gx
chenyc
2025-02-12 ea42ff3ebee1eeb3fb29423aa848a249441db81c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
/**
 * @license
 * Copyright 2020 Google LLC. All Rights Reserved.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 * =============================================================================
 */
/// <amd-module name="@tensorflow/tfjs-core/dist/ops/multinomial" />
import { Tensor1D, Tensor2D } from '../tensor';
import { TensorLike } from '../types';
/**
 * Creates a `tf.Tensor` with values drawn from a multinomial distribution.
 *
 * ```js
 * const probs = tf.tensor([.75, .25]);
 * tf.multinomial(probs, 3).print();
 * ```
 *
 * @param logits 1D array with unnormalized log-probabilities, or
 *     2D array of shape `[batchSize, numOutcomes]`. See the `normalized`
 *     parameter.
 * @param numSamples Number of samples to draw for each row slice.
 * @param seed The seed number.
 * @param normalized Whether the provided `logits` are normalized true
 *     probabilities (sum to 1). Defaults to false.
 * @return 1D array of shape `[numSamples]`, or 2D array of shape
 *     `[batchSize, numSamples]`, depending on the rank of the input.
 *
 * @doc {heading: 'Tensors', subheading: 'Random'}
 */
declare function multinomial_(logits: Tensor1D | Tensor2D | TensorLike, numSamples: number, seed?: number, normalized?: boolean): Tensor1D | Tensor2D;
export declare const multinomial: typeof multinomial_;
export {};