/**
|
* @license
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
/// <amd-module name="@tensorflow/tfjs-core/dist/ops/mirror_pad" />
|
import { Tensor } from '../tensor';
|
import { TensorLike } from '../types';
|
/**
|
* Pads a `tf.Tensor` using mirror padding.
|
*
|
* This operation implements the `REFLECT` and `SYMMETRIC` modes of pad.
|
*
|
* ```js
|
* const x = tf.range(0, 9).reshape([1, 1, 3, 3]);
|
* x.mirrorPad([[0, 0], [0, 0], [2, 2], [2, 2]], 'reflect').print();
|
* ```
|
* @param x The tensor to pad.
|
* @param paddings An array of length `R` (the rank of the tensor), where
|
* each element is a length-2 tuple of ints `[padBefore, padAfter]`,
|
* specifying how much to pad along each dimension of the tensor.
|
* In "reflect" mode, the padded regions do not include the borders,
|
* while in "symmetric" mode the padded regions do include the borders.
|
* For example, if the input is `[1, 2, 3]` and paddings is `[0, 2]`,
|
* then the output is `[1, 2, 3, 2, 1]` in "reflect" mode, and
|
* `[1, 2, 3, 3, 2]` in "symmetric" mode.
|
* If `mode` is "reflect" then both `paddings[D, 0]` and `paddings[D, 1]`
|
* must be no greater than `x.shape[D] - 1`. If mode is "symmetric"
|
* then both `paddings[D, 0]` and `paddings[D, 1]` must be no greater than
|
* `x.shape[D]`
|
* @param mode String to specify padding mode. Can be `'reflect' | 'symmetric'`
|
*/
|
/** @doc {heading: 'Tensors', subheading: 'Transformations'} */
|
declare function mirrorPad_<T extends Tensor>(x: T | TensorLike, paddings: Array<[number, number]>, mode: 'reflect' | 'symmetric'): T;
|
export declare const mirrorPad: typeof mirrorPad_;
|
export {};
|