/**
|
* @license
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
/// <amd-module name="@tensorflow/tfjs-core/dist/ops/sparse/sparse_segment_mean" />
|
import { Tensor, Tensor1D } from '../../tensor';
|
import { TensorLike } from '../../types';
|
/**
|
* Computes the mean along sparse segments of a tensor.
|
*
|
* ```js
|
* const c = tf.tensor2d([[1,2,3,4], [-1,-2,-3,-4], [6,7,8,9]]);
|
* // Select two rows, one segment.
|
* const result1 = tf.sparse.sparseSegmentMean(c,
|
* tf.tensor1d([0, 1], 'int32'),
|
* tf.tensor1d([0, 0], 'int32'));
|
* result1.print(); // [[0, 0, 0, 0]]
|
*
|
* // Select two rows, two segments.
|
* const result2 = tf.sparse.sparseSegmentMean(c,
|
* tf.tensor1d([0, 1], 'int32'),
|
* tf.tensor1d([0, 1], 'int32'));
|
* result2.print(); // [[1, 2, 3, 4], [-1, -2, -3, -4]]
|
*
|
* // Select all rows, two segments.
|
* const result3 = tf.sparse.sparseSegmentMean(c,
|
* tf.tensor1d([0, 1, 2], 'int32'),
|
* tf.tensor1d([0, 1, 1], 'int32'));
|
* result3.print(); // [[1.0, 2.0, 3.0, 4.0], [2.5, 2.5, 2.5, 2.5]]
|
* ```
|
* @param data: A Tensor of at least one dimension with data that will be
|
* assembled in the output.
|
* @param indices: A 1-D Tensor with indices into data. Has same rank as
|
* segmentIds.
|
* @param segmentIds: A 1-D Tensor with indices into the output Tensor. Values
|
* should be sorted and can be repeated.
|
* @return Has same shape as data, except for dimension 0 which has equal to
|
* the number of segments.
|
*
|
* @doc {heading: 'Operations', subheading: 'Sparse'}
|
*/
|
declare function sparseSegmentMean_(data: Tensor | TensorLike, indices: Tensor1D | TensorLike, segmentIds: Tensor1D | TensorLike): Tensor;
|
export declare const sparseSegmentMean: typeof sparseSegmentMean_;
|
export {};
|