/// <amd-module name="@tensorflow/tfjs-core/dist/ops/split" />
|
import { Tensor } from '../tensor';
|
import { TensorLike } from '../types';
|
/**
|
* Splits a `tf.Tensor` into sub tensors.
|
*
|
* If `numOrSizeSplits` is a number, splits `x` along dimension `axis`
|
* into `numOrSizeSplits` smaller tensors.
|
* Requires that `numOrSizeSplits` evenly divides `x.shape[axis]`.
|
*
|
* If `numOrSizeSplits` is a number array, splits `x` into
|
* `numOrSizeSplits.length` pieces. The shape of the `i`-th piece has the
|
* same size as `x` except along dimension `axis` where the size is
|
* `numOrSizeSplits[i]`.
|
*
|
* ```js
|
* const x = tf.tensor2d([1, 2, 3, 4, 5, 6, 7, 8], [2, 4]);
|
* const [a, b] = tf.split(x, 2, 1);
|
* a.print();
|
* b.print();
|
*
|
* const [c, d, e] = tf.split(x, [1, 2, 1], 1);
|
* c.print();
|
* d.print();
|
* e.print();
|
* ```
|
*
|
* @param x The input tensor to split.
|
* @param numOrSizeSplits Either an integer indicating the number of
|
* splits along the axis or an array of integers containing the sizes of
|
* each output tensor along the axis. If a number then it must evenly divide
|
* `x.shape[axis]`; otherwise the sum of sizes must match `x.shape[axis]`.
|
* Can contain one -1 indicating that dimension is to be inferred.
|
* @param axis The dimension along which to split. Defaults to 0 (the first
|
* dim).
|
*
|
* @doc {heading: 'Tensors', subheading: 'Slicing and Joining'}
|
*/
|
declare function split_<T extends Tensor>(x: Tensor | TensorLike, numOrSizeSplits: number[] | number, axis?: number): T[];
|
export declare const split: typeof split_;
|
export {};
|