gx
chenyc
2025-02-12 ea42ff3ebee1eeb3fb29423aa848a249441db81c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
/**
 * @license
 * Copyright 2019 Google LLC. All Rights Reserved.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 * =============================================================================
 */
import { ENGINE } from '../../engine';
import { customGrad } from '../../gradients';
import { FusedDepthwiseConv2D } from '../../kernel_names';
import { makeTypesMatch } from '../../tensor_util';
import { convertToTensor } from '../../tensor_util_env';
import * as util from '../../util';
import { add } from '../add';
import * as broadcast_util from '../broadcast_util';
import * as conv_util from '../conv_util';
import { depthwiseConv2d as unfusedDepthwiseConv2d } from '../depthwise_conv2d';
import { depthwiseConv2dNativeBackpropFilter } from '../depthwise_conv2d_native_backprop_filter';
import { depthwiseConv2dNativeBackpropInput } from '../depthwise_conv2d_native_backprop_input';
import { applyActivation, getFusedBiasGradient, getFusedDyActivation, shouldFuse } from '../fused_util';
import { op } from '../operation';
import { reshape } from '../reshape';
/**
 * Computes depthwise 2D convolution, optionally fused with adding a
 * bias and applying an activation.
 *
 * Given a 4D `input` array and a `filter` array of shape
 * `[filterHeight, filterWidth, inChannels, channelMultiplier]` containing
 * `inChannels` convolutional filters of depth 1, this op applies a
 * different filter to each input channel (expanding from 1 channel to
 * `channelMultiplier` channels for each), then concatenates the results
 * together. The output has `inChannels * channelMultiplier` channels.
 *
 * See
 * [https://www.tensorflow.org/api_docs/python/tf/nn/depthwise_conv2d](
 *     https://www.tensorflow.org/api_docs/python/tf/nn/depthwise_conv2d)
 * for more details.
 *
 * @param obj An object with the following properties:
 * @param x The input tensor, of rank 4 or rank 3, of shape
 *     `[batch, height, width, inChannels]`. If rank 3, batch of 1 is
 * assumed.
 * @param filter The filter tensor, rank 4, of shape
 *     `[filterHeight, filterWidth, inChannels, channelMultiplier]`.
 * @param strides The strides of the convolution: `[strideHeight,
 * strideWidth]`. If strides is a single number, then `strideHeight ==
 * strideWidth`.
 * @param pad The type of padding algorithm.
 *   - `same` and stride 1: output will be of same size as input,
 *       regardless of filter size.
 *   - `valid`: output will be smaller than input if filter is larger
 *       than 1x1.
 *   - For more info, see this guide:
 *     [https://www.tensorflow.org/api_docs/python/tf/nn/convolution](
 *          https://www.tensorflow.org/api_docs/python/tf/nn/convolution)
 * @param dilations The dilation rates: `[dilationHeight, dilationWidth]`
 *     in which we sample input values across the height and width dimensions
 *     in atrous convolution. Defaults to `[1, 1]`. If `rate` is a single
 *     number, then `dilationHeight == dilationWidth`. If it is greater than
 *     1, then all values of `strides` must be 1.
 * @param dataFormat: An optional string from: "NHWC", "NCHW". Defaults to
 *     "NHWC". Specify the data format of the input and output data. With the
 *     default format "NHWC", the data is stored in the order of: [batch,
 *     height, width, channels]. Only "NHWC" is currently supported.
 * @param dimRoundingMode A string from: 'ceil', 'round', 'floor'. If none is
 *     provided, it will default to truncate.
 * @param bias Tensor to be added to the result.
 * @param activation Name of activation kernel (defaults to `linear`).
 * @param preluActivationWeights Tensor of prelu weights to be applied as part
 *     of a `prelu` activation, typically the same shape as `x`.
 * @param leakyreluAlpha Optional. Alpha to be applied as part of a `leakyrelu`
 *     activation.
 */
function fusedDepthwiseConv2d_({ x, filter, strides, pad, dataFormat = 'NHWC', dilations = [1, 1], dimRoundingMode, bias, activation = 'linear', preluActivationWeights, leakyreluAlpha }) {
    if (shouldFuse(ENGINE.state.gradientDepth, activation) === false) {
        let result = unfusedDepthwiseConv2d(x, filter, strides, pad, dataFormat, dilations, dimRoundingMode);
        if (bias != null) {
            result = add(result, bias);
        }
        return applyActivation(result, activation, preluActivationWeights, leakyreluAlpha);
    }
    const $x = convertToTensor(x, 'x', 'depthwiseConv2d', 'float32');
    const $filter = convertToTensor(filter, 'filter', 'depthwiseConv2d', 'float32');
    let x4D = $x;
    let reshapedTo4D = false;
    if ($x.rank === 3) {
        reshapedTo4D = true;
        x4D = reshape($x, [1, $x.shape[0], $x.shape[1], $x.shape[2]]);
    }
    util.assert(x4D.rank === 4, () => `Error in fused depthwiseConv2d: input must be rank 4, but got ` +
        `rank ${x4D.rank}.`);
    util.assert($filter.rank === 4, () => `Error in fused depthwiseConv2d: filter must be rank 4, ` +
        `but got rank ${$filter.rank}.`);
    util.assert(x4D.shape[3] === $filter.shape[2], () => `Error in fused depthwiseConv2d: number of input channels ` +
        `(${x4D.shape[3]}) must match the inChannels dimension in ` +
        `filter ${$filter.shape[2]}.`);
    if (dilations == null) {
        dilations = [1, 1];
    }
    util.assert(conv_util.eitherStridesOrDilationsAreOne(strides, dilations), () => 'Error in fused depthwiseConv2d: Either strides or dilations must ' +
        `be 1. Got strides ${strides} and dilations '${dilations}'`);
    conv_util.checkPadOnDimRoundingMode('fused depthwiseConv2d', pad, dimRoundingMode);
    const convInfo = conv_util.computeConv2DInfo(x4D.shape, $filter.shape, strides, dilations, pad, dimRoundingMode, true /* depthwise */);
    let $bias;
    if (bias != null) {
        $bias = convertToTensor(bias, 'bias', 'fused conv2d');
        [$bias] = makeTypesMatch($bias, $x);
        broadcast_util.assertAndGetBroadcastShape(convInfo.outShape, $bias.shape);
    }
    let $preluActivationWeights;
    if (preluActivationWeights != null) {
        $preluActivationWeights = convertToTensor(preluActivationWeights, 'prelu weights', 'fused depthwiseConv2d');
    }
    const grad = (dy, saved) => {
        util.assert(conv_util.tupleValuesAreOne(dilations), () => 'Error in gradient of fused depthwiseConv2d: dilation rates ' +
            `greater than 1 are not yet supported. Got dilations ` +
            `'${dilations}'`);
        const [$filter, x4D, y, bias] = saved;
        const dyActivation = getFusedDyActivation(dy, y, activation);
        const xDer = depthwiseConv2dNativeBackpropInput(x4D.shape, dyActivation, $filter, strides, pad, dilations, dimRoundingMode);
        const filterDer = depthwiseConv2dNativeBackpropFilter(x4D, dyActivation, $filter.shape, strides, pad, dilations, dimRoundingMode);
        if (bias != null) {
            const biasDer = getFusedBiasGradient($bias, dyActivation);
            return [xDer, filterDer, biasDer];
        }
        return [xDer, filterDer];
    };
    const inputs = {
        x: x4D,
        filter: $filter,
        bias: $bias,
        preluActivationWeights: $preluActivationWeights
    };
    const attrs = {
        strides,
        pad,
        dataFormat,
        dilations,
        dimRoundingMode,
        activation,
        leakyreluAlpha
    };
    // Depending on the the params passed in we will have different number of
    // inputs and thus a a different number of elements in the gradient.
    if (bias == null) {
        const customOp = customGrad((x4D, filter, save) => {
            // tslint:disable-next-line: no-unnecessary-type-assertion
            let res = ENGINE.runKernel(FusedDepthwiseConv2D, inputs, attrs);
            save([filter, x4D, res]);
            if (reshapedTo4D) {
                // tslint:disable-next-line: no-unnecessary-type-assertion
                res = reshape(res, [res.shape[1], res.shape[2], res.shape[3]]);
            }
            return { value: res, gradFunc: grad };
        });
        return customOp(x4D, $filter);
    }
    else {
        const customOpWithBias = customGrad((x4D, filter, bias, save) => {
            // tslint:disable-next-line: no-unnecessary-type-assertion
            let res = ENGINE.runKernel(FusedDepthwiseConv2D, inputs, attrs);
            save([filter, x4D, res, bias]);
            if (reshapedTo4D) {
                // tslint:disable-next-line: no-unnecessary-type-assertion
                res = reshape(res, [res.shape[1], res.shape[2], res.shape[3]]);
            }
            return { value: res, gradFunc: grad };
        });
        return customOpWithBias(x4D, $filter, $bias);
    }
}
export const depthwiseConv2d = /* @__PURE__ */ op({ fusedDepthwiseConv2d_ });
//# sourceMappingURL=data:application/json;base64,eyJ2ZXJzaW9uIjozLCJmaWxlIjoiZGVwdGh3aXNlX2NvbnYyZC5qcyIsInNvdXJjZVJvb3QiOiIiLCJzb3VyY2VzIjpbIi4uLy4uLy4uLy4uLy4uLy4uLy4uL3RmanMtY29yZS9zcmMvb3BzL2Z1c2VkL2RlcHRod2lzZV9jb252MmQudHMiXSwibmFtZXMiOltdLCJtYXBwaW5ncyI6IkFBQUE7Ozs7Ozs7Ozs7Ozs7OztHQWVHO0FBRUgsT0FBTyxFQUFDLE1BQU0sRUFBQyxNQUFNLGNBQWMsQ0FBQztBQUNwQyxPQUFPLEVBQUMsVUFBVSxFQUFDLE1BQU0saUJBQWlCLENBQUM7QUFDM0MsT0FBTyxFQUFDLG9CQUFvQixFQUF3RCxNQUFNLG9CQUFvQixDQUFDO0FBSS9HLE9BQU8sRUFBQyxjQUFjLEVBQUMsTUFBTSxtQkFBbUIsQ0FBQztBQUNqRCxPQUFPLEVBQUMsZUFBZSxFQUFDLE1BQU0sdUJBQXVCLENBQUM7QUFFdEQsT0FBTyxLQUFLLElBQUksTUFBTSxZQUFZLENBQUM7QUFDbkMsT0FBTyxFQUFDLEdBQUcsRUFBQyxNQUFNLFFBQVEsQ0FBQztBQUMzQixPQUFPLEtBQUssY0FBYyxNQUFNLG1CQUFtQixDQUFDO0FBQ3BELE9BQU8sS0FBSyxTQUFTLE1BQU0sY0FBYyxDQUFDO0FBQzFDLE9BQU8sRUFBQyxlQUFlLElBQUksc0JBQXNCLEVBQUMsTUFBTSxxQkFBcUIsQ0FBQztBQUM5RSxPQUFPLEVBQUMsbUNBQW1DLEVBQUMsTUFBTSw0Q0FBNEMsQ0FBQztBQUMvRixPQUFPLEVBQUMsa0NBQWtDLEVBQUMsTUFBTSwyQ0FBMkMsQ0FBQztBQUU3RixPQUFPLEVBQUMsZUFBZSxFQUFFLG9CQUFvQixFQUFFLG9CQUFvQixFQUFFLFVBQVUsRUFBQyxNQUFNLGVBQWUsQ0FBQztBQUN0RyxPQUFPLEVBQUMsRUFBRSxFQUFDLE1BQU0sY0FBYyxDQUFDO0FBQ2hDLE9BQU8sRUFBQyxPQUFPLEVBQUMsTUFBTSxZQUFZLENBQUM7QUFFbkM7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7O0dBa0RHO0FBQ0gsU0FBUyxxQkFBcUIsQ0FBOEIsRUFDMUQsQ0FBQyxFQUNELE1BQU0sRUFDTixPQUFPLEVBQ1AsR0FBRyxFQUNILFVBQVUsR0FBRyxNQUFNLEVBQ25CLFNBQVMsR0FBRyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFDbEIsZUFBZSxFQUNmLElBQUksRUFDSixVQUFVLEdBQUcsUUFBUSxFQUNyQixzQkFBc0IsRUFDdEIsY0FBYyxFQWFmO0lBQ0MsSUFBSSxVQUFVLENBQUMsTUFBTSxDQUFDLEtBQUssQ0FBQyxhQUFhLEVBQUUsVUFBVSxDQUFDLEtBQUssS0FBSyxFQUFFO1FBQ2hFLElBQUksTUFBTSxHQUFHLHNCQUFzQixDQUMvQixDQUFDLEVBQUUsTUFBTSxFQUFFLE9BQU8sRUFBRSxHQUFHLEVBQUUsVUFBVSxFQUFFLFNBQVMsRUFBRSxlQUFlLENBQUMsQ0FBQztRQUNyRSxJQUFJLElBQUksSUFBSSxJQUFJLEVBQUU7WUFDaEIsTUFBTSxHQUFHLEdBQUcsQ0FBQyxNQUFNLEVBQUUsSUFBSSxDQUFDLENBQUM7U0FDNUI7UUFFRCxPQUFPLGVBQWUsQ0FDWCxNQUFNLEVBQUUsVUFBVSxFQUFFLHNCQUFzQixFQUFFLGNBQWMsQ0FBTSxDQUFDO0tBQzdFO0lBRUQsTUFBTSxFQUFFLEdBQUcsZUFBZSxDQUFDLENBQUMsRUFBRSxHQUFHLEVBQUUsaUJBQWlCLEVBQUUsU0FBUyxDQUFDLENBQUM7SUFDakUsTUFBTSxPQUFPLEdBQ1QsZUFBZSxDQUFDLE1BQU0sRUFBRSxRQUFRLEVBQUUsaUJBQWlCLEVBQUUsU0FBUyxDQUFDLENBQUM7SUFFcEUsSUFBSSxHQUFHLEdBQUcsRUFBYyxDQUFDO0lBQ3pCLElBQUksWUFBWSxHQUFHLEtBQUssQ0FBQztJQUN6QixJQUFJLEVBQUUsQ0FBQyxJQUFJLEtBQUssQ0FBQyxFQUFFO1FBQ2pCLFlBQVksR0FBRyxJQUFJLENBQUM7UUFDcEIsR0FBRyxHQUFHLE9BQU8sQ0FBQyxFQUFFLEVBQUUsQ0FBQyxDQUFDLEVBQUUsRUFBRSxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsRUFBRSxFQUFFLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxFQUFFLEVBQUUsQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO0tBQy9EO0lBQ0QsSUFBSSxDQUFDLE1BQU0sQ0FDUCxHQUFHLENBQUMsSUFBSSxLQUFLLENBQUMsRUFDZCxHQUFHLEVBQUUsQ0FBQyxnRUFBZ0U7UUFDbEUsUUFBUSxHQUFHLENBQUMsSUFBSSxHQUFHLENBQUMsQ0FBQztJQUM3QixJQUFJLENBQUMsTUFBTSxDQUNQLE9BQU8sQ0FBQyxJQUFJLEtBQUssQ0FBQyxFQUNsQixHQUFHLEVBQUUsQ0FBQyx5REFBeUQ7UUFDM0QsZ0JBQWdCLE9BQU8sQ0FBQyxJQUFJLEdBQUcsQ0FBQyxDQUFDO0lBQ3pDLElBQUksQ0FBQyxNQUFNLENBQ1AsR0FBRyxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsS0FBSyxPQUFPLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxFQUNqQyxHQUFHLEVBQUUsQ0FBQywyREFBMkQ7UUFDN0QsSUFBSSxHQUFHLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQywyQ0FBMkM7UUFDM0QsVUFBVSxPQUFPLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxHQUFHLENBQUMsQ0FBQztJQUN2QyxJQUFJLFNBQVMsSUFBSSxJQUFJLEVBQUU7UUFDckIsU0FBUyxHQUFHLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDO0tBQ3BCO0lBQ0QsSUFBSSxDQUFDLE1BQU0sQ0FDUCxTQUFTLENBQUMsOEJBQThCLENBQUMsT0FBTyxFQUFFLFNBQVMsQ0FBQyxFQUM1RCxHQUFHLEVBQUUsQ0FDRCxtRUFBbUU7UUFDbkUscUJBQXFCLE9BQU8sbUJBQW1CLFNBQVMsR0FBRyxDQUFDLENBQUM7SUFDckUsU0FBUyxDQUFDLHlCQUF5QixDQUMvQix1QkFBdUIsRUFBRSxHQUFHLEVBQUUsZUFBZSxDQUFDLENBQUM7SUFDbkQsTUFBTSxRQUFRLEdBQUcsU0FBUyxDQUFDLGlCQUFpQixDQUN4QyxHQUFHLENBQUMsS0FBSyxFQUFFLE9BQU8sQ0FBQyxLQUFLLEVBQUUsT0FBTyxFQUFFLFNBQVMsRUFBRSxHQUFHLEVBQUUsZUFBZSxFQUNsRSxJQUFJLENBQUMsZUFBZSxDQUFDLENBQUM7SUFFMUIsSUFBSSxLQUFhLENBQUM7SUFDbEIsSUFBSSxJQUFJLElBQUksSUFBSSxFQUFFO1FBQ2hCLEtBQUssR0FBRyxlQUFlLENBQUMsSUFBSSxFQUFFLE1BQU0sRUFBRSxjQUFjLENBQUMsQ0FBQztRQUN0RCxDQUFDLEtBQUssQ0FBQyxHQUFHLGNBQWMsQ0FBQyxLQUFLLEVBQUUsRUFBRSxDQUFDLENBQUM7UUFFcEMsY0FBYyxDQUFDLDBCQUEwQixDQUFDLFFBQVEsQ0FBQyxRQUFRLEVBQUUsS0FBSyxDQUFDLEtBQUssQ0FBQyxDQUFDO0tBQzNFO0lBRUQsSUFBSSx1QkFBK0IsQ0FBQztJQUNwQyxJQUFJLHNCQUFzQixJQUFJLElBQUksRUFBRTtRQUNsQyx1QkFBdUIsR0FBRyxlQUFlLENBQ3JDLHNCQUFzQixFQUFFLGVBQWUsRUFBRSx1QkFBdUIsQ0FBQyxDQUFDO0tBQ3ZFO0lBRUQsTUFBTSxJQUFJLEdBQUcsQ0FBQyxFQUFZLEVBQUUsS0FBZSxFQUFFLEVBQUU7UUFDN0MsSUFBSSxDQUFDLE1BQU0sQ0FDUCxTQUFTLENBQUMsaUJBQWlCLENBQUMsU0FBUyxDQUFDLEVBQ3RDLEdBQUcsRUFBRSxDQUFDLDZEQUE2RDtZQUMvRCxzREFBc0Q7WUFDdEQsSUFBSSxTQUFTLEdBQUcsQ0FBQyxDQUFDO1FBQzFCLE1BQU0sQ0FBQyxPQUFPLEVBQUUsR0FBRyxFQUFFLENBQUMsRUFBRSxJQUFJLENBQUMsR0FBRyxLQUFLLENBQUM7UUFFdEMsTUFBTSxZQUFZLEdBQUcsb0JBQW9CLENBQUMsRUFBRSxFQUFFLENBQUMsRUFBRSxVQUFVLENBQWEsQ0FBQztRQUV6RSxNQUFNLElBQUksR0FBRyxrQ0FBa0MsQ0FDMUMsR0FBZ0IsQ0FBQyxLQUFLLEVBQUUsWUFBWSxFQUFFLE9BQW1CLEVBQUUsT0FBTyxFQUNuRSxHQUFHLEVBQUUsU0FBUyxFQUFFLGVBQWUsQ0FBQyxDQUFDO1FBQ3JDLE1BQU0sU0FBUyxHQUFHLG1DQUFtQyxDQUNqRCxHQUFlLEVBQUUsWUFBWSxFQUFHLE9BQW9CLENBQUMsS0FBSyxFQUFFLE9BQU8sRUFDbkUsR0FBRyxFQUFFLFNBQVMsRUFBRSxlQUFlLENBQUMsQ0FBQztRQUVyQyxJQUFJLElBQUksSUFBSSxJQUFJLEVBQUU7WUFDaEIsTUFBTSxPQUFPLEdBQUcsb0JBQW9CLENBQUMsS0FBSyxFQUFFLFlBQVksQ0FBQyxDQUFDO1lBQzFELE9BQU8sQ0FBQyxJQUFJLEVBQUUsU0FBUyxFQUFFLE9BQU8sQ0FBQyxDQUFDO1NBQ25DO1FBQ0QsT0FBTyxDQUFDLElBQUksRUFBRSxTQUFTLENBQUMsQ0FBQztJQUMzQixDQUFDLENBQUM7SUFFRixNQUFNLE1BQU0sR0FBK0I7UUFDekMsQ0FBQyxFQUFFLEdBQUc7UUFDTixNQUFNLEVBQUUsT0FBTztRQUNmLElBQUksRUFBRSxLQUFLO1FBQ1gsc0JBQXNCLEVBQUUsdUJBQXVCO0tBQ2hELENBQUM7SUFDRixNQUFNLEtBQUssR0FBOEI7UUFDdkMsT0FBTztRQUNQLEdBQUc7UUFDSCxVQUFVO1FBQ1YsU0FBUztRQUNULGVBQWU7UUFDZixVQUFVO1FBQ1YsY0FBYztLQUNmLENBQUM7SUFFRix5RUFBeUU7SUFDekUsb0VBQW9FO0lBQ3BFLElBQUksSUFBSSxJQUFJLElBQUksRUFBRTtRQUNoQixNQUFNLFFBQVEsR0FDVixVQUFVLENBQUMsQ0FBQyxHQUFhLEVBQUUsTUFBZ0IsRUFBRSxJQUFrQixFQUFFLEVBQUU7WUFDakUsMERBQTBEO1lBQzFELElBQUksR0FBRyxHQUFzQixNQUFNLENBQUMsU0FBUyxDQUN6QyxvQkFBb0IsRUFBRSxNQUFtQyxFQUN6RCxLQUFnQyxDQUFDLENBQUM7WUFFdEMsSUFBSSxDQUFDLENBQUMsTUFBTSxFQUFFLEdBQUcsRUFBRSxHQUFHLENBQUMsQ0FBQyxDQUFDO1lBRXpCLElBQUksWUFBWSxFQUFFO2dCQUNoQiwwREFBMEQ7Z0JBQzFELEdBQUcsR0FBRyxPQUFPLENBQUMsR0FBRyxFQUFFLENBQUMsR0FBRyxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsRUFBRSxHQUFHLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxFQUFFLEdBQUcsQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FDakQsQ0FBQzthQUNkO1lBRUQsT0FBTyxFQUFDLEtBQUssRUFBRSxHQUFHLEVBQUUsUUFBUSxFQUFFLElBQUksRUFBQyxDQUFDO1FBQ3RDLENBQUMsQ0FBQyxDQUFDO1FBQ1AsT0FBTyxRQUFRLENBQUMsR0FBRyxFQUFFLE9BQU8sQ0FBTSxDQUFDO0tBQ3BDO1NBQU07UUFDTCxNQUFNLGdCQUFnQixHQUFHLFVBQVUsQ0FDL0IsQ0FBQyxHQUFhLEVBQUUsTUFBZ0IsRUFBRSxJQUFZLEVBQUUsSUFBa0IsRUFBRSxFQUFFO1lBQ3BFLDBEQUEwRDtZQUMxRCxJQUFJLEdBQUcsR0FBc0IsTUFBTSxDQUFDLFNBQVMsQ0FDekMsb0JBQW9CLEVBQUUsTUFBbUMsRUFDekQsS0FBZ0MsQ0FBQyxDQUFDO1lBRXRDLElBQUksQ0FBQyxDQUFDLE1BQU0sRUFBRSxHQUFHLEVBQUUsR0FBRyxFQUFFLElBQUksQ0FBQyxDQUFDLENBQUM7WUFFL0IsSUFBSSxZQUFZLEVBQUU7Z0JBQ2hCLDBEQUEwRDtnQkFDMUQsR0FBRyxHQUFHLE9BQU8sQ0FBQyxHQUFHLEVBQUUsQ0FBQyxHQUFHLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxFQUFFLEdBQUcsQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLEVBQUUsR0FBRyxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUNqRCxDQUFDO2FBQ2Q7WUFFRCxPQUFPLEVBQUMsS0FBSyxFQUFFLEdBQUcsRUFBRSxRQUFRLEVBQUUsSUFBSSxFQUFDLENBQUM7UUFDdEMsQ0FBQyxDQUFDLENBQUM7UUFFUCxPQUFPLGdCQUFnQixDQUFDLEdBQUcsRUFBRSxPQUFPLEVBQUUsS0FBSyxDQUFNLENBQUM7S0FDbkQ7QUFDSCxDQUFDO0FBQ0QsTUFBTSxDQUFDLE1BQU0sZUFBZSxHQUFHLGVBQWUsQ0FBQyxFQUFFLENBQUMsRUFBQyxxQkFBcUIsRUFBQyxDQUFDLENBQUMiLCJzb3VyY2VzQ29udGVudCI6WyIvKipcbiAqIEBsaWNlbnNlXG4gKiBDb3B5cmlnaHQgMjAxOSBHb29nbGUgTExDLiBBbGwgUmlnaHRzIFJlc2VydmVkLlxuICogTGljZW5zZWQgdW5kZXIgdGhlIEFwYWNoZSBMaWNlbnNlLCBWZXJzaW9uIDIuMCAodGhlIFwiTGljZW5zZVwiKTtcbiAqIHlvdSBtYXkgbm90IHVzZSB0aGlzIGZpbGUgZXhjZXB0IGluIGNvbXBsaWFuY2Ugd2l0aCB0aGUgTGljZW5zZS5cbiAqIFlvdSBtYXkgb2J0YWluIGEgY29weSBvZiB0aGUgTGljZW5zZSBhdFxuICpcbiAqIGh0dHA6Ly93d3cuYXBhY2hlLm9yZy9saWNlbnNlcy9MSUNFTlNFLTIuMFxuICpcbiAqIFVubGVzcyByZXF1aXJlZCBieSBhcHBsaWNhYmxlIGxhdyBvciBhZ3JlZWQgdG8gaW4gd3JpdGluZywgc29mdHdhcmVcbiAqIGRpc3RyaWJ1dGVkIHVuZGVyIHRoZSBMaWNlbnNlIGlzIGRpc3RyaWJ1dGVkIG9uIGFuIFwiQVMgSVNcIiBCQVNJUyxcbiAqIFdJVEhPVVQgV0FSUkFOVElFUyBPUiBDT05ESVRJT05TIE9GIEFOWSBLSU5ELCBlaXRoZXIgZXhwcmVzcyBvciBpbXBsaWVkLlxuICogU2VlIHRoZSBMaWNlbnNlIGZvciB0aGUgc3BlY2lmaWMgbGFuZ3VhZ2UgZ292ZXJuaW5nIHBlcm1pc3Npb25zIGFuZFxuICogbGltaXRhdGlvbnMgdW5kZXIgdGhlIExpY2Vuc2UuXG4gKiA9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PVxuICovXG5cbmltcG9ydCB7RU5HSU5FfSBmcm9tICcuLi8uLi9lbmdpbmUnO1xuaW1wb3J0IHtjdXN0b21HcmFkfSBmcm9tICcuLi8uLi9ncmFkaWVudHMnO1xuaW1wb3J0IHtGdXNlZERlcHRod2lzZUNvbnYyRCwgRnVzZWREZXB0aHdpc2VDb252MkRBdHRycywgRnVzZWREZXB0aHdpc2VDb252MkRJbnB1dHN9IGZyb20gJy4uLy4uL2tlcm5lbF9uYW1lcyc7XG5pbXBvcnQge05hbWVkQXR0ck1hcH0gZnJvbSAnLi4vLi4va2VybmVsX3JlZ2lzdHJ5JztcbmltcG9ydCB7VGVuc29yLCBUZW5zb3IzRCwgVGVuc29yNER9IGZyb20gJy4uLy4uL3RlbnNvcic7XG5pbXBvcnQge0dyYWRTYXZlRnVuYywgTmFtZWRUZW5zb3JNYXB9IGZyb20gJy4uLy4uL3RlbnNvcl90eXBlcyc7XG5pbXBvcnQge21ha2VUeXBlc01hdGNofSBmcm9tICcuLi8uLi90ZW5zb3JfdXRpbCc7XG5pbXBvcnQge2NvbnZlcnRUb1RlbnNvcn0gZnJvbSAnLi4vLi4vdGVuc29yX3V0aWxfZW52JztcbmltcG9ydCB7VGVuc29yTGlrZX0gZnJvbSAnLi4vLi4vdHlwZXMnO1xuaW1wb3J0ICogYXMgdXRpbCBmcm9tICcuLi8uLi91dGlsJztcbmltcG9ydCB7YWRkfSBmcm9tICcuLi9hZGQnO1xuaW1wb3J0ICogYXMgYnJvYWRjYXN0X3V0aWwgZnJvbSAnLi4vYnJvYWRjYXN0X3V0aWwnO1xuaW1wb3J0ICogYXMgY29udl91dGlsIGZyb20gJy4uL2NvbnZfdXRpbCc7XG5pbXBvcnQge2RlcHRod2lzZUNvbnYyZCBhcyB1bmZ1c2VkRGVwdGh3aXNlQ29udjJkfSBmcm9tICcuLi9kZXB0aHdpc2VfY29udjJkJztcbmltcG9ydCB7ZGVwdGh3aXNlQ29udjJkTmF0aXZlQmFja3Byb3BGaWx0ZXJ9IGZyb20gJy4uL2RlcHRod2lzZV9jb252MmRfbmF0aXZlX2JhY2twcm9wX2ZpbHRlcic7XG5pbXBvcnQge2RlcHRod2lzZUNvbnYyZE5hdGl2ZUJhY2twcm9wSW5wdXR9IGZyb20gJy4uL2RlcHRod2lzZV9jb252MmRfbmF0aXZlX2JhY2twcm9wX2lucHV0JztcbmltcG9ydCB7QWN0aXZhdGlvbn0gZnJvbSAnLi4vZnVzZWRfdHlwZXMnO1xuaW1wb3J0IHthcHBseUFjdGl2YXRpb24sIGdldEZ1c2VkQmlhc0dyYWRpZW50LCBnZXRGdXNlZER5QWN0aXZhdGlvbiwgc2hvdWxkRnVzZX0gZnJvbSAnLi4vZnVzZWRfdXRpbCc7XG5pbXBvcnQge29wfSBmcm9tICcuLi9vcGVyYXRpb24nO1xuaW1wb3J0IHtyZXNoYXBlfSBmcm9tICcuLi9yZXNoYXBlJztcblxuLyoqXG4gKiBDb21wdXRlcyBkZXB0aHdpc2UgMkQgY29udm9sdXRpb24sIG9wdGlvbmFsbHkgZnVzZWQgd2l0aCBhZGRpbmcgYVxuICogYmlhcyBhbmQgYXBwbHlpbmcgYW4gYWN0aXZhdGlvbi5cbiAqXG4gKiBHaXZlbiBhIDREIGBpbnB1dGAgYXJyYXkgYW5kIGEgYGZpbHRlcmAgYXJyYXkgb2Ygc2hhcGVcbiAqIGBbZmlsdGVySGVpZ2h0LCBmaWx0ZXJXaWR0aCwgaW5DaGFubmVscywgY2hhbm5lbE11bHRpcGxpZXJdYCBjb250YWluaW5nXG4gKiBgaW5DaGFubmVsc2AgY29udm9sdXRpb25hbCBmaWx0ZXJzIG9mIGRlcHRoIDEsIHRoaXMgb3AgYXBwbGllcyBhXG4gKiBkaWZmZXJlbnQgZmlsdGVyIHRvIGVhY2ggaW5wdXQgY2hhbm5lbCAoZXhwYW5kaW5nIGZyb20gMSBjaGFubmVsIHRvXG4gKiBgY2hhbm5lbE11bHRpcGxpZXJgIGNoYW5uZWxzIGZvciBlYWNoKSwgdGhlbiBjb25jYXRlbmF0ZXMgdGhlIHJlc3VsdHNcbiAqIHRvZ2V0aGVyLiBUaGUgb3V0cHV0IGhhcyBgaW5DaGFubmVscyAqIGNoYW5uZWxNdWx0aXBsaWVyYCBjaGFubmVscy5cbiAqXG4gKiBTZWVcbiAqIFtodHRwczovL3d3dy50ZW5zb3JmbG93Lm9yZy9hcGlfZG9jcy9weXRob24vdGYvbm4vZGVwdGh3aXNlX2NvbnYyZF0oXG4gKiAgICAgaHR0cHM6Ly93d3cudGVuc29yZmxvdy5vcmcvYXBpX2RvY3MvcHl0aG9uL3RmL25uL2RlcHRod2lzZV9jb252MmQpXG4gKiBmb3IgbW9yZSBkZXRhaWxzLlxuICpcbiAqIEBwYXJhbSBvYmogQW4gb2JqZWN0IHdpdGggdGhlIGZvbGxvd2luZyBwcm9wZXJ0aWVzOlxuICogQHBhcmFtIHggVGhlIGlucHV0IHRlbnNvciwgb2YgcmFuayA0IG9yIHJhbmsgMywgb2Ygc2hhcGVcbiAqICAgICBgW2JhdGNoLCBoZWlnaHQsIHdpZHRoLCBpbkNoYW5uZWxzXWAuIElmIHJhbmsgMywgYmF0Y2ggb2YgMSBpc1xuICogYXNzdW1lZC5cbiAqIEBwYXJhbSBmaWx0ZXIgVGhlIGZpbHRlciB0ZW5zb3IsIHJhbmsgNCwgb2Ygc2hhcGVcbiAqICAgICBgW2ZpbHRlckhlaWdodCwgZmlsdGVyV2lkdGgsIGluQ2hhbm5lbHMsIGNoYW5uZWxNdWx0aXBsaWVyXWAuXG4gKiBAcGFyYW0gc3RyaWRlcyBUaGUgc3RyaWRlcyBvZiB0aGUgY29udm9sdXRpb246IGBbc3RyaWRlSGVpZ2h0LFxuICogc3RyaWRlV2lkdGhdYC4gSWYgc3RyaWRlcyBpcyBhIHNpbmdsZSBudW1iZXIsIHRoZW4gYHN0cmlkZUhlaWdodCA9PVxuICogc3RyaWRlV2lkdGhgLlxuICogQHBhcmFtIHBhZCBUaGUgdHlwZSBvZiBwYWRkaW5nIGFsZ29yaXRobS5cbiAqICAgLSBgc2FtZWAgYW5kIHN0cmlkZSAxOiBvdXRwdXQgd2lsbCBiZSBvZiBzYW1lIHNpemUgYXMgaW5wdXQsXG4gKiAgICAgICByZWdhcmRsZXNzIG9mIGZpbHRlciBzaXplLlxuICogICAtIGB2YWxpZGA6IG91dHB1dCB3aWxsIGJlIHNtYWxsZXIgdGhhbiBpbnB1dCBpZiBmaWx0ZXIgaXMgbGFyZ2VyXG4gKiAgICAgICB0aGFuIDF4MS5cbiAqICAgLSBGb3IgbW9yZSBpbmZvLCBzZWUgdGhpcyBndWlkZTpcbiAqICAgICBbaHR0cHM6Ly93d3cudGVuc29yZmxvdy5vcmcvYXBpX2RvY3MvcHl0aG9uL3RmL25uL2NvbnZvbHV0aW9uXShcbiAqICAgICAgICAgIGh0dHBzOi8vd3d3LnRlbnNvcmZsb3cub3JnL2FwaV9kb2NzL3B5dGhvbi90Zi9ubi9jb252b2x1dGlvbilcbiAqIEBwYXJhbSBkaWxhdGlvbnMgVGhlIGRpbGF0aW9uIHJhdGVzOiBgW2RpbGF0aW9uSGVpZ2h0LCBkaWxhdGlvbldpZHRoXWBcbiAqICAgICBpbiB3aGljaCB3ZSBzYW1wbGUgaW5wdXQgdmFsdWVzIGFjcm9zcyB0aGUgaGVpZ2h0IGFuZCB3aWR0aCBkaW1lbnNpb25zXG4gKiAgICAgaW4gYXRyb3VzIGNvbnZvbHV0aW9uLiBEZWZhdWx0cyB0byBgWzEsIDFdYC4gSWYgYHJhdGVgIGlzIGEgc2luZ2xlXG4gKiAgICAgbnVtYmVyLCB0aGVuIGBkaWxhdGlvbkhlaWdodCA9PSBkaWxhdGlvbldpZHRoYC4gSWYgaXQgaXMgZ3JlYXRlciB0aGFuXG4gKiAgICAgMSwgdGhlbiBhbGwgdmFsdWVzIG9mIGBzdHJpZGVzYCBtdXN0IGJlIDEuXG4gKiBAcGFyYW0gZGF0YUZvcm1hdDogQW4gb3B0aW9uYWwgc3RyaW5nIGZyb206IFwiTkhXQ1wiLCBcIk5DSFdcIi4gRGVmYXVsdHMgdG9cbiAqICAgICBcIk5IV0NcIi4gU3BlY2lmeSB0aGUgZGF0YSBmb3JtYXQgb2YgdGhlIGlucHV0IGFuZCBvdXRwdXQgZGF0YS4gV2l0aCB0aGVcbiAqICAgICBkZWZhdWx0IGZvcm1hdCBcIk5IV0NcIiwgdGhlIGRhdGEgaXMgc3RvcmVkIGluIHRoZSBvcmRlciBvZjogW2JhdGNoLFxuICogICAgIGhlaWdodCwgd2lkdGgsIGNoYW5uZWxzXS4gT25seSBcIk5IV0NcIiBpcyBjdXJyZW50bHkgc3VwcG9ydGVkLlxuICogQHBhcmFtIGRpbVJvdW5kaW5nTW9kZSBBIHN0cmluZyBmcm9tOiAnY2VpbCcsICdyb3VuZCcsICdmbG9vcicuIElmIG5vbmUgaXNcbiAqICAgICBwcm92aWRlZCwgaXQgd2lsbCBkZWZhdWx0IHRvIHRydW5jYXRlLlxuICogQHBhcmFtIGJpYXMgVGVuc29yIHRvIGJlIGFkZGVkIHRvIHRoZSByZXN1bHQuXG4gKiBAcGFyYW0gYWN0aXZhdGlvbiBOYW1lIG9mIGFjdGl2YXRpb24ga2VybmVsIChkZWZhdWx0cyB0byBgbGluZWFyYCkuXG4gKiBAcGFyYW0gcHJlbHVBY3RpdmF0aW9uV2VpZ2h0cyBUZW5zb3Igb2YgcHJlbHUgd2VpZ2h0cyB0byBiZSBhcHBsaWVkIGFzIHBhcnRcbiAqICAgICBvZiBhIGBwcmVsdWAgYWN0aXZhdGlvbiwgdHlwaWNhbGx5IHRoZSBzYW1lIHNoYXBlIGFzIGB4YC5cbiAqIEBwYXJhbSBsZWFreXJlbHVBbHBoYSBPcHRpb25hbC4gQWxwaGEgdG8gYmUgYXBwbGllZCBhcyBwYXJ0IG9mIGEgYGxlYWt5cmVsdWBcbiAqICAgICBhY3RpdmF0aW9uLlxuICovXG5mdW5jdGlvbiBmdXNlZERlcHRod2lzZUNvbnYyZF88VCBleHRlbmRzIFRlbnNvcjNEfFRlbnNvcjREPih7XG4gIHgsXG4gIGZpbHRlcixcbiAgc3RyaWRlcyxcbiAgcGFkLFxuICBkYXRhRm9ybWF0ID0gJ05IV0MnLFxuICBkaWxhdGlvbnMgPSBbMSwgMV0sXG4gIGRpbVJvdW5kaW5nTW9kZSxcbiAgYmlhcyxcbiAgYWN0aXZhdGlvbiA9ICdsaW5lYXInLFxuICBwcmVsdUFjdGl2YXRpb25XZWlnaHRzLFxuICBsZWFreXJlbHVBbHBoYVxufToge1xuICB4OiBUfFRlbnNvckxpa2UsXG4gIGZpbHRlcjogVGVuc29yNER8VGVuc29yTGlrZSxcbiAgc3RyaWRlczogW251bWJlciwgbnVtYmVyXXxudW1iZXIsXG4gIHBhZDogJ3ZhbGlkJ3wnc2FtZSd8bnVtYmVyLFxuICBkYXRhRm9ybWF0PzogJ05IV0MnfCdOQ0hXJyxcbiAgZGlsYXRpb25zPzogW251bWJlciwgbnVtYmVyXXxudW1iZXIsXG4gIGRpbVJvdW5kaW5nTW9kZT86ICdmbG9vcid8J3JvdW5kJ3wnY2VpbCcsXG4gIGJpYXM/OiBUZW5zb3J8VGVuc29yTGlrZSxcbiAgYWN0aXZhdGlvbj86IEFjdGl2YXRpb24sXG4gIHByZWx1QWN0aXZhdGlvbldlaWdodHM/OiBUZW5zb3IsXG4gIGxlYWt5cmVsdUFscGhhPzogbnVtYmVyXG59KTogVCB7XG4gIGlmIChzaG91bGRGdXNlKEVOR0lORS5zdGF0ZS5ncmFkaWVudERlcHRoLCBhY3RpdmF0aW9uKSA9PT0gZmFsc2UpIHtcbiAgICBsZXQgcmVzdWx0ID0gdW5mdXNlZERlcHRod2lzZUNvbnYyZChcbiAgICAgICAgeCwgZmlsdGVyLCBzdHJpZGVzLCBwYWQsIGRhdGFGb3JtYXQsIGRpbGF0aW9ucywgZGltUm91bmRpbmdNb2RlKTtcbiAgICBpZiAoYmlhcyAhPSBudWxsKSB7XG4gICAgICByZXN1bHQgPSBhZGQocmVzdWx0LCBiaWFzKTtcbiAgICB9XG5cbiAgICByZXR1cm4gYXBwbHlBY3RpdmF0aW9uKFxuICAgICAgICAgICAgICAgcmVzdWx0LCBhY3RpdmF0aW9uLCBwcmVsdUFjdGl2YXRpb25XZWlnaHRzLCBsZWFreXJlbHVBbHBoYSkgYXMgVDtcbiAgfVxuXG4gIGNvbnN0ICR4ID0gY29udmVydFRvVGVuc29yKHgsICd4JywgJ2RlcHRod2lzZUNvbnYyZCcsICdmbG9hdDMyJyk7XG4gIGNvbnN0ICRmaWx0ZXIgPVxuICAgICAgY29udmVydFRvVGVuc29yKGZpbHRlciwgJ2ZpbHRlcicsICdkZXB0aHdpc2VDb252MmQnLCAnZmxvYXQzMicpO1xuXG4gIGxldCB4NEQgPSAkeCBhcyBUZW5zb3I0RDtcbiAgbGV0IHJlc2hhcGVkVG80RCA9IGZhbHNlO1xuICBpZiAoJHgucmFuayA9PT0gMykge1xuICAgIHJlc2hhcGVkVG80RCA9IHRydWU7XG4gICAgeDREID0gcmVzaGFwZSgkeCwgWzEsICR4LnNoYXBlWzBdLCAkeC5zaGFwZVsxXSwgJHguc2hhcGVbMl1dKTtcbiAgfVxuICB1dGlsLmFzc2VydChcbiAgICAgIHg0RC5yYW5rID09PSA0LFxuICAgICAgKCkgPT4gYEVycm9yIGluIGZ1c2VkIGRlcHRod2lzZUNvbnYyZDogaW5wdXQgbXVzdCBiZSByYW5rIDQsIGJ1dCBnb3QgYCArXG4gICAgICAgICAgYHJhbmsgJHt4NEQucmFua30uYCk7XG4gIHV0aWwuYXNzZXJ0KFxuICAgICAgJGZpbHRlci5yYW5rID09PSA0LFxuICAgICAgKCkgPT4gYEVycm9yIGluIGZ1c2VkIGRlcHRod2lzZUNvbnYyZDogZmlsdGVyIG11c3QgYmUgcmFuayA0LCBgICtcbiAgICAgICAgICBgYnV0IGdvdCByYW5rICR7JGZpbHRlci5yYW5rfS5gKTtcbiAgdXRpbC5hc3NlcnQoXG4gICAgICB4NEQuc2hhcGVbM10gPT09ICRmaWx0ZXIuc2hhcGVbMl0sXG4gICAgICAoKSA9PiBgRXJyb3IgaW4gZnVzZWQgZGVwdGh3aXNlQ29udjJkOiBudW1iZXIgb2YgaW5wdXQgY2hhbm5lbHMgYCArXG4gICAgICAgICAgYCgke3g0RC5zaGFwZVszXX0pIG11c3QgbWF0Y2ggdGhlIGluQ2hhbm5lbHMgZGltZW5zaW9uIGluIGAgK1xuICAgICAgICAgIGBmaWx0ZXIgJHskZmlsdGVyLnNoYXBlWzJdfS5gKTtcbiAgaWYgKGRpbGF0aW9ucyA9PSBudWxsKSB7XG4gICAgZGlsYXRpb25zID0gWzEsIDFdO1xuICB9XG4gIHV0aWwuYXNzZXJ0KFxuICAgICAgY29udl91dGlsLmVpdGhlclN0cmlkZXNPckRpbGF0aW9uc0FyZU9uZShzdHJpZGVzLCBkaWxhdGlvbnMpLFxuICAgICAgKCkgPT5cbiAgICAgICAgICAnRXJyb3IgaW4gZnVzZWQgZGVwdGh3aXNlQ29udjJkOiBFaXRoZXIgc3RyaWRlcyBvciBkaWxhdGlvbnMgbXVzdCAnICtcbiAgICAgICAgICBgYmUgMS4gR290IHN0cmlkZXMgJHtzdHJpZGVzfSBhbmQgZGlsYXRpb25zICcke2RpbGF0aW9uc30nYCk7XG4gIGNvbnZfdXRpbC5jaGVja1BhZE9uRGltUm91bmRpbmdNb2RlKFxuICAgICAgJ2Z1c2VkIGRlcHRod2lzZUNvbnYyZCcsIHBhZCwgZGltUm91bmRpbmdNb2RlKTtcbiAgY29uc3QgY29udkluZm8gPSBjb252X3V0aWwuY29tcHV0ZUNvbnYyREluZm8oXG4gICAgICB4NEQuc2hhcGUsICRmaWx0ZXIuc2hhcGUsIHN0cmlkZXMsIGRpbGF0aW9ucywgcGFkLCBkaW1Sb3VuZGluZ01vZGUsXG4gICAgICB0cnVlIC8qIGRlcHRod2lzZSAqLyk7XG5cbiAgbGV0ICRiaWFzOiBUZW5zb3I7XG4gIGlmIChiaWFzICE9IG51bGwpIHtcbiAgICAkYmlhcyA9IGNvbnZlcnRUb1RlbnNvcihiaWFzLCAnYmlhcycsICdmdXNlZCBjb252MmQnKTtcbiAgICBbJGJpYXNdID0gbWFrZVR5cGVzTWF0Y2goJGJpYXMsICR4KTtcblxuICAgIGJyb2FkY2FzdF91dGlsLmFzc2VydEFuZEdldEJyb2FkY2FzdFNoYXBlKGNvbnZJbmZvLm91dFNoYXBlLCAkYmlhcy5zaGFwZSk7XG4gIH1cblxuICBsZXQgJHByZWx1QWN0aXZhdGlvbldlaWdodHM6IFRlbnNvcjtcbiAgaWYgKHByZWx1QWN0aXZhdGlvbldlaWdodHMgIT0gbnVsbCkge1xuICAgICRwcmVsdUFjdGl2YXRpb25XZWlnaHRzID0gY29udmVydFRvVGVuc29yKFxuICAgICAgICBwcmVsdUFjdGl2YXRpb25XZWlnaHRzLCAncHJlbHUgd2VpZ2h0cycsICdmdXNlZCBkZXB0aHdpc2VDb252MmQnKTtcbiAgfVxuXG4gIGNvbnN0IGdyYWQgPSAoZHk6IFRlbnNvcjRELCBzYXZlZDogVGVuc29yW10pID0+IHtcbiAgICB1dGlsLmFzc2VydChcbiAgICAgICAgY29udl91dGlsLnR1cGxlVmFsdWVzQXJlT25lKGRpbGF0aW9ucyksXG4gICAgICAgICgpID0+ICdFcnJvciBpbiBncmFkaWVudCBvZiBmdXNlZCBkZXB0aHdpc2VDb252MmQ6IGRpbGF0aW9uIHJhdGVzICcgK1xuICAgICAgICAgICAgYGdyZWF0ZXIgdGhhbiAxIGFyZSBub3QgeWV0IHN1cHBvcnRlZC4gR290IGRpbGF0aW9ucyBgICtcbiAgICAgICAgICAgIGAnJHtkaWxhdGlvbnN9J2ApO1xuICAgIGNvbnN0IFskZmlsdGVyLCB4NEQsIHksIGJpYXNdID0gc2F2ZWQ7XG5cbiAgICBjb25zdCBkeUFjdGl2YXRpb24gPSBnZXRGdXNlZER5QWN0aXZhdGlvbihkeSwgeSwgYWN0aXZhdGlvbikgYXMgVGVuc29yNEQ7XG5cbiAgICBjb25zdCB4RGVyID0gZGVwdGh3aXNlQ29udjJkTmF0aXZlQmFja3Byb3BJbnB1dChcbiAgICAgICAgKHg0RCBhcyBUZW5zb3I0RCkuc2hhcGUsIGR5QWN0aXZhdGlvbiwgJGZpbHRlciBhcyBUZW5zb3I0RCwgc3RyaWRlcyxcbiAgICAgICAgcGFkLCBkaWxhdGlvbnMsIGRpbVJvdW5kaW5nTW9kZSk7XG4gICAgY29uc3QgZmlsdGVyRGVyID0gZGVwdGh3aXNlQ29udjJkTmF0aXZlQmFja3Byb3BGaWx0ZXIoXG4gICAgICAgIHg0RCBhcyBUZW5zb3I0RCwgZHlBY3RpdmF0aW9uLCAoJGZpbHRlciBhcyBUZW5zb3I0RCkuc2hhcGUsIHN0cmlkZXMsXG4gICAgICAgIHBhZCwgZGlsYXRpb25zLCBkaW1Sb3VuZGluZ01vZGUpO1xuXG4gICAgaWYgKGJpYXMgIT0gbnVsbCkge1xuICAgICAgY29uc3QgYmlhc0RlciA9IGdldEZ1c2VkQmlhc0dyYWRpZW50KCRiaWFzLCBkeUFjdGl2YXRpb24pO1xuICAgICAgcmV0dXJuIFt4RGVyLCBmaWx0ZXJEZXIsIGJpYXNEZXJdO1xuICAgIH1cbiAgICByZXR1cm4gW3hEZXIsIGZpbHRlckRlcl07XG4gIH07XG5cbiAgY29uc3QgaW5wdXRzOiBGdXNlZERlcHRod2lzZUNvbnYyRElucHV0cyA9IHtcbiAgICB4OiB4NEQsXG4gICAgZmlsdGVyOiAkZmlsdGVyLFxuICAgIGJpYXM6ICRiaWFzLFxuICAgIHByZWx1QWN0aXZhdGlvbldlaWdodHM6ICRwcmVsdUFjdGl2YXRpb25XZWlnaHRzXG4gIH07XG4gIGNvbnN0IGF0dHJzOiBGdXNlZERlcHRod2lzZUNvbnYyREF0dHJzID0ge1xuICAgIHN0cmlkZXMsXG4gICAgcGFkLFxuICAgIGRhdGFGb3JtYXQsXG4gICAgZGlsYXRpb25zLFxuICAgIGRpbVJvdW5kaW5nTW9kZSxcbiAgICBhY3RpdmF0aW9uLFxuICAgIGxlYWt5cmVsdUFscGhhXG4gIH07XG5cbiAgLy8gRGVwZW5kaW5nIG9uIHRoZSB0aGUgcGFyYW1zIHBhc3NlZCBpbiB3ZSB3aWxsIGhhdmUgZGlmZmVyZW50IG51bWJlciBvZlxuICAvLyBpbnB1dHMgYW5kIHRodXMgYSBhIGRpZmZlcmVudCBudW1iZXIgb2YgZWxlbWVudHMgaW4gdGhlIGdyYWRpZW50LlxuICBpZiAoYmlhcyA9PSBudWxsKSB7XG4gICAgY29uc3QgY3VzdG9tT3AgPVxuICAgICAgICBjdXN0b21HcmFkKCh4NEQ6IFRlbnNvcjRELCBmaWx0ZXI6IFRlbnNvcjRELCBzYXZlOiBHcmFkU2F2ZUZ1bmMpID0+IHtcbiAgICAgICAgICAvLyB0c2xpbnQ6ZGlzYWJsZS1uZXh0LWxpbmU6IG5vLXVubmVjZXNzYXJ5LXR5cGUtYXNzZXJ0aW9uXG4gICAgICAgICAgbGV0IHJlczogVGVuc29yNER8VGVuc29yM0QgPSBFTkdJTkUucnVuS2VybmVsKFxuICAgICAgICAgICAgICBGdXNlZERlcHRod2lzZUNvbnYyRCwgaW5wdXRzIGFzIHVua25vd24gYXMgTmFtZWRUZW5zb3JNYXAsXG4gICAgICAgICAgICAgIGF0dHJzIGFzIHVua25vd24gYXMgTmFtZWRBdHRyTWFwKTtcblxuICAgICAgICAgIHNhdmUoW2ZpbHRlciwgeDRELCByZXNdKTtcblxuICAgICAgICAgIGlmIChyZXNoYXBlZFRvNEQpIHtcbiAgICAgICAgICAgIC8vIHRzbGludDpkaXNhYmxlLW5leHQtbGluZTogbm8tdW5uZWNlc3NhcnktdHlwZS1hc3NlcnRpb25cbiAgICAgICAgICAgIHJlcyA9IHJlc2hhcGUocmVzLCBbcmVzLnNoYXBlWzFdLCByZXMuc2hhcGVbMl0sIHJlcy5zaGFwZVszXV0pIGFzXG4gICAgICAgICAgICAgICAgVGVuc29yM0Q7XG4gICAgICAgICAgfVxuXG4gICAgICAgICAgcmV0dXJuIHt2YWx1ZTogcmVzLCBncmFkRnVuYzogZ3JhZH07XG4gICAgICAgIH0pO1xuICAgIHJldHVybiBjdXN0b21PcCh4NEQsICRmaWx0ZXIpIGFzIFQ7XG4gIH0gZWxzZSB7XG4gICAgY29uc3QgY3VzdG9tT3BXaXRoQmlhcyA9IGN1c3RvbUdyYWQoXG4gICAgICAgICh4NEQ6IFRlbnNvcjRELCBmaWx0ZXI6IFRlbnNvcjRELCBiaWFzOiBUZW5zb3IsIHNhdmU6IEdyYWRTYXZlRnVuYykgPT4ge1xuICAgICAgICAgIC8vIHRzbGludDpkaXNhYmxlLW5leHQtbGluZTogbm8tdW5uZWNlc3NhcnktdHlwZS1hc3NlcnRpb25cbiAgICAgICAgICBsZXQgcmVzOiBUZW5zb3I0RHxUZW5zb3IzRCA9IEVOR0lORS5ydW5LZXJuZWwoXG4gICAgICAgICAgICAgIEZ1c2VkRGVwdGh3aXNlQ29udjJELCBpbnB1dHMgYXMgdW5rbm93biBhcyBOYW1lZFRlbnNvck1hcCxcbiAgICAgICAgICAgICAgYXR0cnMgYXMgdW5rbm93biBhcyBOYW1lZEF0dHJNYXApO1xuXG4gICAgICAgICAgc2F2ZShbZmlsdGVyLCB4NEQsIHJlcywgYmlhc10pO1xuXG4gICAgICAgICAgaWYgKHJlc2hhcGVkVG80RCkge1xuICAgICAgICAgICAgLy8gdHNsaW50OmRpc2FibGUtbmV4dC1saW5lOiBuby11bm5lY2Vzc2FyeS10eXBlLWFzc2VydGlvblxuICAgICAgICAgICAgcmVzID0gcmVzaGFwZShyZXMsIFtyZXMuc2hhcGVbMV0sIHJlcy5zaGFwZVsyXSwgcmVzLnNoYXBlWzNdXSkgYXNcbiAgICAgICAgICAgICAgICBUZW5zb3IzRDtcbiAgICAgICAgICB9XG5cbiAgICAgICAgICByZXR1cm4ge3ZhbHVlOiByZXMsIGdyYWRGdW5jOiBncmFkfTtcbiAgICAgICAgfSk7XG5cbiAgICByZXR1cm4gY3VzdG9tT3BXaXRoQmlhcyh4NEQsICRmaWx0ZXIsICRiaWFzKSBhcyBUO1xuICB9XG59XG5leHBvcnQgY29uc3QgZGVwdGh3aXNlQ29udjJkID0gLyogQF9fUFVSRV9fICovIG9wKHtmdXNlZERlcHRod2lzZUNvbnYyZF99KTtcbiJdfQ==