/**
|
* @license
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
/// <amd-module name="@tensorflow/tfjs-core/dist/ops/multinomial" />
|
import { Tensor1D, Tensor2D } from '../tensor';
|
import { TensorLike } from '../types';
|
/**
|
* Creates a `tf.Tensor` with values drawn from a multinomial distribution.
|
*
|
* ```js
|
* const probs = tf.tensor([.75, .25]);
|
* tf.multinomial(probs, 3).print();
|
* ```
|
*
|
* @param logits 1D array with unnormalized log-probabilities, or
|
* 2D array of shape `[batchSize, numOutcomes]`. See the `normalized`
|
* parameter.
|
* @param numSamples Number of samples to draw for each row slice.
|
* @param seed The seed number.
|
* @param normalized Whether the provided `logits` are normalized true
|
* probabilities (sum to 1). Defaults to false.
|
* @return 1D array of shape `[numSamples]`, or 2D array of shape
|
* `[batchSize, numSamples]`, depending on the rank of the input.
|
*
|
* @doc {heading: 'Tensors', subheading: 'Random'}
|
*/
|
declare function multinomial_(logits: Tensor1D | Tensor2D | TensorLike, numSamples: number, seed?: number, normalized?: boolean): Tensor1D | Tensor2D;
|
export declare const multinomial: typeof multinomial_;
|
export {};
|