
import * as util from '../../util';
import { add } from '../add';
import * as broadcast_util from '../broadcast_util';
import { conv2d as unfusedConv2d } from '../conv2d';
import { conv2DBackpropFilter } from '../conv2d_backprop_filter';
import { conv2DBackpropInput } from '../conv2d_backprop_input';
import * as conv_util from '../conv_util';
import { applyActivation, getFusedBiasGradient, getFusedDyActivation, shouldFuse } from '../fused_util';
import { op } from '../operation';
import { reshape } from '../reshape';
/**
 * Computes a 2D convolution over the input x, optionally fused with adding a
 * bias and applying an activation.
 *
 * ```js
 * const inputDepth = 2;
 * const inShape = [2, 2, 2, inputDepth];
 * const outputDepth = 2;
 * const fSize = 1;
 * const pad = 0;
 * const strides = 1;
 *
 * const x = tf.tensor4d( [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
 * 16], inShape);
 * const w = tf.tensor4d([-1, 1, -2, 0.5], [fSize, fSize, inputDepth,
 * outputDepth]);
 *
 * tf.fused.conv2d({ x, filter: w, strides, pad, dataFormat: 'NHWC',
 * dilations: [1, 1], bias: tf.scalar(5), activation: 'relu' }).print();
 * ```
 *
 * @param obj An object with the following properties:
 * @param x The input tensor, of rank 4 or rank 3, of shape
 *     `[batch, height, width, inChannels]`. If rank 3, batch of 1 is
 * assumed.
 * @param filter The filter, rank 4, of shape
 *     `[filterHeight, filterWidth, inDepth, outDepth]`.
 * @param strides The strides of the convolution: `[strideHeight,
 * strideWidth]`.
 * @param pad The type of padding algorithm.
 *   - `same` and stride 1: output will be of same size as input,
 *       regardless of filter size.
 *   - `valid` output will be smaller than input if filter is larger
 *       than 1x1.
 *   - For more info, see this guide:
 *     [https://www.tensorflow.org/api_docs/python/tf/nn/convolution](
 *          https://www.tensorflow.org/api_docs/python/tf/nn/convolution)
 * @param dataFormat An optional string from: "NHWC", "NCHW". Defaults to
 *     "NHWC". Specify the data format of the input and output data. With the
 *     default format "NHWC", the data is stored in the order of: [batch,
 *     height, width, channels]. Only "NHWC" is currently supported.
 * @param dilations The dilation rates: `[dilationHeight, dilationWidth]`
 *     in which we sample input values across the height and width dimensions
 *     in atrous convolution. Defaults to `[1, 1]`. If `dilations` is a single
 *     number, then `dilationHeight == dilationWidth`. If it is greater than
 *     1, then all values of `strides` must be 1.
 * @param dimRoundingMode A string from: 'ceil', 'round', 'floor'. If none is
 *     provided, it will default to truncate.
 * @param bias Tensor to be added to the result.
 * @param activation Name of activation kernel (defaults to `linear`) to be
 *     applied
 *      after biasAdd.
 * @param preluActivationWeights Tensor of prelu weights to be applied as part
 *     of a `prelu` activation, typically the same shape as `x`.
 * @param leakyreluAlpha Optional. Alpha to be applied as part of a `leakyrelu`
 *     activation.
 */
function fusedConv2d_({ x, filter, strides, pad, dataFormat = 'NHWC', dilations = [1, 1], dimRoundingMode, bias, activation = 'linear', preluActivationWeights, leakyreluAlpha }) {
    activation = activation || 'linear';
    if (shouldFuse(ENGINE.state.gradientDepth, activation) === false) {
        // TODO: Transpose bias and preluActivationWeights properly for NCHW
        // format before computation.
        util.assert(dataFormat === 'NHWC', () => `Error in fused conv2d: got dataFormat of ${dataFormat} but ` +
            `only NHWC is currently supported for the case of gradient depth ` +
            `is 0 and the activation is not linear.`);
        let result = unfusedConv2d(x, filter, strides, pad, dataFormat, dilations, dimRoundingMode);
        if (bias != null) {
            result = add(result, bias);
        }
        return applyActivation(result, activation, preluActivationWeights, leakyreluAlpha);
    }
    const $x = convertToTensor(x, 'x', 'conv2d', 'float32');
    const $filter = convertToTensor(filter, 'filter', 'conv2d', 'float32');
    let x4D = $x;
    let reshapedTo4D = false;
    if ($x.rank === 3) {
        reshapedTo4D = true;
        x4D = reshape($x, [1, $x.shape[0], $x.shape[1], $x.shape[2]]);
    }
    util.assert(x4D.rank === 4, () => `Error in fused conv2d: input must be rank 4, but got rank ` +
        `${x4D.rank}.`);
    util.assert($filter.rank === 4, () => `Error in fused conv2d: filter must be rank 4, but got rank ` +
        `${$filter.rank}.`);
    conv_util.checkPadOnDimRoundingMode('fused conv2d', pad, dimRoundingMode);
    const inputChannels = dataFormat === 'NHWC' ? x4D.shape[3] : x4D.shape[1];
    util.assert($filter.shape[2] === inputChannels, () => `Error in conv2d: depth of input (${inputChannels}) must match ` +
        `input depth for filter ${$filter.shape[2]}.`);
    util.assert(conv_util.eitherStridesOrDilationsAreOne(strides, dilations), () => 'Error in conv2D: Either strides or dilations must be 1. ' +
        `Got strides ${strides} and dilations '${dilations}'`);
    const convInfo = conv_util.computeConv2DInfo(x4D.shape, $filter.shape, strides, dilations, pad, dimRoundingMode);
    let $bias;
    if (bias != null) {
        $bias = convertToTensor(bias, 'bias', 'fused conv2d');
        [$bias] = makeTypesMatch($bias, $x);
        // According to TensorFlow, the bias is supposed be a 1-D tensor or a
        // scalar.
        //
        // 3-D or 4-D bias is not disabled for NHWC format, because they are
        // currently being used in some cases. For examplem in our code base,
        // https://github.com/tensorflow/tfjs/blob/b53bd47e880367ae57493f0ea628abaf08db2d5d/tfjs-core/src/ops/fused/fused_conv2d_test.ts#L1972.
        if (dataFormat === 'NHWC') {
            broadcast_util.assertAndGetBroadcastShape(convInfo.outShape, $bias.shape);
        }
        else {
            util.assert($bias.shape.length <= 1, () => `Error in fused conv2d: only supports scalar or 1-D Tensor ` +
                `bias for NCHW format but got the bias of ` +
                `rank-${$bias.shape.length}.`);
            util.assert($bias.shape.length === 0 || $bias.shape[0] === convInfo.outChannels ||
                $bias.shape[0] === 1, () => `Error in fused conv2d: bias shape (${$bias.shape}) is not ` +
                `compatible with the number of output channels ` +
                `(${convInfo.outChannels})`);
        }
    }
    let $preluActivationWeights;
    if (preluActivationWeights != null) {
        // PReLU's activation weights could be a scalar, a 1-D tensor or a 3-D
        // tensor.
        const alphaShape = preluActivationWeights.shape;
        util.assert(alphaShape.length <= 1 || alphaShape.length === 3, () => `Error in fused conv2d: only supports scalar, 1-D Tensor or ` +
            `3-D Tensor PReLU activation weights but got a tensor of ` +
            `rank-${alphaShape.length}.`);
        if (alphaShape.length === 1) {
            // Whether the data format is NCHW or NHWC, the 1-D PReLU activation
            // weights tensor should be aligned with the output channels of conv2d
            // result.
            util.assert(alphaShape[0] === 1 || alphaShape[0] === convInfo.outChannels, () => `Error in fused conv2d: PReLU activation weights ` +
                `(${alphaShape}) is not compatible with the number of output ` +
                `channels (${convInfo.outChannels}).`);
        }
        else if (alphaShape.length === 3) {
            // Whether the data format is NCHW or NHWC, the PReLU activation weights
            // tensor should has the compatible shape with the result of conv2d.
            try {
                broadcast_util.assertAndGetBroadcastShape(alphaShape, convInfo.outShape);
            }
            catch (e) {
                const errMsg = `Error in fused conv2d: PReLU activation weights (${alphaShape}) ` +
                    `is not compatible with the output shape of the conv2d ` +
                    `(${convInfo.outShape}).`;
                throw Error(errMsg);
            }
        }
        $preluActivationWeights = convertToTensor(preluActivationWeights, 'prelu weights', 'fused conv2d');
    }
    const grad = (dy, saved) => {
        util.assert(dataFormat === 'NHWC', () => `Error in gradient of fused conv2D: got dataFormat of ${dataFormat} but only NHWC is currently supported.`);
        const [$filter, x4D, y, $bias] = saved;
        const dyActivation = getFusedDyActivation(dy, y, activation);
        util.assert(conv_util.tupleValuesAreOne(dilations), () => 'Error in gradient of fused conv2D: ' +
            `dilation rates greater than 1 ` +
            `are not yet supported in gradients. Got dilations '${dilations}'`);
        const xDer = conv2DBackpropInput(x4D.shape, dyActivation, $filter, strides, pad);
        const filterDer = conv2DBackpropFilter(x4D, dyActivation, $filter.shape, strides, pad);
        const der = [xDer, filterDer];
        if ($bias != null) {
            const biasDer = getFusedBiasGradient($bias, dyActivation);
            der.push(biasDer);
        }
        return der;
    };
    const inputs = {
        x: x4D,
        filter: $filter,
        bias: $bias,
        preluActivationWeights: $preluActivationWeights
    };
    const attrs = {
        strides,
        pad,
        dataFormat,
        dilations,
        dimRoundingMode,
        activation,
        leakyreluAlpha
    };
    // Depending on the the params passed in we will have different number of
    // inputs and thus a a different number of elements in the gradient.
    if (bias == null) {
        const customOp = customGrad((x4D, filter, save) => {
            let res = 
            // tslint:disable-next-line: no-unnecessary-type-assertion
            ENGINE.runKernel(FusedConv2D, inputs, attrs);
            save([filter, x4D, res]);
            if (reshapedTo4D) {
                // tslint:disable-next-line: no-unnecessary-type-assertion
                res = reshape(res, [res.shape[1], res.shape[2], res.shape[3]]);
            }
            return { value: res, gradFunc: grad };
        });
        return customOp(x4D, $filter);
    }
    else {
        const customOpWithBias = customGrad((x4D, filter, bias, save) => {
            let res = ENGINE.runKernel(FusedConv2D, inputs, attrs);
            save([filter, x4D, res, bias]);
            if (reshapedTo4D) {
                // tslint:disable-next-line: no-unnecessary-type-assertion
                res = reshape(res, [res.shape[1], res.shape[2], res.shape[3]]);
            }
            return { value: res, gradFunc: grad };
        });
        return customOpWithBias(x4D, $filter, $bias);
    }
}
export const conv2d = /* @__PURE__ */ op({ fusedConv2d_ });
//# sourceMappingURL=data:application/json;base64,eyJ2ZXJzaW9uIjozLCJmaWxlIjoiY29udjJkLmpzIiwic291cmNlUm9vdCI6IiIsInNvdXJjZXMiOlsiLi4vLi4vLi4vLi4vLi4vLi4vLi4vdGZqcy1jb3JlL3NyYy9vcHMvZnVzZWQvY29udjJkLnRzIl0sIm5hbWVzIjpbXSwibWFwcGluZ3MiOiJBQUFBOzs7Ozs7Ozs7Ozs7Ozs7R0FlRztBQUVILE9BQU8sRUFBQyxNQUFNLEVBQUMsTUFBTSxjQUFjLENBQUM7QUFDcEMsT0FBTyxFQUFDLFVBQVUsRUFBQyxNQUFNLGlCQUFpQixDQUFDO0FBQzNDLE9BQU8sRUFBQyxXQUFXLEVBQXNDLE1BQU0sb0JBQW9CLENBQUM7QUFJcEYsT0FBTyxFQUFDLGNBQWMsRUFBQyxNQUFNLG1CQUFtQixDQUFDO0FBQ2pELE9BQU8sRUFBQyxlQUFlLEVBQUMsTUFBTSx1QkFBdUIsQ0FBQztBQUV0RCxPQUFPLEtBQUssSUFBSSxNQUFNLFlBQVksQ0FBQztBQUNuQyxPQUFPLEVBQUMsR0FBRyxFQUFDLE1BQU0sUUFBUSxDQUFDO0FBQzNCLE9BQU8sS0FBSyxjQUFjLE1BQU0sbUJBQW1CLENBQUM7QUFDcEQsT0FBTyxFQUFDLE1BQU0sSUFBSSxhQUFhLEVBQUMsTUFBTSxXQUFXLENBQUM7QUFDbEQsT0FBTyxFQUFDLG9CQUFvQixFQUFDLE1BQU0sMkJBQTJCLENBQUM7QUFDL0QsT0FBTyxFQUFDLG1CQUFtQixFQUFDLE1BQU0sMEJBQTBCLENBQUM7QUFDN0QsT0FBTyxLQUFLLFNBQVMsTUFBTSxjQUFjLENBQUM7QUFFMUMsT0FBTyxFQUFDLGVBQWUsRUFBRSxvQkFBb0IsRUFBRSxvQkFBb0IsRUFBRSxVQUFVLEVBQUMsTUFBTSxlQUFlLENBQUM7QUFDdEcsT0FBTyxFQUFDLEVBQUUsRUFBQyxNQUFNLGNBQWMsQ0FBQztBQUNoQyxPQUFPLEVBQUMsT0FBTyxFQUFDLE1BQU0sWUFBWSxDQUFDO0FBRW5DOzs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7OztHQXdERztBQUNILFNBQVMsWUFBWSxDQUE4QixFQUNqRCxDQUFDLEVBQ0QsTUFBTSxFQUNOLE9BQU8sRUFDUCxHQUFHLEVBQ0gsVUFBVSxHQUFHLE1BQU0sRUFDbkIsU0FBUyxHQUFHLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUNsQixlQUFlLEVBQ2YsSUFBSSxFQUNKLFVBQVUsR0FBRyxRQUFRLEVBQ3JCLHNCQUFzQixFQUN0QixjQUFjLEVBYWY7SUFDQyxVQUFVLEdBQUcsVUFBVSxJQUFJLFFBQVEsQ0FBQztJQUVwQyxJQUFJLFVBQVUsQ0FBQyxNQUFNLENBQUMsS0FBSyxDQUFDLGFBQWEsRUFBRSxVQUFVLENBQUMsS0FBSyxLQUFLLEVBQUU7UUFDaEUsb0VBQW9FO1FBQ3BFLDZCQUE2QjtRQUM3QixJQUFJLENBQUMsTUFBTSxDQUNQLFVBQVUsS0FBSyxNQUFNLEVBQ3JCLEdBQUcsRUFBRSxDQUFDLDRDQUE0QyxVQUFVLE9BQU87WUFDL0Qsa0VBQWtFO1lBQ2xFLHdDQUF3QyxDQUFDLENBQUM7UUFFbEQsSUFBSSxNQUFNLEdBQUcsYUFBYSxDQUN0QixDQUFDLEVBQUUsTUFBTSxFQUFFLE9BQU8sRUFBRSxHQUFHLEVBQUUsVUFBVSxFQUFFLFNBQVMsRUFBRSxlQUFlLENBQUMsQ0FBQztRQUNyRSxJQUFJLElBQUksSUFBSSxJQUFJLEVBQUU7WUFDaEIsTUFBTSxHQUFHLEdBQUcsQ0FBQyxNQUFNLEVBQUUsSUFBSSxDQUFDLENBQUM7U0FDNUI7UUFFRCxPQUFPLGVBQWUsQ0FDWCxNQUFNLEVBQUUsVUFBVSxFQUFFLHNCQUFzQixFQUFFLGNBQWMsQ0FBTSxDQUFDO0tBQzdFO0lBRUQsTUFBTSxFQUFFLEdBQUcsZUFBZSxDQUFDLENBQUMsRUFBRSxHQUFHLEVBQUUsUUFBUSxFQUFFLFNBQVMsQ0FBQyxDQUFDO0lBQ3hELE1BQU0sT0FBTyxHQUFHLGVBQWUsQ0FBQyxNQUFNLEVBQUUsUUFBUSxFQUFFLFFBQVEsRUFBRSxTQUFTLENBQUMsQ0FBQztJQUV2RSxJQUFJLEdBQUcsR0FBRyxFQUFjLENBQUM7SUFDekIsSUFBSSxZQUFZLEdBQUcsS0FBSyxDQUFDO0lBRXpCLElBQUksRUFBRSxDQUFDLElBQUksS0FBSyxDQUFDLEVBQUU7UUFDakIsWUFBWSxHQUFHLElBQUksQ0FBQztRQUNwQixHQUFHLEdBQUcsT0FBTyxDQUFDLEVBQUUsRUFBRSxDQUFDLENBQUMsRUFBRSxFQUFFLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxFQUFFLEVBQUUsQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLEVBQUUsRUFBRSxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUM7S0FDL0Q7SUFDRCxJQUFJLENBQUMsTUFBTSxDQUNQLEdBQUcsQ0FBQyxJQUFJLEtBQUssQ0FBQyxFQUNkLEdBQUcsRUFBRSxDQUFDLDREQUE0RDtRQUM5RCxHQUFHLEdBQUcsQ0FBQyxJQUFJLEdBQUcsQ0FBQyxDQUFDO0lBQ3hCLElBQUksQ0FBQyxNQUFNLENBQ1AsT0FBTyxDQUFDLElBQUksS0FBSyxDQUFDLEVBQ2xCLEdBQUcsRUFBRSxDQUFDLDZEQUE2RDtRQUMvRCxHQUFHLE9BQU8sQ0FBQyxJQUFJLEdBQUcsQ0FBQyxDQUFDO0lBQzVCLFNBQVMsQ0FBQyx5QkFBeUIsQ0FBQyxjQUFjLEVBQUUsR0FBRyxFQUFFLGVBQWUsQ0FBQyxDQUFDO0lBQzFFLE1BQU0sYUFBYSxHQUFHLFVBQVUsS0FBSyxNQUFNLENBQUMsQ0FBQyxDQUFDLEdBQUcsQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLENBQUM7SUFDMUUsSUFBSSxDQUFDLE1BQU0sQ0FDUCxPQUFPLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxLQUFLLGFBQWEsRUFDbEMsR0FBRyxFQUFFLENBQUMsb0NBQW9DLGFBQWEsZUFBZTtRQUNsRSwwQkFBMEIsT0FBTyxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsR0FBRyxDQUFDLENBQUM7SUFDdkQsSUFBSSxDQUFDLE1BQU0sQ0FDUCxTQUFTLENBQUMsOEJBQThCLENBQUMsT0FBTyxFQUFFLFNBQVMsQ0FBQyxFQUM1RCxHQUFHLEVBQUUsQ0FBQywwREFBMEQ7UUFDNUQsZUFBZSxPQUFPLG1CQUFtQixTQUFTLEdBQUcsQ0FBQyxDQUFDO0lBRS9ELE1BQU0sUUFBUSxHQUFHLFNBQVMsQ0FBQyxpQkFBaUIsQ0FDeEMsR0FBRyxDQUFDLEtBQUssRUFBRSxPQUFPLENBQUMsS0FBSyxFQUFFLE9BQU8sRUFBRSxTQUFTLEVBQUUsR0FBRyxFQUFFLGVBQWUsQ0FBQyxDQUFDO0lBRXhFLElBQUksS0FBYSxDQUFDO0lBQ2xCLElBQUksSUFBSSxJQUFJLElBQUksRUFBRTtRQUNoQixLQUFLLEdBQUcsZUFBZSxDQUFDLElBQUksRUFBRSxNQUFNLEVBQUUsY0FBYyxDQUFDLENBQUM7UUFDdEQsQ0FBQyxLQUFLLENBQUMsR0FBRyxjQUFjLENBQUMsS0FBSyxFQUFFLEVBQUUsQ0FBQyxDQUFDO1FBRXBDLHFFQUFxRTtRQUNyRSxVQUFVO1FBQ1YsRUFBRTtRQUNGLG9FQUFvRTtRQUNwRSxxRUFBcUU7UUFDckUsdUlBQXVJO1FBQ3ZJLElBQUksVUFBVSxLQUFLLE1BQU0sRUFBRTtZQUN6QixjQUFjLENBQUMsMEJBQTBCLENBQUMsUUFBUSxDQUFDLFFBQVEsRUFBRSxLQUFLLENBQUMsS0FBSyxDQUFDLENBQUM7U0FDM0U7YUFBTTtZQUNMLElBQUksQ0FBQyxNQUFNLENBQ1AsS0FBSyxDQUFDLEtBQUssQ0FBQyxNQUFNLElBQUksQ0FBQyxFQUN2QixHQUFHLEVBQUUsQ0FBQyw0REFBNEQ7Z0JBQzlELDJDQUEyQztnQkFDM0MsUUFBUSxLQUFLLENBQUMsS0FBSyxDQUFDLE1BQU0sR0FBRyxDQUFDLENBQUM7WUFFdkMsSUFBSSxDQUFDLE1BQU0sQ0FDUCxLQUFLLENBQUMsS0FBSyxDQUFDLE1BQU0sS0FBSyxDQUFDLElBQUksS0FBSyxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsS0FBSyxRQUFRLENBQUMsV0FBVztnQkFDL0QsS0FBSyxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsS0FBSyxDQUFDLEVBQ3hCLEdBQUcsRUFBRSxDQUFDLHNDQUFzQyxLQUFLLENBQUMsS0FBSyxXQUFXO2dCQUM5RCxnREFBZ0Q7Z0JBQ2hELElBQUksUUFBUSxDQUFDLFdBQVcsR0FBRyxDQUFDLENBQUM7U0FDdEM7S0FDRjtJQUVELElBQUksdUJBQStCLENBQUM7SUFDcEMsSUFBSSxzQkFBc0IsSUFBSSxJQUFJLEVBQUU7UUFDbEMsc0VBQXNFO1FBQ3RFLFVBQVU7UUFDVixNQUFNLFVBQVUsR0FBRyxzQkFBc0IsQ0FBQyxLQUFLLENBQUM7UUFDaEQsSUFBSSxDQUFDLE1BQU0sQ0FDUCxVQUFVLENBQUMsTUFBTSxJQUFJLENBQUMsSUFBSSxVQUFVLENBQUMsTUFBTSxLQUFLLENBQUMsRUFDakQsR0FBRyxFQUFFLENBQUMsNkRBQTZEO1lBQy9ELDBEQUEwRDtZQUMxRCxRQUFRLFVBQVUsQ0FBQyxNQUFNLEdBQUcsQ0FBQyxDQUFDO1FBRXRDLElBQUksVUFBVSxDQUFDLE1BQU0sS0FBSyxDQUFDLEVBQUU7WUFDM0Isb0VBQW9FO1lBQ3BFLHNFQUFzRTtZQUN0RSxVQUFVO1lBQ1YsSUFBSSxDQUFDLE1BQU0sQ0FDUCxVQUFVLENBQUMsQ0FBQyxDQUFDLEtBQUssQ0FBQyxJQUFJLFVBQVUsQ0FBQyxDQUFDLENBQUMsS0FBSyxRQUFRLENBQUMsV0FBVyxFQUM3RCxHQUFHLEVBQUUsQ0FBQyxrREFBa0Q7Z0JBQ3BELElBQUksVUFBVSxnREFBZ0Q7Z0JBQzlELGFBQWEsUUFBUSxDQUFDLFdBQVcsSUFBSSxDQUFDLENBQUM7U0FDaEQ7YUFBTSxJQUFJLFVBQVUsQ0FBQyxNQUFNLEtBQUssQ0FBQyxFQUFFO1lBQ2xDLHdFQUF3RTtZQUN4RSxvRUFBb0U7WUFDcEUsSUFBSTtnQkFDRixjQUFjLENBQUMsMEJBQTBCLENBQ3JDLFVBQVUsRUFBRSxRQUFRLENBQUMsUUFBUSxDQUFDLENBQUM7YUFDcEM7WUFBQyxPQUFPLENBQUMsRUFBRTtnQkFDVixNQUFNLE1BQU0sR0FDUixvREFBb0QsVUFBVSxJQUFJO29CQUNsRSx3REFBd0Q7b0JBQ3hELElBQUksUUFBUSxDQUFDLFFBQVEsSUFBSSxDQUFDO2dCQUM5QixNQUFNLEtBQUssQ0FBQyxNQUFNLENBQUMsQ0FBQzthQUNyQjtTQUNGO1FBRUQsdUJBQXVCLEdBQUcsZUFBZSxDQUNyQyxzQkFBc0IsRUFBRSxlQUFlLEVBQUUsY0FBYyxDQUFDLENBQUM7S0FDOUQ7SUFFRCxNQUFNLElBQUksR0FBRyxDQUFDLEVBQVksRUFBRSxLQUFlLEVBQUUsRUFBRTtRQUM3QyxJQUFJLENBQUMsTUFBTSxDQUNQLFVBQVUsS0FBSyxNQUFNLEVBQ3JCLEdBQUcsRUFBRSxDQUFDLHdEQUNGLFVBQVUsd0NBQXdDLENBQUMsQ0FBQztRQUU1RCxNQUFNLENBQUMsT0FBTyxFQUFFLEdBQUcsRUFBRSxDQUFDLEVBQUUsS0FBSyxDQUFDLEdBQzFCLEtBQStDLENBQUM7UUFFcEQsTUFBTSxZQUFZLEdBQUcsb0JBQW9CLENBQUMsRUFBRSxFQUFFLENBQUMsRUFBRSxVQUFVLENBQWEsQ0FBQztRQUV6RSxJQUFJLENBQUMsTUFBTSxDQUNQLFNBQVMsQ0FBQyxpQkFBaUIsQ0FBQyxTQUFTLENBQUMsRUFDdEMsR0FBRyxFQUFFLENBQUMscUNBQXFDO1lBQ3ZDLGdDQUFnQztZQUNoQyxzREFBc0QsU0FBUyxHQUFHLENBQUMsQ0FBQztRQUU1RSxNQUFNLElBQUksR0FDTixtQkFBbUIsQ0FBQyxHQUFHLENBQUMsS0FBSyxFQUFFLFlBQVksRUFBRSxPQUFPLEVBQUUsT0FBTyxFQUFFLEdBQUcsQ0FBQyxDQUFDO1FBQ3hFLE1BQU0sU0FBUyxHQUNYLG9CQUFvQixDQUFDLEdBQUcsRUFBRSxZQUFZLEVBQUUsT0FBTyxDQUFDLEtBQUssRUFBRSxPQUFPLEVBQUUsR0FBRyxDQUFDLENBQUM7UUFDekUsTUFBTSxHQUFHLEdBQWEsQ0FBQyxJQUFJLEVBQUUsU0FBUyxDQUFDLENBQUM7UUFFeEMsSUFBSSxLQUFLLElBQUksSUFBSSxFQUFFO1lBQ2pCLE1BQU0sT0FBTyxHQUFHLG9CQUFvQixDQUFDLEtBQUssRUFBRSxZQUFZLENBQUMsQ0FBQztZQUMxRCxHQUFHLENBQUMsSUFBSSxDQUFDLE9BQU8sQ0FBQyxDQUFDO1NBQ25CO1FBQ0QsT0FBTyxHQUFHLENBQUM7SUFDYixDQUFDLENBQUM7SUFFRixNQUFNLE1BQU0sR0FBc0I7UUFDaEMsQ0FBQyxFQUFFLEdBQUc7UUFDTixNQUFNLEVBQUUsT0FBTztRQUNmLElBQUksRUFBRSxLQUFLO1FBQ1gsc0JBQXNCLEVBQUUsdUJBQXVCO0tBQ2hELENBQUM7SUFFRixNQUFNLEtBQUssR0FBcUI7UUFDOUIsT0FBTztRQUNQLEdBQUc7UUFDSCxVQUFVO1FBQ1YsU0FBUztRQUNULGVBQWU7UUFDZixVQUFVO1FBQ1YsY0FBYztLQUNmLENBQUM7SUFFRix5RUFBeUU7SUFDekUsb0VBQW9FO0lBQ3BFLElBQUksSUFBSSxJQUFJLElBQUksRUFBRTtRQUNoQixNQUFNLFFBQVEsR0FDVixVQUFVLENBQUMsQ0FBQyxHQUFhLEVBQUUsTUFBZ0IsRUFBRSxJQUFrQixFQUFFLEVBQUU7WUFDakUsSUFBSSxHQUFHO1lBQ0gsMERBQTBEO1lBQzFELE1BQU0sQ0FBQyxTQUFTLENBQ1osV0FBVyxFQUFFLE1BQW1DLEVBQ2hELEtBQWdDLENBQUMsQ0FBQztZQUUxQyxJQUFJLENBQUMsQ0FBQyxNQUFNLEVBQUUsR0FBRyxFQUFFLEdBQUcsQ0FBQyxDQUFDLENBQUM7WUFFekIsSUFBSSxZQUFZLEVBQUU7Z0JBQ2hCLDBEQUEwRDtnQkFDMUQsR0FBRyxHQUFHLE9BQU8sQ0FBQyxHQUFHLEVBQUUsQ0FBQyxHQUFHLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxFQUFFLEdBQUcsQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLEVBQUUsR0FBRyxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUNqRCxDQUFDO2FBQ2Q7WUFFRCxPQUFPLEVBQUMsS0FBSyxFQUFFLEdBQUcsRUFBRSxRQUFRLEVBQUUsSUFBSSxFQUFDLENBQUM7UUFDdEMsQ0FBQyxDQUFDLENBQUM7UUFDUCxPQUFPLFFBQVEsQ0FBQyxHQUFHLEVBQUUsT0FBTyxDQUFNLENBQUM7S0FDcEM7U0FBTTtRQUNMLE1BQU0sZ0JBQWdCLEdBQUcsVUFBVSxDQUMvQixDQUFDLEdBQWEsRUFBRSxNQUFnQixFQUFFLElBQVksRUFBRSxJQUFrQixFQUFFLEVBQUU7WUFDcEUsSUFBSSxHQUFHLEdBQXNCLE1BQU0sQ0FBQyxTQUFTLENBQ3pDLFdBQVcsRUFBRSxNQUFtQyxFQUNoRCxLQUFnQyxDQUFDLENBQUM7WUFFdEMsSUFBSSxDQUFDLENBQUMsTUFBTSxFQUFFLEdBQUcsRUFBRSxHQUFHLEVBQUUsSUFBSSxDQUFDLENBQUMsQ0FBQztZQUUvQixJQUFJLFlBQVksRUFBRTtnQkFDaEIsMERBQTBEO2dCQUMxRCxHQUFHLEdBQUcsT0FBTyxDQUFDLEdBQUcsRUFBRSxDQUFDLEdBQUcsQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLEVBQUUsR0FBRyxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsRUFBRSxHQUFHLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQ2pELENBQUM7YUFDZDtZQUVELE9BQU8sRUFBQyxLQUFLLEVBQUUsR0FBRyxFQUFFLFFBQVEsRUFBRSxJQUFJLEVBQUMsQ0FBQztRQUN0QyxDQUFDLENBQUMsQ0FBQztRQUVQLE9BQU8sZ0JBQWdCLENBQUMsR0FBRyxFQUFFLE9BQU8sRUFBRSxLQUFLLENBQU0sQ0FBQztLQUNuRDtBQUNILENBQUM7QUFDRCxNQUFNLENBQUMsTUFBTSxNQUFNLEdBQUcsZUFBZSxDQUFDLEVBQUUsQ0FBQyxFQUFDLFlBQVksRUFBQyxDQUFDLENBQUMiLCJzb3VyY2VzQ29udGVudCI6WyIvKipcbiAqIEBsaWNlbnNlXG4gKiBDb3B5cmlnaHQgMjAxOSBHb29nbGUgTExDLiBBbGwgUmlnaHRzIFJlc2VydmVkLlxuICogTGljZW5zZWQgdW5kZXIgdGhlIEFwYWNoZSBMaWNlbnNlLCBWZXJzaW9uIDIuMCAodGhlIFwiTGljZW5zZVwiKTtcbiAqIHlvdSBtYXkgbm90IHVzZSB0aGlzIGZpbGUgZXhjZXB0IGluIGNvbXBsaWFuY2Ugd2l0aCB0aGUgTGljZW5zZS5cbiAqIFlvdSBtYXkgb2J0YWluIGEgY29weSBvZiB0aGUgTGljZW5zZSBhdFxuICpcbiAqIGh0dHA6Ly93d3cuYXBhY2hlLm9yZy9saWNlbnNlcy9MSUNFTlNFLTIuMFxuICpcbiAqIFVubGVzcyByZXF1aXJlZCBieSBhcHBsaWNhYmxlIGxhdyBvciBhZ3JlZWQgdG8gaW4gd3JpdGluZywgc29mdHdhcmVcbiAqIGRpc3RyaWJ1dGVkIHVuZGVyIHRoZSBMaWNlbnNlIGlzIGRpc3RyaWJ1dGVkIG9uIGFuIFwiQVMgSVNcIiBCQVNJUyxcbiAqIFdJVEhPVVQgV0FSUkFOVElFUyBPUiBDT05ESVRJT05TIE9GIEFOWSBLSU5ELCBlaXRoZXIgZXhwcmVzcyBvciBpbXBsaWVkLlxuICogU2VlIHRoZSBMaWNlbnNlIGZvciB0aGUgc3BlY2lmaWMgbGFuZ3VhZ2UgZ292ZXJuaW5nIHBlcm1pc3Npb25zIGFuZFxuICogbGltaXRhdGlvbnMgdW5kZXIgdGhlIExpY2Vuc2UuXG4gKiA9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PVxuICovXG5cbmltcG9ydCB7RU5HSU5FfSBmcm9tICcuLi8uLi9lbmdpbmUnO1xuaW1wb3J0IHtjdXN0b21HcmFkfSBmcm9tICcuLi8uLi9ncmFkaWVudHMnO1xuaW1wb3J0IHtGdXNlZENvbnYyRCwgRnVzZWRDb252MkRBdHRycywgRnVzZWRDb252MkRJbnB1dHN9IGZyb20gJy4uLy4uL2tlcm5lbF9uYW1lcyc7XG5pbXBvcnQge05hbWVkQXR0ck1hcH0gZnJvbSAnLi4vLi4va2VybmVsX3JlZ2lzdHJ5JztcbmltcG9ydCB7VGVuc29yLCBUZW5zb3IzRCwgVGVuc29yNER9IGZyb20gJy4uLy4uL3RlbnNvcic7XG5pbXBvcnQge0dyYWRTYXZlRnVuYywgTmFtZWRUZW5zb3JNYXB9IGZyb20gJy4uLy4uL3RlbnNvcl90eXBlcyc7XG5pbXBvcnQge21ha2VUeXBlc01hdGNofSBmcm9tICcuLi8uLi90ZW5zb3JfdXRpbCc7XG5pbXBvcnQge2NvbnZlcnRUb1RlbnNvcn0gZnJvbSAnLi4vLi4vdGVuc29yX3V0aWxfZW52JztcbmltcG9ydCB7VGVuc29yTGlrZX0gZnJvbSAnLi4vLi4vdHlwZXMnO1xuaW1wb3J0ICogYXMgdXRpbCBmcm9tICcuLi8uLi91dGlsJztcbmltcG9ydCB7YWRkfSBmcm9tICcuLi9hZGQnO1xuaW1wb3J0ICogYXMgYnJvYWRjYXN0X3V0aWwgZnJvbSAnLi4vYnJvYWRjYXN0X3V0aWwnO1xuaW1wb3J0IHtjb252MmQgYXMgdW5mdXNlZENvbnYyZH0gZnJvbSAnLi4vY29udjJkJztcbmltcG9ydCB7Y29udjJEQmFja3Byb3BGaWx0ZXJ9IGZyb20gJy4uL2NvbnYyZF9iYWNrcHJvcF9maWx0ZXInO1xuaW1wb3J0IHtjb252MkRCYWNrcHJvcElucHV0fSBmcm9tICcuLi9jb252MmRfYmFja3Byb3BfaW5wdXQnO1xuaW1wb3J0ICogYXMgY29udl91dGlsIGZyb20gJy4uL2NvbnZfdXRpbCc7XG5pbXBvcnQge0FjdGl2YXRpb259IGZyb20gJy4uL2Z1c2VkX3R5cGVzJztcbmltcG9ydCB7YXBwbHlBY3RpdmF0aW9uLCBnZXRGdXNlZEJpYXNHcmFkaWVudCwgZ2V0RnVzZWREeUFjdGl2YXRpb24sIHNob3VsZEZ1c2V9IGZyb20gJy4uL2Z1c2VkX3V0aWwnO1xuaW1wb3J0IHtvcH0gZnJvbSAnLi4vb3BlcmF0aW9uJztcbmltcG9ydCB7cmVzaGFwZX0gZnJvbSAnLi4vcmVzaGFwZSc7XG5cbi8qKlxuICogQ29tcHV0ZXMgYSAyRCBjb252b2x1dGlvbiBvdmVyIHRoZSBpbnB1dCB4LCBvcHRpb25hbGx5IGZ1c2VkIHdpdGggYWRkaW5nIGFcbiAqIGJpYXMgYW5kIGFwcGx5aW5nIGFuIGFjdGl2YXRpb24uXG4gKlxuICogYGBganNcbiAqIGNvbnN0IGlucHV0RGVwdGggPSAyO1xuICogY29uc3QgaW5TaGFwZSA9IFsyLCAyLCAyLCBpbnB1dERlcHRoXTtcbiAqIGNvbnN0IG91dHB1dERlcHRoID0gMjtcbiAqIGNvbnN0IGZTaXplID0gMTtcbiAqIGNvbnN0IHBhZCA9IDA7XG4gKiBjb25zdCBzdHJpZGVzID0gMTtcbiAqXG4gKiBjb25zdCB4ID0gdGYudGVuc29yNGQoIFsxLCAyLCAzLCA0LCA1LCA2LCA3LCA4LCA5LCAxMCwgMTEsIDEyLCAxMywgMTQsIDE1LFxuICogMTZdLCBpblNoYXBlKTtcbiAqIGNvbnN0IHcgPSB0Zi50ZW5zb3I0ZChbLTEsIDEsIC0yLCAwLjVdLCBbZlNpemUsIGZTaXplLCBpbnB1dERlcHRoLFxuICogb3V0cHV0RGVwdGhdKTtcbiAqXG4gKiB0Zi5mdXNlZC5jb252MmQoeyB4LCBmaWx0ZXI6IHcsIHN0cmlkZXMsIHBhZCwgZGF0YUZvcm1hdDogJ05IV0MnLFxuICogZGlsYXRpb25zOiBbMSwgMV0sIGJpYXM6IHRmLnNjYWxhcig1KSwgYWN0aXZhdGlvbjogJ3JlbHUnIH0pLnByaW50KCk7XG4gKiBgYGBcbiAqXG4gKiBAcGFyYW0gb2JqIEFuIG9iamVjdCB3aXRoIHRoZSBmb2xsb3dpbmcgcHJvcGVydGllczpcbiAqIEBwYXJhbSB4IFRoZSBpbnB1dCB0ZW5zb3IsIG9mIHJhbmsgNCBvciByYW5rIDMsIG9mIHNoYXBlXG4gKiAgICAgYFtiYXRjaCwgaGVpZ2h0LCB3aWR0aCwgaW5DaGFubmVsc11gLiBJZiByYW5rIDMsIGJhdGNoIG9mIDEgaXNcbiAqIGFzc3VtZWQuXG4gKiBAcGFyYW0gZmlsdGVyIFRoZSBmaWx0ZXIsIHJhbmsgNCwgb2Ygc2hhcGVcbiAqICAgICBgW2ZpbHRlckhlaWdodCwgZmlsdGVyV2lkdGgsIGluRGVwdGgsIG91dERlcHRoXWAuXG4gKiBAcGFyYW0gc3RyaWRlcyBUaGUgc3RyaWRlcyBvZiB0aGUgY29udm9sdXRpb246IGBbc3RyaWRlSGVpZ2h0LFxuICogc3RyaWRlV2lkdGhdYC5cbiAqIEBwYXJhbSBwYWQgVGhlIHR5cGUgb2YgcGFkZGluZyBhbGdvcml0aG0uXG4gKiAgIC0gYHNhbWVgIGFuZCBzdHJpZGUgMTogb3V0cHV0IHdpbGwgYmUgb2Ygc2FtZSBzaXplIGFzIGlucHV0LFxuICogICAgICAgcmVnYXJkbGVzcyBvZiBmaWx0ZXIgc2l6ZS5cbiAqICAgLSBgdmFsaWRgIG91dHB1dCB3aWxsIGJlIHNtYWxsZXIgdGhhbiBpbnB1dCBpZiBmaWx0ZXIgaXMgbGFyZ2VyXG4gKiAgICAgICB0aGFuIDF4MS5cbiAqICAgLSBGb3IgbW9yZSBpbmZvLCBzZWUgdGhpcyBndWlkZTpcbiAqICAgICBbaHR0cHM6Ly93d3cudGVuc29yZmxvdy5vcmcvYXBpX2RvY3MvcHl0aG9uL3RmL25uL2NvbnZvbHV0aW9uXShcbiAqICAgICAgICAgIGh0dHBzOi8vd3d3LnRlbnNvcmZsb3cub3JnL2FwaV9kb2NzL3B5dGhvbi90Zi9ubi9jb252b2x1dGlvbilcbiAqIEBwYXJhbSBkYXRhRm9ybWF0IEFuIG9wdGlvbmFsIHN0cmluZyBmcm9tOiBcIk5IV0NcIiwgXCJOQ0hXXCIuIERlZmF1bHRzIHRvXG4gKiAgICAgXCJOSFdDXCIuIFNwZWNpZnkgdGhlIGRhdGEgZm9ybWF0IG9mIHRoZSBpbnB1dCBhbmQgb3V0cHV0IGRhdGEuIFdpdGggdGhlXG4gKiAgICAgZGVmYXVsdCBmb3JtYXQgXCJOSFdDXCIsIHRoZSBkYXRhIGlzIHN0b3JlZCBpbiB0aGUgb3JkZXIgb2Y6IFtiYXRjaCxcbiAqICAgICBoZWlnaHQsIHdpZHRoLCBjaGFubmVsc10uIE9ubHkgXCJOSFdDXCIgaXMgY3VycmVudGx5IHN1cHBvcnRlZC5cbiAqIEBwYXJhbSBkaWxhdGlvbnMgVGhlIGRpbGF0aW9uIHJhdGVzOiBgW2RpbGF0aW9uSGVpZ2h0LCBkaWxhdGlvbldpZHRoXWBcbiAqICAgICBpbiB3aGljaCB3ZSBzYW1wbGUgaW5wdXQgdmFsdWVzIGFjcm9zcyB0aGUgaGVpZ2h0IGFuZCB3aWR0aCBkaW1lbnNpb25zXG4gKiAgICAgaW4gYXRyb3VzIGNvbnZvbHV0aW9uLiBEZWZhdWx0cyB0byBgWzEsIDFdYC4gSWYgYGRpbGF0aW9uc2AgaXMgYSBzaW5nbGVcbiAqICAgICBudW1iZXIsIHRoZW4gYGRpbGF0aW9uSGVpZ2h0ID09IGRpbGF0aW9uV2lkdGhgLiBJZiBpdCBpcyBncmVhdGVyIHRoYW5cbiAqICAgICAxLCB0aGVuIGFsbCB2YWx1ZXMgb2YgYHN0cmlkZXNgIG11c3QgYmUgMS5cbiAqIEBwYXJhbSBkaW1Sb3VuZGluZ01vZGUgQSBzdHJpbmcgZnJvbTogJ2NlaWwnLCAncm91bmQnLCAnZmxvb3InLiBJZiBub25lIGlzXG4gKiAgICAgcHJvdmlkZWQsIGl0IHdpbGwgZGVmYXVsdCB0byB0cnVuY2F0ZS5cbiAqIEBwYXJhbSBiaWFzIFRlbnNvciB0byBiZSBhZGRlZCB0byB0aGUgcmVzdWx0LlxuICogQHBhcmFtIGFjdGl2YXRpb24gTmFtZSBvZiBhY3RpdmF0aW9uIGtlcm5lbCAoZGVmYXVsdHMgdG8gYGxpbmVhcmApIHRvIGJlXG4gKiAgICAgYXBwbGllZFxuICogICAgICBhZnRlciBiaWFzQWRkLlxuICogQHBhcmFtIHByZWx1QWN0aXZhdGlvbldlaWdodHMgVGVuc29yIG9mIHByZWx1IHdlaWdodHMgdG8gYmUgYXBwbGllZCBhcyBwYXJ0XG4gKiAgICAgb2YgYSBgcHJlbHVgIGFjdGl2YXRpb24sIHR5cGljYWxseSB0aGUgc2FtZSBzaGFwZSBhcyBgeGAuXG4gKiBAcGFyYW0gbGVha3lyZWx1QWxwaGEgT3B0aW9uYWwuIEFscGhhIHRvIGJlIGFwcGxpZWQgYXMgcGFydCBvZiBhIGBsZWFreXJlbHVgXG4gKiAgICAgYWN0aXZhdGlvbi5cbiAqL1xuZnVuY3Rpb24gZnVzZWRDb252MmRfPFQgZXh0ZW5kcyBUZW5zb3IzRHxUZW5zb3I0RD4oe1xuICB4LFxuICBmaWx0ZXIsXG4gIHN0cmlkZXMsXG4gIHBhZCxcbiAgZGF0YUZvcm1hdCA9ICdOSFdDJyxcbiAgZGlsYXRpb25zID0gWzEsIDFdLFxuICBkaW1Sb3VuZGluZ01vZGUsXG4gIGJpYXMsXG4gIGFjdGl2YXRpb24gPSAnbGluZWFyJyxcbiAgcHJlbHVBY3RpdmF0aW9uV2VpZ2h0cyxcbiAgbGVha3lyZWx1QWxwaGFcbn06IHtcbiAgeDogVHxUZW5zb3JMaWtlLFxuICBmaWx0ZXI6IFRlbnNvcjREfFRlbnNvckxpa2UsXG4gIHN0cmlkZXM6IFtudW1iZXIsIG51bWJlcl18bnVtYmVyLFxuICBwYWQ6ICd2YWxpZCd8J3NhbWUnfG51bWJlcnxjb252X3V0aWwuRXhwbGljaXRQYWRkaW5nLFxuICBkYXRhRm9ybWF0PzogJ05IV0MnfCdOQ0hXJyxcbiAgZGlsYXRpb25zPzogW251bWJlciwgbnVtYmVyXXxudW1iZXIsXG4gIGRpbVJvdW5kaW5nTW9kZT86ICdmbG9vcid8J3JvdW5kJ3wnY2VpbCcsXG4gIGJpYXM/OiBUZW5zb3J8VGVuc29yTGlrZSxcbiAgYWN0aXZhdGlvbj86IEFjdGl2YXRpb24sXG4gIHByZWx1QWN0aXZhdGlvbldlaWdodHM/OiBUZW5zb3IsXG4gIGxlYWt5cmVsdUFscGhhPzogbnVtYmVyXG59KTogVCB7XG4gIGFjdGl2YXRpb24gPSBhY3RpdmF0aW9uIHx8ICdsaW5lYXInO1xuXG4gIGlmIChzaG91bGRGdXNlKEVOR0lORS5zdGF0ZS5ncmFkaWVudERlcHRoLCBhY3RpdmF0aW9uKSA9PT0gZmFsc2UpIHtcbiAgICAvLyBUT0RPOiBUcmFuc3Bvc2UgYmlhcyBhbmQgcHJlbHVBY3RpdmF0aW9uV2VpZ2h0cyBwcm9wZXJseSBmb3IgTkNIV1xuICAgIC8vIGZvcm1hdCBiZWZvcmUgY29tcHV0YXRpb24uXG4gICAgdXRpbC5hc3NlcnQoXG4gICAgICAgIGRhdGFGb3JtYXQgPT09ICdOSFdDJyxcbiAgICAgICAgKCkgPT4gYEVycm9yIGluIGZ1c2VkIGNvbnYyZDogZ290IGRhdGFGb3JtYXQgb2YgJHtkYXRhRm9ybWF0fSBidXQgYCArXG4gICAgICAgICAgICBgb25seSBOSFdDIGlzIGN1cnJlbnRseSBzdXBwb3J0ZWQgZm9yIHRoZSBjYXNlIG9mIGdyYWRpZW50IGRlcHRoIGAgK1xuICAgICAgICAgICAgYGlzIDAgYW5kIHRoZSBhY3RpdmF0aW9uIGlzIG5vdCBsaW5lYXIuYCk7XG5cbiAgICBsZXQgcmVzdWx0ID0gdW5mdXNlZENvbnYyZChcbiAgICAgICAgeCwgZmlsdGVyLCBzdHJpZGVzLCBwYWQsIGRhdGFGb3JtYXQsIGRpbGF0aW9ucywgZGltUm91bmRpbmdNb2RlKTtcbiAgICBpZiAoYmlhcyAhPSBudWxsKSB7XG4gICAgICByZXN1bHQgPSBhZGQocmVzdWx0LCBiaWFzKTtcbiAgICB9XG5cbiAgICByZXR1cm4gYXBwbHlBY3RpdmF0aW9uKFxuICAgICAgICAgICAgICAgcmVzdWx0LCBhY3RpdmF0aW9uLCBwcmVsdUFjdGl2YXRpb25XZWlnaHRzLCBsZWFreXJlbHVBbHBoYSkgYXMgVDtcbiAgfVxuXG4gIGNvbnN0ICR4ID0gY29udmVydFRvVGVuc29yKHgsICd4JywgJ2NvbnYyZCcsICdmbG9hdDMyJyk7XG4gIGNvbnN0ICRmaWx0ZXIgPSBjb252ZXJ0VG9UZW5zb3IoZmlsdGVyLCAnZmlsdGVyJywgJ2NvbnYyZCcsICdmbG9hdDMyJyk7XG5cbiAgbGV0IHg0RCA9ICR4IGFzIFRlbnNvcjREO1xuICBsZXQgcmVzaGFwZWRUbzREID0gZmFsc2U7XG5cbiAgaWYgKCR4LnJhbmsgPT09IDMpIHtcbiAgICByZXNoYXBlZFRvNEQgPSB0cnVlO1xuICAgIHg0RCA9IHJlc2hhcGUoJHgsIFsxLCAkeC5zaGFwZVswXSwgJHguc2hhcGVbMV0sICR4LnNoYXBlWzJdXSk7XG4gIH1cbiAgdXRpbC5hc3NlcnQoXG4gICAgICB4NEQucmFuayA9PT0gNCxcbiAgICAgICgpID0+IGBFcnJvciBpbiBmdXNlZCBjb252MmQ6IGlucHV0IG11c3QgYmUgcmFuayA0LCBidXQgZ290IHJhbmsgYCArXG4gICAgICAgICAgYCR7eDRELnJhbmt9LmApO1xuICB1dGlsLmFzc2VydChcbiAgICAgICRmaWx0ZXIucmFuayA9PT0gNCxcbiAgICAgICgpID0+IGBFcnJvciBpbiBmdXNlZCBjb252MmQ6IGZpbHRlciBtdXN0IGJlIHJhbmsgNCwgYnV0IGdvdCByYW5rIGAgK1xuICAgICAgICAgIGAkeyRmaWx0ZXIucmFua30uYCk7XG4gIGNvbnZfdXRpbC5jaGVja1BhZE9uRGltUm91bmRpbmdNb2RlKCdmdXNlZCBjb252MmQnLCBwYWQsIGRpbVJvdW5kaW5nTW9kZSk7XG4gIGNvbnN0IGlucHV0Q2hhbm5lbHMgPSBkYXRhRm9ybWF0ID09PSAnTkhXQycgPyB4NEQuc2hhcGVbM10gOiB4NEQuc2hhcGVbMV07XG4gIHV0aWwuYXNzZXJ0KFxuICAgICAgJGZpbHRlci5zaGFwZVsyXSA9PT0gaW5wdXRDaGFubmVscyxcbiAgICAgICgpID0+IGBFcnJvciBpbiBjb252MmQ6IGRlcHRoIG9mIGlucHV0ICgke2lucHV0Q2hhbm5lbHN9KSBtdXN0IG1hdGNoIGAgK1xuICAgICAgICAgIGBpbnB1dCBkZXB0aCBmb3IgZmlsdGVyICR7JGZpbHRlci5zaGFwZVsyXX0uYCk7XG4gIHV0aWwuYXNzZXJ0KFxuICAgICAgY29udl91dGlsLmVpdGhlclN0cmlkZXNPckRpbGF0aW9uc0FyZU9uZShzdHJpZGVzLCBkaWxhdGlvbnMpLFxuICAgICAgKCkgPT4gJ0Vycm9yIGluIGNvbnYyRDogRWl0aGVyIHN0cmlkZXMgb3IgZGlsYXRpb25zIG11c3QgYmUgMS4gJyArXG4gICAgICAgICAgYEdvdCBzdHJpZGVzICR7c3RyaWRlc30gYW5kIGRpbGF0aW9ucyAnJHtkaWxhdGlvbnN9J2ApO1xuXG4gIGNvbnN0IGNvbnZJbmZvID0gY29udl91dGlsLmNvbXB1dGVDb252MkRJbmZvKFxuICAgICAgeDRELnNoYXBlLCAkZmlsdGVyLnNoYXBlLCBzdHJpZGVzLCBkaWxhdGlvbnMsIHBhZCwgZGltUm91bmRpbmdNb2RlKTtcblxuICBsZXQgJGJpYXM6IFRlbnNvcjtcbiAgaWYgKGJpYXMgIT0gbnVsbCkge1xuICAgICRiaWFzID0gY29udmVydFRvVGVuc29yKGJpYXMsICdiaWFzJywgJ2Z1c2VkIGNvbnYyZCcpO1xuICAgIFskYmlhc10gPSBtYWtlVHlwZXNNYXRjaCgkYmlhcywgJHgpO1xuXG4gICAgLy8gQWNjb3JkaW5nIHRvIFRlbnNvckZsb3csIHRoZSBiaWFzIGlzIHN1cHBvc2VkIGJlIGEgMS1EIHRlbnNvciBvciBhXG4gICAgLy8gc2NhbGFyLlxuICAgIC8vXG4gICAgLy8gMy1EIG9yIDQtRCBiaWFzIGlzIG5vdCBkaXNhYmxlZCBmb3IgTkhXQyBmb3JtYXQsIGJlY2F1c2UgdGhleSBhcmVcbiAgICAvLyBjdXJyZW50bHkgYmVpbmcgdXNlZCBpbiBzb21lIGNhc2VzLiBGb3IgZXhhbXBsZW0gaW4gb3VyIGNvZGUgYmFzZSxcbiAgICAvLyBodHRwczovL2dpdGh1Yi5jb20vdGVuc29yZmxvdy90ZmpzL2Jsb2IvYjUzYmQ0N2U4ODAzNjdhZTU3NDkzZjBlYTYyOGFiYWYwOGRiMmQ1ZC90ZmpzLWNvcmUvc3JjL29wcy9mdXNlZC9mdXNlZF9jb252MmRfdGVzdC50cyNMMTk3Mi5cbiAgICBpZiAoZGF0YUZvcm1hdCA9PT0gJ05IV0MnKSB7XG4gICAgICBicm9hZGNhc3RfdXRpbC5hc3NlcnRBbmRHZXRCcm9hZGNhc3RTaGFwZShjb252SW5mby5vdXRTaGFwZSwgJGJpYXMuc2hhcGUpO1xuICAgIH0gZWxzZSB7XG4gICAgICB1dGlsLmFzc2VydChcbiAgICAgICAgICAkYmlhcy5zaGFwZS5sZW5ndGggPD0gMSxcbiAgICAgICAgICAoKSA9PiBgRXJyb3IgaW4gZnVzZWQgY29udjJkOiBvbmx5IHN1cHBvcnRzIHNjYWxhciBvciAxLUQgVGVuc29yIGAgK1xuICAgICAgICAgICAgICBgYmlhcyBmb3IgTkNIVyBmb3JtYXQgYnV0IGdvdCB0aGUgYmlhcyBvZiBgICtcbiAgICAgICAgICAgICAgYHJhbmstJHskYmlhcy5zaGFwZS5sZW5ndGh9LmApO1xuXG4gICAgICB1dGlsLmFzc2VydChcbiAgICAgICAgICAkYmlhcy5zaGFwZS5sZW5ndGggPT09IDAgfHwgJGJpYXMuc2hhcGVbMF0gPT09IGNvbnZJbmZvLm91dENoYW5uZWxzIHx8XG4gICAgICAgICAgICAgICRiaWFzLnNoYXBlWzBdID09PSAxLFxuICAgICAgICAgICgpID0+IGBFcnJvciBpbiBmdXNlZCBjb252MmQ6IGJpYXMgc2hhcGUgKCR7JGJpYXMuc2hhcGV9KSBpcyBub3QgYCArXG4gICAgICAgICAgICAgIGBjb21wYXRpYmxlIHdpdGggdGhlIG51bWJlciBvZiBvdXRwdXQgY2hhbm5lbHMgYCArXG4gICAgICAgICAgICAgIGAoJHtjb252SW5mby5vdXRDaGFubmVsc30pYCk7XG4gICAgfVxuICB9XG5cbiAgbGV0ICRwcmVsdUFjdGl2YXRpb25XZWlnaHRzOiBUZW5zb3I7XG4gIGlmIChwcmVsdUFjdGl2YXRpb25XZWlnaHRzICE9IG51bGwpIHtcbiAgICAvLyBQUmVMVSdzIGFjdGl2YXRpb24gd2VpZ2h0cyBjb3VsZCBiZSBhIHNjYWxhciwgYSAxLUQgdGVuc29yIG9yIGEgMy1EXG4gICAgLy8gdGVuc29yLlxuICAgIGNvbnN0IGFscGhhU2hhcGUgPSBwcmVsdUFjdGl2YXRpb25XZWlnaHRzLnNoYXBlO1xuICAgIHV0aWwuYXNzZXJ0KFxuICAgICAgICBhbHBoYVNoYXBlLmxlbmd0aCA8PSAxIHx8IGFscGhhU2hhcGUubGVuZ3RoID09PSAzLFxuICAgICAgICAoKSA9PiBgRXJyb3IgaW4gZnVzZWQgY29udjJkOiBvbmx5IHN1cHBvcnRzIHNjYWxhciwgMS1EIFRlbnNvciBvciBgICtcbiAgICAgICAgICAgIGAzLUQgVGVuc29yIFBSZUxVIGFjdGl2YXRpb24gd2VpZ2h0cyBidXQgZ290IGEgdGVuc29yIG9mIGAgK1xuICAgICAgICAgICAgYHJhbmstJHthbHBoYVNoYXBlLmxlbmd0aH0uYCk7XG5cbiAgICBpZiAoYWxwaGFTaGFwZS5sZW5ndGggPT09IDEpIHtcbiAgICAgIC8vIFdoZXRoZXIgdGhlIGRhdGEgZm9ybWF0IGlzIE5DSFcgb3IgTkhXQywgdGhlIDEtRCBQUmVMVSBhY3RpdmF0aW9uXG4gICAgICAvLyB3ZWlnaHRzIHRlbnNvciBzaG91bGQgYmUgYWxpZ25lZCB3aXRoIHRoZSBvdXRwdXQgY2hhbm5lbHMgb2YgY29udjJkXG4gICAgICAvLyByZXN1bHQuXG4gICAgICB1dGlsLmFzc2VydChcbiAgICAgICAgICBhbHBoYVNoYXBlWzBdID09PSAxIHx8IGFscGhhU2hhcGVbMF0gPT09IGNvbnZJbmZvLm91dENoYW5uZWxzLFxuICAgICAgICAgICgpID0+IGBFcnJvciBpbiBmdXNlZCBjb252MmQ6IFBSZUxVIGFjdGl2YXRpb24gd2VpZ2h0cyBgICtcbiAgICAgICAgICAgICAgYCgke2FscGhhU2hhcGV9KSBpcyBub3QgY29tcGF0aWJsZSB3aXRoIHRoZSBudW1iZXIgb2Ygb3V0cHV0IGAgK1xuICAgICAgICAgICAgICBgY2hhbm5lbHMgKCR7Y29udkluZm8ub3V0Q2hhbm5lbHN9KS5gKTtcbiAgICB9IGVsc2UgaWYgKGFscGhhU2hhcGUubGVuZ3RoID09PSAzKSB7XG4gICAgICAvLyBXaGV0aGVyIHRoZSBkYXRhIGZvcm1hdCBpcyBOQ0hXIG9yIE5IV0MsIHRoZSBQUmVMVSBhY3RpdmF0aW9uIHdlaWdodHNcbiAgICAgIC8vIHRlbnNvciBzaG91bGQgaGFzIHRoZSBjb21wYXRpYmxlIHNoYXBlIHdpdGggdGhlIHJlc3VsdCBvZiBjb252MmQuXG4gICAgICB0cnkge1xuICAgICAgICBicm9hZGNhc3RfdXRpbC5hc3NlcnRBbmRHZXRCcm9hZGNhc3RTaGFwZShcbiAgICAgICAgICAgIGFscGhhU2hhcGUsIGNvbnZJbmZvLm91dFNoYXBlKTtcbiAgICAgIH0gY2F0Y2ggKGUpIHtcbiAgICAgICAgY29uc3QgZXJyTXNnID1cbiAgICAgICAgICAgIGBFcnJvciBpbiBmdXNlZCBjb252MmQ6IFBSZUxVIGFjdGl2YXRpb24gd2VpZ2h0cyAoJHthbHBoYVNoYXBlfSkgYCArXG4gICAgICAgICAgICBgaXMgbm90IGNvbXBhdGlibGUgd2l0aCB0aGUgb3V0cHV0IHNoYXBlIG9mIHRoZSBjb252MmQgYCArXG4gICAgICAgICAgICBgKCR7Y29udkluZm8ub3V0U2hhcGV9KS5gO1xuICAgICAgICB0aHJvdyBFcnJvcihlcnJNc2cpO1xuICAgICAgfVxuICAgIH1cblxuICAgICRwcmVsdUFjdGl2YXRpb25XZWlnaHRzID0gY29udmVydFRvVGVuc29yKFxuICAgICAgICBwcmVsdUFjdGl2YXRpb25XZWlnaHRzLCAncHJlbHUgd2VpZ2h0cycsICdmdXNlZCBjb252MmQnKTtcbiAgfVxuXG4gIGNvbnN0IGdyYWQgPSAoZHk6IFRlbnNvcjRELCBzYXZlZDogVGVuc29yW10pID0+IHtcbiAgICB1dGlsLmFzc2VydChcbiAgICAgICAgZGF0YUZvcm1hdCA9PT0gJ05IV0MnLFxuICAgICAgICAoKSA9PiBgRXJyb3IgaW4gZ3JhZGllbnQgb2YgZnVzZWQgY29udjJEOiBnb3QgZGF0YUZvcm1hdCBvZiAke1xuICAgICAgICAgICAgZGF0YUZvcm1hdH0gYnV0IG9ubHkgTkhXQyBpcyBjdXJyZW50bHkgc3VwcG9ydGVkLmApO1xuXG4gICAgY29uc3QgWyRmaWx0ZXIsIHg0RCwgeSwgJGJpYXNdID1cbiAgICAgICAgc2F2ZWQgYXMgW1RlbnNvcjRELCBUZW5zb3I0RCwgVGVuc29yNEQsIFRlbnNvcl07XG5cbiAgICBjb25zdCBkeUFjdGl2YXRpb24gPSBnZXRGdXNlZER5QWN0aXZhdGlvbihkeSwgeSwgYWN0aXZhdGlvbikgYXMgVGVuc29yNEQ7XG5cbiAgICB1dGlsLmFzc2VydChcbiAgICAgICAgY29udl91dGlsLnR1cGxlVmFsdWVzQXJlT25lKGRpbGF0aW9ucyksXG4gICAgICAgICgpID0+ICdFcnJvciBpbiBncmFkaWVudCBvZiBmdXNlZCBjb252MkQ6ICcgK1xuICAgICAgICAgICAgYGRpbGF0aW9uIHJhdGVzIGdyZWF0ZXIgdGhhbiAxIGAgK1xuICAgICAgICAgICAgYGFyZSBub3QgeWV0IHN1cHBvcnRlZCBpbiBncmFkaWVudHMuIEdvdCBkaWxhdGlvbnMgJyR7ZGlsYXRpb25zfSdgKTtcblxuICAgIGNvbnN0IHhEZXIgPVxuICAgICAgICBjb252MkRCYWNrcHJvcElucHV0KHg0RC5zaGFwZSwgZHlBY3RpdmF0aW9uLCAkZmlsdGVyLCBzdHJpZGVzLCBwYWQpO1xuICAgIGNvbnN0IGZpbHRlckRlciA9XG4gICAgICAgIGNvbnYyREJhY2twcm9wRmlsdGVyKHg0RCwgZHlBY3RpdmF0aW9uLCAkZmlsdGVyLnNoYXBlLCBzdHJpZGVzLCBwYWQpO1xuICAgIGNvbnN0IGRlcjogVGVuc29yW10gPSBbeERlciwgZmlsdGVyRGVyXTtcblxuICAgIGlmICgkYmlhcyAhPSBudWxsKSB7XG4gICAgICBjb25zdCBiaWFzRGVyID0gZ2V0RnVzZWRCaWFzR3JhZGllbnQoJGJpYXMsIGR5QWN0aXZhdGlvbik7XG4gICAgICBkZXIucHVzaChiaWFzRGVyKTtcbiAgICB9XG4gICAgcmV0dXJuIGRlcjtcbiAgfTtcblxuICBjb25zdCBpbnB1dHM6IEZ1c2VkQ29udjJESW5wdXRzID0ge1xuICAgIHg6IHg0RCxcbiAgICBmaWx0ZXI6ICRmaWx0ZXIsXG4gICAgYmlhczogJGJpYXMsXG4gICAgcHJlbHVBY3RpdmF0aW9uV2VpZ2h0czogJHByZWx1QWN0aXZhdGlvbldlaWdodHNcbiAgfTtcblxuICBjb25zdCBhdHRyczogRnVzZWRDb252MkRBdHRycyA9IHtcbiAgICBzdHJpZGVzLFxuICAgIHBhZCxcbiAgICBkYXRhRm9ybWF0LFxuICAgIGRpbGF0aW9ucyxcbiAgICBkaW1Sb3VuZGluZ01vZGUsXG4gICAgYWN0aXZhdGlvbixcbiAgICBsZWFreXJlbHVBbHBoYVxuICB9O1xuXG4gIC8vIERlcGVuZGluZyBvbiB0aGUgdGhlIHBhcmFtcyBwYXNzZWQgaW4gd2Ugd2lsbCBoYXZlIGRpZmZlcmVudCBudW1iZXIgb2ZcbiAgLy8gaW5wdXRzIGFuZCB0aHVzIGEgYSBkaWZmZXJlbnQgbnVtYmVyIG9mIGVsZW1lbnRzIGluIHRoZSBncmFkaWVudC5cbiAgaWYgKGJpYXMgPT0gbnVsbCkge1xuICAgIGNvbnN0IGN1c3RvbU9wID1cbiAgICAgICAgY3VzdG9tR3JhZCgoeDREOiBUZW5zb3I0RCwgZmlsdGVyOiBUZW5zb3I0RCwgc2F2ZTogR3JhZFNhdmVGdW5jKSA9PiB7XG4gICAgICAgICAgbGV0IHJlczogVGVuc29yNER8VGVuc29yM0QgPVxuICAgICAgICAgICAgICAvLyB0c2xpbnQ6ZGlzYWJsZS1uZXh0LWxpbmU6IG5vLXVubmVjZXNzYXJ5LXR5cGUtYXNzZXJ0aW9uXG4gICAgICAgICAgICAgIEVOR0lORS5ydW5LZXJuZWwoXG4gICAgICAgICAgICAgICAgICBGdXNlZENvbnYyRCwgaW5wdXRzIGFzIHVua25vd24gYXMgTmFtZWRUZW5zb3JNYXAsXG4gICAgICAgICAgICAgICAgICBhdHRycyBhcyB1bmtub3duIGFzIE5hbWVkQXR0ck1hcCk7XG5cbiAgICAgICAgICBzYXZlKFtmaWx0ZXIsIHg0RCwgcmVzXSk7XG5cbiAgICAgICAgICBpZiAocmVzaGFwZWRUbzREKSB7XG4gICAgICAgICAgICAvLyB0c2xpbnQ6ZGlzYWJsZS1uZXh0LWxpbmU6IG5vLXVubmVjZXNzYXJ5LXR5cGUtYXNzZXJ0aW9uXG4gICAgICAgICAgICByZXMgPSByZXNoYXBlKHJlcywgW3Jlcy5zaGFwZVsxXSwgcmVzLnNoYXBlWzJdLCByZXMuc2hhcGVbM11dKSBhc1xuICAgICAgICAgICAgICAgIFRlbnNvcjNEO1xuICAgICAgICAgIH1cblxuICAgICAgICAgIHJldHVybiB7dmFsdWU6IHJlcywgZ3JhZEZ1bmM6IGdyYWR9O1xuICAgICAgICB9KTtcbiAgICByZXR1cm4gY3VzdG9tT3AoeDRELCAkZmlsdGVyKSBhcyBUO1xuICB9IGVsc2Uge1xuICAgIGNvbnN0IGN1c3RvbU9wV2l0aEJpYXMgPSBjdXN0b21HcmFkKFxuICAgICAgICAoeDREOiBUZW5zb3I0RCwgZmlsdGVyOiBUZW5zb3I0RCwgYmlhczogVGVuc29yLCBzYXZlOiBHcmFkU2F2ZUZ1bmMpID0+IHtcbiAgICAgICAgICBsZXQgcmVzOiBUZW5zb3I0RHxUZW5zb3IzRCA9IEVOR0lORS5ydW5LZXJuZWwoXG4gICAgICAgICAgICAgIEZ1c2VkQ29udjJELCBpbnB1dHMgYXMgdW5rbm93biBhcyBOYW1lZFRlbnNvck1hcCxcbiAgICAgICAgICAgICAgYXR0cnMgYXMgdW5rbm93biBhcyBOYW1lZEF0dHJNYXApO1xuXG4gICAgICAgICAgc2F2ZShbZmlsdGVyLCB4NEQsIHJlcywgYmlhc10pO1xuXG4gICAgICAgICAgaWYgKHJlc2hhcGVkVG80RCkge1xuICAgICAgICAgICAgLy8gdHNsaW50OmRpc2FibGUtbmV4dC1saW5lOiBuby11bm5lY2Vzc2FyeS10eXBlLWFzc2VydGlvblxuICAgICAgICAgICAgcmVzID0gcmVzaGFwZShyZXMsIFtyZXMuc2hhcGVbMV0sIHJlcy5zaGFwZVsyXSwgcmVzLnNoYXBlWzNdXSkgYXNcbiAgICAgICAgICAgICAgICBUZW5zb3IzRDtcbiAgICAgICAgICB9XG5cbiAgICAgICAgICByZXR1cm4ge3ZhbHVlOiByZXMsIGdyYWRGdW5jOiBncmFkfTtcbiAgICAgICAgfSk7XG5cbiAgICByZXR1cm4gY3VzdG9tT3BXaXRoQmlhcyh4NEQsICRmaWx0ZXIsICRiaWFzKSBhcyBUO1xuICB9XG59XG5leHBvcnQgY29uc3QgY29udjJkID0gLyogQF9fUFVSRV9fICovIG9wKHtmdXNlZENvbnYyZF99KTtcbiJdfQ==