gx
chenyc
2025-02-12 ea42ff3ebee1eeb3fb29423aa848a249441db81c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
/**
 * @license
 * Copyright 2020 Google LLC. All Rights Reserved.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 * =============================================================================
 */
/// <amd-module name="@tensorflow/tfjs-core/dist/ops/linalg/gram_schmidt" />
import { Tensor1D, Tensor2D } from '../../tensor';
/**
 * Gram-Schmidt orthogonalization.
 *
 * ```js
 * const x = tf.tensor2d([[1, 2], [3, 4]]);
 * let y = tf.linalg.gramSchmidt(x);
 * y.print();
 * console.log('Orthogonalized:');
 * y.dot(y.transpose()).print();  // should be nearly the identity matrix.
 * console.log('First row direction maintained:');
 * const data = await y.array();
 * console.log(data[0][1] / data[0][0]);  // should be nearly 2.
 * ```
 *
 * @param xs The vectors to be orthogonalized, in one of the two following
 *   formats:
 *   - An Array of `tf.Tensor1D`.
 *   - A `tf.Tensor2D`, i.e., a matrix, in which case the vectors are the rows
 *     of `xs`.
 *   In each case, all the vectors must have the same length and the length
 *   must be greater than or equal to the number of vectors.
 * @returns The orthogonalized and normalized vectors or matrix.
 *   Orthogonalization means that the vectors or the rows of the matrix
 *   are orthogonal (zero inner products). Normalization means that each
 *   vector or each row of the matrix has an L2 norm that equals `1`.
 *
 * @doc {heading:'Operations', subheading:'Linear Algebra', namespace:'linalg'}
 */
declare function gramSchmidt_(xs: Tensor1D[] | Tensor2D): Tensor1D[] | Tensor2D;
export declare const gramSchmidt: typeof gramSchmidt_;
export {};