/**
|
* @license
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
import { ENGINE } from '../engine';
|
import { Multiply } from '../kernel_names';
|
import { makeTypesMatch } from '../tensor_util';
|
import { convertToTensor } from '../tensor_util_env';
|
import { op } from './operation';
|
/**
|
* Multiplies two `tf.Tensor`s element-wise, A * B. Supports broadcasting.
|
*
|
* We also expose `tf.mulStrict` which has the same signature as this op and
|
* asserts that `a` and `b` are the same shape (does not broadcast).
|
*
|
* ```js
|
* const a = tf.tensor1d([1, 2, 3, 4]);
|
* const b = tf.tensor1d([2, 3, 4, 5]);
|
*
|
* a.mul(b).print(); // or tf.mul(a, b)
|
* ```
|
*
|
* ```js
|
* // Broadcast mul a with b.
|
* const a = tf.tensor1d([1, 2, 3, 4]);
|
* const b = tf.scalar(5);
|
*
|
* a.mul(b).print(); // or tf.mul(a, b)
|
* ```
|
* @param a The first tensor to multiply.
|
* @param b The second tensor to multiply. Must have the same dtype as `a`.
|
*
|
* @doc {heading: 'Operations', subheading: 'Arithmetic'}
|
*/
|
function mul_(a, b) {
|
let $a = convertToTensor(a, 'a', 'mul');
|
let $b = convertToTensor(b, 'b', 'mul');
|
[$a, $b] = makeTypesMatch($a, $b);
|
const inputs = { a: $a, b: $b };
|
return ENGINE.runKernel(Multiply, inputs);
|
}
|
export const mul = /* @__PURE__ */ op({ mul_ });
|
//# sourceMappingURL=data:application/json;base64,eyJ2ZXJzaW9uIjozLCJmaWxlIjoibXVsLmpzIiwic291cmNlUm9vdCI6IiIsInNvdXJjZXMiOlsiLi4vLi4vLi4vLi4vLi4vLi4vdGZqcy1jb3JlL3NyYy9vcHMvbXVsLnRzIl0sIm5hbWVzIjpbXSwibWFwcGluZ3MiOiJBQUFBOzs7Ozs7Ozs7Ozs7Ozs7R0FlRztBQUVILE9BQU8sRUFBQyxNQUFNLEVBQUMsTUFBTSxXQUFXLENBQUM7QUFDakMsT0FBTyxFQUFDLFFBQVEsRUFBaUIsTUFBTSxpQkFBaUIsQ0FBQztBQUd6RCxPQUFPLEVBQUMsY0FBYyxFQUFDLE1BQU0sZ0JBQWdCLENBQUM7QUFDOUMsT0FBTyxFQUFDLGVBQWUsRUFBQyxNQUFNLG9CQUFvQixDQUFDO0FBR25ELE9BQU8sRUFBQyxFQUFFLEVBQUMsTUFBTSxhQUFhLENBQUM7QUFFL0I7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7OztHQXdCRztBQUNILFNBQVMsSUFBSSxDQUFtQixDQUFvQixFQUFFLENBQW9CO0lBQ3hFLElBQUksRUFBRSxHQUFHLGVBQWUsQ0FBQyxDQUFDLEVBQUUsR0FBRyxFQUFFLEtBQUssQ0FBQyxDQUFDO0lBQ3hDLElBQUksRUFBRSxHQUFHLGVBQWUsQ0FBQyxDQUFDLEVBQUUsR0FBRyxFQUFFLEtBQUssQ0FBQyxDQUFDO0lBQ3hDLENBQUMsRUFBRSxFQUFFLEVBQUUsQ0FBQyxHQUFHLGNBQWMsQ0FBQyxFQUFFLEVBQUUsRUFBRSxDQUFDLENBQUM7SUFFbEMsTUFBTSxNQUFNLEdBQW1CLEVBQUMsQ0FBQyxFQUFFLEVBQUUsRUFBRSxDQUFDLEVBQUUsRUFBRSxFQUFDLENBQUM7SUFFOUMsT0FBTyxNQUFNLENBQUMsU0FBUyxDQUFDLFFBQVEsRUFBRSxNQUFtQyxDQUFDLENBQUM7QUFDekUsQ0FBQztBQUNELE1BQU0sQ0FBQyxNQUFNLEdBQUcsR0FBRyxlQUFlLENBQUMsRUFBRSxDQUFDLEVBQUMsSUFBSSxFQUFDLENBQUMsQ0FBQyIsInNvdXJjZXNDb250ZW50IjpbIi8qKlxuICogQGxpY2Vuc2VcbiAqIENvcHlyaWdodCAyMDIwIEdvb2dsZSBMTEMuIEFsbCBSaWdodHMgUmVzZXJ2ZWQuXG4gKiBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgXCJMaWNlbnNlXCIpO1xuICogeW91IG1heSBub3QgdXNlIHRoaXMgZmlsZSBleGNlcHQgaW4gY29tcGxpYW5jZSB3aXRoIHRoZSBMaWNlbnNlLlxuICogWW91IG1heSBvYnRhaW4gYSBjb3B5IG9mIHRoZSBMaWNlbnNlIGF0XG4gKlxuICogaHR0cDovL3d3dy5hcGFjaGUub3JnL2xpY2Vuc2VzL0xJQ0VOU0UtMi4wXG4gKlxuICogVW5sZXNzIHJlcXVpcmVkIGJ5IGFwcGxpY2FibGUgbGF3IG9yIGFncmVlZCB0byBpbiB3cml0aW5nLCBzb2Z0d2FyZVxuICogZGlzdHJpYnV0ZWQgdW5kZXIgdGhlIExpY2Vuc2UgaXMgZGlzdHJpYnV0ZWQgb24gYW4gXCJBUyBJU1wiIEJBU0lTLFxuICogV0lUSE9VVCBXQVJSQU5USUVTIE9SIENPTkRJVElPTlMgT0YgQU5ZIEtJTkQsIGVpdGhlciBleHByZXNzIG9yIGltcGxpZWQuXG4gKiBTZWUgdGhlIExpY2Vuc2UgZm9yIHRoZSBzcGVjaWZpYyBsYW5ndWFnZSBnb3Zlcm5pbmcgcGVybWlzc2lvbnMgYW5kXG4gKiBsaW1pdGF0aW9ucyB1bmRlciB0aGUgTGljZW5zZS5cbiAqID09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XG4gKi9cblxuaW1wb3J0IHtFTkdJTkV9IGZyb20gJy4uL2VuZ2luZSc7XG5pbXBvcnQge011bHRpcGx5LCBNdWx0aXBseUlucHV0c30gZnJvbSAnLi4va2VybmVsX25hbWVzJztcbmltcG9ydCB7VGVuc29yfSBmcm9tICcuLi90ZW5zb3InO1xuaW1wb3J0IHtOYW1lZFRlbnNvck1hcH0gZnJvbSAnLi4vdGVuc29yX3R5cGVzJztcbmltcG9ydCB7bWFrZVR5cGVzTWF0Y2h9IGZyb20gJy4uL3RlbnNvcl91dGlsJztcbmltcG9ydCB7Y29udmVydFRvVGVuc29yfSBmcm9tICcuLi90ZW5zb3JfdXRpbF9lbnYnO1xuaW1wb3J0IHtUZW5zb3JMaWtlfSBmcm9tICcuLi90eXBlcyc7XG5cbmltcG9ydCB7b3B9IGZyb20gJy4vb3BlcmF0aW9uJztcblxuLyoqXG4gKiBNdWx0aXBsaWVzIHR3byBgdGYuVGVuc29yYHMgZWxlbWVudC13aXNlLCBBICogQi4gU3VwcG9ydHMgYnJvYWRjYXN0aW5nLlxuICpcbiAqIFdlIGFsc28gZXhwb3NlIGB0Zi5tdWxTdHJpY3RgIHdoaWNoIGhhcyB0aGUgc2FtZSBzaWduYXR1cmUgYXMgdGhpcyBvcCBhbmRcbiAqIGFzc2VydHMgdGhhdCBgYWAgYW5kIGBiYCBhcmUgdGhlIHNhbWUgc2hhcGUgKGRvZXMgbm90IGJyb2FkY2FzdCkuXG4gKlxuICogYGBganNcbiAqIGNvbnN0IGEgPSB0Zi50ZW5zb3IxZChbMSwgMiwgMywgNF0pO1xuICogY29uc3QgYiA9IHRmLnRlbnNvcjFkKFsyLCAzLCA0LCA1XSk7XG4gKlxuICogYS5tdWwoYikucHJpbnQoKTsgIC8vIG9yIHRmLm11bChhLCBiKVxuICogYGBgXG4gKlxuICogYGBganNcbiAqIC8vIEJyb2FkY2FzdCBtdWwgYSB3aXRoIGIuXG4gKiBjb25zdCBhID0gdGYudGVuc29yMWQoWzEsIDIsIDMsIDRdKTtcbiAqIGNvbnN0IGIgPSB0Zi5zY2FsYXIoNSk7XG4gKlxuICogYS5tdWwoYikucHJpbnQoKTsgIC8vIG9yIHRmLm11bChhLCBiKVxuICogYGBgXG4gKiBAcGFyYW0gYSBUaGUgZmlyc3QgdGVuc29yIHRvIG11bHRpcGx5LlxuICogQHBhcmFtIGIgVGhlIHNlY29uZCB0ZW5zb3IgdG8gbXVsdGlwbHkuIE11c3QgaGF2ZSB0aGUgc2FtZSBkdHlwZSBhcyBgYWAuXG4gKlxuICogQGRvYyB7aGVhZGluZzogJ09wZXJhdGlvbnMnLCBzdWJoZWFkaW5nOiAnQXJpdGhtZXRpYyd9XG4gKi9cbmZ1bmN0aW9uIG11bF88VCBleHRlbmRzIFRlbnNvcj4oYTogVGVuc29yfFRlbnNvckxpa2UsIGI6IFRlbnNvcnxUZW5zb3JMaWtlKTogVCB7XG4gIGxldCAkYSA9IGNvbnZlcnRUb1RlbnNvcihhLCAnYScsICdtdWwnKTtcbiAgbGV0ICRiID0gY29udmVydFRvVGVuc29yKGIsICdiJywgJ211bCcpO1xuICBbJGEsICRiXSA9IG1ha2VUeXBlc01hdGNoKCRhLCAkYik7XG5cbiAgY29uc3QgaW5wdXRzOiBNdWx0aXBseUlucHV0cyA9IHthOiAkYSwgYjogJGJ9O1xuXG4gIHJldHVybiBFTkdJTkUucnVuS2VybmVsKE11bHRpcGx5LCBpbnB1dHMgYXMgdW5rbm93biBhcyBOYW1lZFRlbnNvck1hcCk7XG59XG5leHBvcnQgY29uc3QgbXVsID0gLyogQF9fUFVSRV9fICovIG9wKHttdWxffSk7XG4iXX0=
|