gx
chenyc
2025-02-12 ea42ff3ebee1eeb3fb29423aa848a249441db81c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
/**
 * @license
 * Copyright 2023 Google LLC.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 * =============================================================================
 */
/**
 *  TFJS-based multi-head attention layer.
 */
/* Original source: keras/layers/attention/multi_head_attention.py */
import { einsum, linalg, logicalAnd, mul, ones, serialization, tidy, util } from '@tensorflow/tfjs-core';
import { cast, expandDims } from '../../backend/tfjs_backend';
import { getConstraint, serializeConstraint } from '../../constraints';
import { Layer } from '../../engine/topology';
import { ValueError } from '../../errors';
import { getInitializer, serializeInitializer } from '../../initializers';
import { getRegularizer, serializeRegularizer } from '../../regularizers';
import { Softmax } from '../advanced_activations';
import { Dropout } from '../core';
import { EinsumDense } from './einsum_dense';
const _CHR_IDX = 'abcdefghijklmnopqrstuvwxyz'.split('');
/**
 * Builds einsum equations for the attention computation.
 *
 * Query, key, value inputs after projection are expected to have the shape as:
 * `(bs, <non-attention dims>, <attention dims>, numHeads, channels)`.
 * `bs` and `<non-attention dims>` are treated as `<batch dims>`.
 *
 * The attention operations can be generalized:
 * (1) Query-key dot product:
 * `(<batch dims>, <query attention dims>, numHeads, channels), (<batch dims>,
 * <key attention dims>, numHeads, channels) -> (<batch dims>,
 * numHeads, <query attention dims>, <key attention dims>)`
 * (2) Combination:
 * `(<batch dims>, numHeads, <query attention dims>, <key attention dims>),
 * (<batch dims>, <value attention dims>, numHeads, channels) -> (<batch
 * dims>, <query attention dims>, numHeads, channels)`
 *
 * @param rank Rank of query, key, value tensors.
 * @param attnAxes Array of axes, `[-1, rank)`,
 *    that attention will be applied to.
 * @returns Einsum equations.
 */
function buildAttentionEquation(rank, attnAxes) {
    const targetNotationArr = _CHR_IDX.slice(0, rank);
    // `batchDims` includes the head dim.
    const excludeIndices = [...attnAxes, rank - 1];
    const batchDims = [];
    for (const e of Array(rank).keys()) {
        if (!excludeIndices.includes(e)) {
            batchDims.push(e);
        }
    }
    let letterOffset = rank;
    let sourceNotation = '';
    for (let i = 0; i < rank; i++) {
        if (batchDims.includes(i) || i === rank - 1) {
            sourceNotation += targetNotationArr[i];
        }
        else {
            sourceNotation += _CHR_IDX[letterOffset];
            letterOffset++;
        }
    }
    const productNotation = batchDims.map(i => targetNotationArr[i]).concat(attnAxes.map(i => targetNotationArr[i]), attnAxes.map(i => sourceNotation[i])).join('');
    const targetNotation = targetNotationArr.join('');
    const dotProductEquation = `${sourceNotation},${targetNotation}->${productNotation}`;
    const attnScoresRank = productNotation.length;
    const combineEquation = `${productNotation},${sourceNotation}->${targetNotation}`;
    return [dotProductEquation, combineEquation, attnScoresRank];
}
/**
 * Builds an einsum equation for projections inside multi-head attention.
 */
function buildProjectionEquation(freeDims, boundDims, outputDims) {
    let inputStr = '';
    let kernelStr = '';
    let outputStr = '';
    let biasAxes = '';
    let letterOffset = 0;
    for (let i = 0; i < freeDims; i++) {
        const char = _CHR_IDX[i + letterOffset];
        inputStr += char;
        outputStr += char;
    }
    letterOffset += freeDims;
    for (let i = 0; i < boundDims; i++) {
        const char = _CHR_IDX[i + letterOffset];
        inputStr += char;
        kernelStr += char;
    }
    letterOffset += boundDims;
    for (let i = 0; i < outputDims; i++) {
        const char = _CHR_IDX[i + letterOffset];
        kernelStr += char;
        outputStr += char;
        biasAxes += char;
    }
    const equation = `${inputStr},${kernelStr}->${outputStr}`;
    return [equation, biasAxes, outputStr.length];
}
function getOutputShape(outputRank, knownLastDims) {
    const outputShape = Array(outputRank - knownLastDims.length).fill(null).concat(knownLastDims);
    return outputShape;
}
/**
 * MultiHeadAttention layer.
 *
 * This is an implementation of multi-headed attention as described in the
 * paper "Attention is all you Need" (Vaswani et al., 2017).
 * If `query`, `key,` `value` are the same, then
 * this is self-attention. Each timestep in `query` attends to the
 * corresponding sequence in `key`, and returns a fixed-width vector.
 *
 * This layer first projects `query`, `key` and `value`. These are
 * (effectively) a list of tensors of length `numAttentionHeads`, where the
 * corresponding shapes are `(batchSize, <query dimensions>, keyDim)`,
 * `(batchSize, <key/value dimensions>, keyDim)`,
 * `(batchSize, <key/value dimensions>, valueDim)`.
 *
 * Then, the query and key tensors are dot-producted and scaled. These are
 * softmaxed to obtain attention probabilities. The value tensors are then
 * interpolated by these probabilities, then concatenated back to a single
 * tensor.
 *
 * Finally, the result tensor with the last dimension as valueDim can take an
 * linear projection and return.
 *
 * When using `MultiHeadAttention` inside a custom layer, the custom layer must
 * implement its own `build()` method and call `MultiHeadAttention`'s
 * `buildFromSignature()` there.
 * This enables weights to be restored correctly when the model is loaded.
 *
 * Examples:
 *
 * Performs 1D cross-attention over two sequence inputs with an attention mask.
 * Returns the additional attention weights over heads.
 *
 * ```js
 * const layer = new MultiHeadAttention({numHeads: 2, keyDim: 2});
 * const target = tf.input({shape: [8, 16]});
 * const source = tf.input({shape: [4, 16]});
 * const outputTensor, weights = layer.callAndReturnAttentionScores(
 *     target, {value: source});
 * console.log(outputTensor.shape);  // [null, 8, 16]
 * console.log(weights.shape);  // [null, 2, 8, 4]
 * ```
 *
 * Performs 2D self-attention over a 5D input tensor on axes 2 and 3.
 *
 * ```js
 * const layer = new MultiHeadAttention({
 *    numHeads: 2, keyDim: 2, attentionAxes: [2, 3]});
 * const inputTensor = tf.input({shape: [5, 3, 4, 16]});
 * const outputTensor = layer.call(inputTensor, {value: inputTensor});
 * console.log(outputTensor.shape);  // [null, 5, 3, 4, 16]
 * ```
 *
 * Returns:
 *    attentionOutput: The result of the computation, of shape `(B, T, E)`,
 *        where `T` is for target sequence shapes and `E` is the query input
 *        last dimension if `outputShape` is `None`. Otherwise, the
 *        multi-head outputs are projected to the shape specified by
 *        `outputShape`.
 *    attentionScores: multi-head attention coefficients over attention axes.
 */
class MultiHeadAttention extends Layer {
    constructor(args) {
        var _a, _b, _c, _d, _e;
        super(args);
        this.supportsMasking = true;
        this.numHeads = args.numHeads;
        this.keyDim = args.keyDim;
        this.valueDim = (_a = args.valueDim) !== null && _a !== void 0 ? _a : args.keyDim;
        this.dropout = (_b = args.dropout) !== null && _b !== void 0 ? _b : 0;
        this.useBias = (_c = args.useBias) !== null && _c !== void 0 ? _c : true;
        this._outputShape = args.outputShape;
        this.kernelInitializer = getInitializer((_d = args.kernelInitializer) !== null && _d !== void 0 ? _d : 'glorotUniform');
        this.biasInitializer = getInitializer((_e = args.biasInitializer) !== null && _e !== void 0 ? _e : 'zeros');
        this.kernelRegularizer = getRegularizer(args.kernelRegularizer);
        this.biasRegularizer = getRegularizer(args.biasRegularizer);
        this.activityRegularizer = getRegularizer(args.activityRegularizer);
        this.kernelConstraint = getConstraint(args.kernelConstraint);
        this.biasConstraint = getConstraint(args.biasConstraint);
        if (args.attentionAxes != null && !Array.isArray(args.attentionAxes)) {
            this.attentionAxes = [args.attentionAxes];
        }
        else {
            this.attentionAxes = args.attentionAxes;
        }
        this.builtFromSignature = false;
        this.queryShape = null;
        this.keyShape = null;
        this.valueShape = null;
    }
    /**
     * Should be used for testing purposes only.
     */
    get _queryDense() {
        return this.queryDense;
    }
    /**
     * Should be used for testing purposes only.
     */
    get _keyDense() {
        return this.keyDense;
    }
    /**
     * Should be used for testing purposes only.
     */
    get _valueDense() {
        return this.valueDense;
    }
    /**
     * Should be used for testing purposes only.
     */
    get _outputDense() {
        return this.outputDense;
    }
    getConfig() {
        const config = {
            numHeads: this.numHeads,
            keyDim: this.keyDim,
            valueDim: this.valueDim,
            dropout: this.dropout,
            useBias: this.useBias,
            outputShape: this._outputShape,
            attentionAxes: this.attentionAxes,
            kernelInitializer: serializeInitializer(this.kernelInitializer),
            biasInitializer: serializeInitializer(this.biasInitializer),
            kernelRegularizer: serializeRegularizer(this.kernelRegularizer),
            biasRegularizer: serializeRegularizer(this.biasRegularizer),
            activityRegularizer: serializeRegularizer(this.activityRegularizer),
            kernelConstraint: serializeConstraint(this.kernelConstraint),
            biasConstraint: serializeConstraint(this.biasConstraint),
            queryShape: this.queryShape,
            keyShape: this.keyShape,
            valueShape: this.valueShape,
        };
        const baseConfig = super.getConfig();
        Object.assign(config, baseConfig);
        return config;
    }
    static fromConfig(cls, config) {
        // If the layer has a different build() function from the default,
        // we need to trigger the customized build to create weights.
        const queryShape = config['queryShape'];
        const keyShape = config['keyShape'];
        const valueShape = config['valueShape'];
        delete config['queryShape'];
        delete config['keyShape'];
        delete config['valueShape'];
        const layer = new cls(config);
        if ([queryShape, keyShape, valueShape].includes(null)) {
            console.warn('One of dimensions of the input shape is missing. It ' +
                'should have been memorized when the layer was serialized. ' +
                `${cls.toString()} is created without weights.`);
        }
        else {
            layer.buildFromSignature(queryShape, valueShape, keyShape);
        }
        return layer;
    }
    /**
     * Builds layers and variables.
     *
     * Once the method is called, this.builtFromSignature will be set to true.
     */
    buildFromSignature(queryShape, valueShape, keyShape) {
        this.builtFromSignature = true;
        if (keyShape == null) {
            keyShape = valueShape;
        }
        this.queryShape = queryShape;
        this.valueShape = valueShape;
        this.keyShape = keyShape;
        // Not using SymbolicTensors since tf.input() adds a batch dimension to the
        // given shape, therefore giving the tensor the wrong rank.
        const queryRank = queryShape.length;
        const valueRank = valueShape.length;
        const keyRank = keyShape.length;
        const freeDims = queryRank - 1;
        let [einsumEquation, biasAxes, outputRank] = buildProjectionEquation(freeDims, 1, 2);
        this.queryDense = new EinsumDense(Object.assign({ equation: einsumEquation, outputShape: getOutputShape(outputRank - 1, [this.numHeads, this.keyDim]), biasAxes: this.useBias ? biasAxes : null, name: 'query' }, this.getCommonKwargsForSublayer()));
        [einsumEquation, biasAxes, outputRank] =
            buildProjectionEquation(keyRank - 1, 1, 2);
        this.keyDense = new EinsumDense(Object.assign({ equation: einsumEquation, outputShape: getOutputShape(outputRank - 1, [this.numHeads, this.keyDim]), biasAxes: this.useBias ? biasAxes : null, name: 'key' }, this.getCommonKwargsForSublayer()));
        [einsumEquation, biasAxes, outputRank] =
            buildProjectionEquation(valueRank - 1, 1, 2);
        this.valueDense = new EinsumDense(Object.assign({ equation: einsumEquation, outputShape: getOutputShape(outputRank - 1, [this.numHeads, this.valueDim]), biasAxes: this.useBias ? biasAxes : null, name: 'value' }, this.getCommonKwargsForSublayer()));
        // Builds the attention computations for multi-head dot product attention.
        this.buildAttention(outputRank);
        this.outputDense = this.makeOutputDense(freeDims, this.getCommonKwargsForSublayer(), 'attentionOutput');
    }
    getCommonKwargsForSublayer() {
        // Create new clone of kernel/bias initializer, so that we don't reuse
        // the initializer instance, which could lead to same init value since
        // initializer is stateless.
        const kernelInitializer = getInitializer({
            className: this.kernelInitializer.getClassName(),
            config: this.kernelInitializer.getConfig(),
        });
        const biasInitializer = getInitializer({
            className: this.biasInitializer.getClassName(),
            config: this.biasInitializer.getConfig(),
        });
        const commonKwargs = {
            kernelInitializer,
            biasInitializer,
            kernelRegularizer: this.kernelRegularizer,
            biasRegularizer: this.biasRegularizer,
            activityRegularizer: this.activityRegularizer,
            kernelConstraint: this.kernelConstraint,
            biasConstraint: this.biasConstraint,
        };
        return commonKwargs;
    }
    /**
     * Builds the output projection matrix.
     *
     * @param freeDims Number of free dimensions for einsum equation building.
     * @param commonKwargs Common keyword arguments for einsum layer.
     * @param name Name for the projection layer.
     * @returns Projection layer.
     */
    makeOutputDense(freeDims, commonKwargs, name) {
        let outputShape;
        if (this._outputShape) {
            if (!Array.isArray(this._outputShape)) {
                outputShape = [this._outputShape];
            }
            else {
                outputShape = this._outputShape;
            }
        }
        else {
            outputShape = [this.queryShape[this.queryShape.length - 1]];
        }
        const [einsumEquation, biasAxes, outputRank] = buildProjectionEquation(freeDims, 2, outputShape.length);
        return new EinsumDense(Object.assign({ equation: einsumEquation, outputShape: getOutputShape(outputRank - 1, outputShape), biasAxes: this.useBias ? biasAxes : null, name }, commonKwargs));
    }
    /**
     * Builds multi-head dot-product attention computations.
     *
     * This function builds attributes necessary for `computeAttention` to
     * customize attention computation to replace the default dot-product
     * attention.
     *
     * @param rank The rank of query, key, value tensors.
     */
    buildAttention(rank) {
        if (this.attentionAxes == null) {
            this.attentionAxes = [];
            for (let i = 1; i < rank - 2; i++) {
                this.attentionAxes.push(i);
            }
        }
        else {
            this.attentionAxes = [...this.attentionAxes];
        }
        const [dotProductEquation, combineEquation, attnScoresRank] = buildAttentionEquation(rank, this.attentionAxes);
        this.dotProductEquation = dotProductEquation;
        this.combineEquation = combineEquation;
        const normAxes = [];
        const startIdx = attnScoresRank - this.attentionAxes.length;
        for (let i = startIdx; i < attnScoresRank; i++) {
            normAxes.push(i);
        }
        this.softmax = new Softmax({ axis: normAxes });
        this.dropoutLayer = new Dropout({ rate: this.dropout });
    }
    maskedSoftmax(attentionScores, attentionMask) {
        return tidy(() => {
            // Normalize the attention scores to probabilities.
            // `attentionScores` = [B, N, T, S]
            if (attentionMask != null) {
                // The expand dim happens starting from the `numHeads` dimension,
                // (<batchDims>, numHeads, <queryAttentionDims, keyAttentionDims>)
                const maskExpansionAxis = -this.attentionAxes.length * 2 - 1;
                const endIdx = attentionScores.shape.length - attentionMask.shape.length;
                for (let _ = 0; _ < endIdx; _++) {
                    attentionMask = expandDims(attentionMask, maskExpansionAxis);
                }
            }
            return this.softmax.apply(attentionScores, { mask: attentionMask });
        });
    }
    /**
     * Applies Dot-product attention with query, key, value tensors.
     *
     * This function defines the computation inside `call` with projected
     * multi-head Q, K, V inputs. Users can override this function for
     * customized attention implementation.
     *
     * @param query Projected query `Tensor` of shape `(B, T, N, keyDim)`.
     * @param key  Projected key `Tensor` of shape `(B, S, N, keyDim)`.
     * @param value Projected value `Tensor` of shape `(B, S, N, valueDim)`.
     * @param attentionMask A boolean mask of shape `(B, T, S)`, that prevents
     *    attention to certain positions. It is generally not needed if
     *    the `query` and `value` (and/or `key`) are masked.
     * @param training Boolean indicating whether the layer should behave
     *    in training mode (adding dropout) or in inference mode (doing
     *    nothing).
     * @returns attentionOutput: Multi-headed outputs of attention computation.
     * @returns attentionScores: Multi-headed attention weights.
     */
    computeAttention(query, key, value, attentionMask, training) {
        return tidy(() => {
            // Note: Applying scalar multiply at the smaller end of einsum improves
            // XLA performance, but may introduce slight numeric differences in
            // the Transformer attention head.
            query = mul(query, 1.0 / Math.sqrt(this.keyDim));
            // Take the dot product between "query" and "key" to get the raw
            // attention scores.
            let attentionScores = einsum(this.dotProductEquation, key, query);
            attentionScores = this.maskedSoftmax(attentionScores, attentionMask);
            // This is actually dropping out entire tokens to attend to, which might
            // seem a bit unusual, but is taken from the original Transformer paper.
            const attentionScoresDropout = this.dropoutLayer.apply(attentionScores, { training });
            // `contextLayer` = [B, T, N, H]
            const attentionOutput = einsum(this.combineEquation, attentionScoresDropout, value);
            return [attentionOutput, attentionScores];
        });
    }
    apply(inputs, kwargs) {
        var _a;
        if (!kwargs || !kwargs['value']) {
            throw new ValueError('Must pass in `value` argument in `kwargs.`');
        }
        let newInputs;
        newInputs = [inputs, kwargs['value']].concat((_a = kwargs['key']) !== null && _a !== void 0 ? _a : []);
        // TODO(pforderique): Support mask propogation.
        return super.apply(newInputs, kwargs);
    }
    call(query, kwargs) {
        return tidy(() => {
            return this.callAndReturnAttentionScores(query, kwargs)[0];
        });
    }
    /**
     * Exactly like `call` except also returns the attention scores.
     */
    callAndReturnAttentionScores(query, { value, key, useCausalMask, attentionMask, training }) {
        return tidy(() => {
            if (!this.builtFromSignature) {
                this.buildFromSignature(query.shape, value.shape, key ? key.shape : null);
            }
            if (key == null) {
                key = value;
            }
            // TODO(pforderique): Support RaggedTensor inputs.
            attentionMask = this.computeAttentionMask(query, value, attentionMask, useCausalMask);
            //   N = `numAttentionHeads`
            //   H = `sizePerHead`
            // `query` = [B, T, N ,H]
            query = this.queryDense.apply(query);
            // `key` = [B, S, N, H]
            key = this.keyDense.apply(key);
            // `value` = [B, S, N, H]
            value = this.valueDense.apply(value);
            const [attentionOutputPreDense, attentionScores] = this.computeAttention(query, key, value, attentionMask, training);
            const attentionOutput = this.outputDense.apply(attentionOutputPreDense);
            return [attentionOutput, attentionScores];
        });
    }
    /**
     * Computes the attention mask.
     *
     * * The `query`'s mask is reshaped from [B, T] to [B, T, 1].
     * * The `value`'s mask is reshaped from [B, S] to [B, 1, S].
     * * The `key`'s mask is reshaped from [B, S] to [B, 1, S]. The `key`'s
     *   mask is ignored if `key` is `None` or if `key is value`.
     * * If `useCausalMask=true`, then the causal mask is computed. Its shape
     *   is [1, T, S].
     *
     * All defined masks are merged using a logical AND operation (`&`).
     *
     * In general, if the `query` and `value` are masked, then there is no need
     * to define the `attentionMask`.
     *
     * @param query Projected query `Tensor` of shape `(B, T, N, keyDim)`.
     * @param key  Projected key `Tensor` of shape `(B, S, N, keyDim)`.
     * @param value Projected value `Tensor` of shape `(B, S, N, valueDim)`.
     * @param attentionMask A boolean mask of shape `(B, T, S)`, that prevents
     *    attention to certain positions.
     * @param useCausalMask  A boolean to indicate whether to apply a causal
     *    mask to prevent tokens from attending to future tokens (e.g.,
     *    used in a decoder Transformer).
     * @returns attentionMask: A boolean mask of shape `(B, T, S)`, that prevents
     *    attention to certain positions, based on the Keras masks of the
     *    `query`, `key`, `value`, and `attentionMask` tensors, and the
     *    causal mask if `useCausalMask=true`.
     */
    computeAttentionMask(query, value, attentionMask, useCausalMask = false) {
        return tidy(() => {
            let autoMask;
            const queryMask = query.kerasMask;
            const valueMask = value.kerasMask;
            if (queryMask != null) {
                autoMask = queryMask.expandDims(2); // Shape is [B, T, 1]
            }
            if (valueMask != null) {
                const mask = valueMask.expandDims(1); // Shape is [B, 1, S]
                autoMask = autoMask ? logicalAnd(autoMask, mask) : mask;
            }
            if (useCausalMask) {
                // the shape of the causal mask is [1, T, S]
                const mask = this.computeCausalMask(query, value);
                autoMask = autoMask ? logicalAnd(autoMask, mask) : mask;
            }
            if (autoMask != null) {
                // Merge attentionMask & automatic mask, to shape [B, T, S]
                attentionMask = attentionMask ?
                    cast(attentionMask, 'bool').logicalAnd(autoMask) : autoMask;
            }
            return attentionMask;
        });
    }
    /**
     * Computes a causal mask (e.g., for masked self-attention layers).
     *
     * For example, if query and value both contain sequences of length 4,
     * this function returns a boolean `Tensor` equal to:
     *
     * ```
     * [[[true,  false, false, false],
     *   [true,  true,  false, false],
     *   [true,  true,  true,  false],
     *   [true,  true,  true,  true]]]
     * ```
     *
     * @param query query `Tensor` of shape `(B, T, ...)`.
     * @param value value `Tensor` of shape `(B, S, ...)` (defaults to query).
     * @returns mask: A boolean `Tensor` of shape [1, T, S] containing a lower
     *    triangular matrix of shape [T, S].
     */
    computeCausalMask(query, value) {
        return tidy(() => {
            const qSeqLength = query.shape[1];
            const vSeqLength = value ? value.shape[1] : qSeqLength;
            // Create a lower triangular matrix.
            return linalg.bandPart(ones([1, qSeqLength, vSeqLength], 'bool'), -1, 0);
        });
    }
    /**
     *
     * @param inputShapes A list of [queryShape, valueShape] or
     *    [queryShape, valueShape, keyShape]. If no keyShape provided, valueShape
     *    is assumed as the keyShape.
     */
    computeOutputShape(inputShapes) {
        const [queryShape, valueShape, maybeKeyShape] = inputShapes;
        const keyShape = maybeKeyShape !== null && maybeKeyShape !== void 0 ? maybeKeyShape : valueShape;
        if (queryShape.slice(-1)[0] !== valueShape.slice(-1)[0]) {
            throw new ValueError(`The last dimension of 'queryShape' and 'valueShape' must be equal, ` +
                `but are ${queryShape.slice(-1)[0]}, ${valueShape.slice(-1)[0]}. ` +
                `Received: queryShape=${queryShape}, valueShape=${valueShape}`);
        }
        if (!util.arraysEqual(valueShape.slice(1, -1), keyShape.slice(1, -1))) {
            throw new Error(`All dimensions of 'value' and 'key', except the last one, must be ` +
                `equal. Received ${valueShape} and ${keyShape}`);
        }
        if (this._outputShape) {
            return queryShape.slice(0, -1).concat(this._outputShape);
        }
        return queryShape;
    }
}
/** @nocollapse */
MultiHeadAttention.className = 'MultiHeadAttention';
export { MultiHeadAttention };
serialization.registerClass(MultiHeadAttention);
//# sourceMappingURL=data:application/json;base64,eyJ2ZXJzaW9uIjozLCJmaWxlIjoibXVsdGloZWFkX2F0dGVudGlvbi5qcyIsInNvdXJjZVJvb3QiOiIiLCJzb3VyY2VzIjpbIi4uLy4uLy4uLy4uLy4uLy4uLy4uL3RmanMtbGF5ZXJzL3NyYy9sYXllcnMvbmxwL211bHRpaGVhZF9hdHRlbnRpb24udHMiXSwibmFtZXMiOltdLCJtYXBwaW5ncyI6IkFBQUE7Ozs7Ozs7Ozs7Ozs7OztHQWVHO0FBRUg7O0dBRUc7QUFFSCxxRUFBcUU7QUFDckUsT0FBTyxFQUFVLE1BQU0sRUFBRSxNQUFNLEVBQUUsVUFBVSxFQUFFLEdBQUcsRUFBRSxJQUFJLEVBQUUsYUFBYSxFQUFFLElBQUksRUFBRSxJQUFJLEVBQUUsTUFBTSx1QkFBdUIsQ0FBQztBQUVqSCxPQUFPLEVBQUUsSUFBSSxFQUFFLFVBQVUsRUFBRSxNQUFNLDRCQUE0QixDQUFDO0FBQzlELE9BQU8sRUFBb0MsYUFBYSxFQUFFLG1CQUFtQixFQUFFLE1BQU0sbUJBQW1CLENBQUM7QUFDekcsT0FBTyxFQUFFLEtBQUssRUFBNkIsTUFBTSx1QkFBdUIsQ0FBQztBQUN6RSxPQUFPLEVBQUUsVUFBVSxFQUFFLE1BQU0sY0FBYyxDQUFDO0FBQzFDLE9BQU8sRUFBc0MsY0FBYyxFQUFFLG9CQUFvQixFQUFFLE1BQU0sb0JBQW9CLENBQUM7QUFFOUcsT0FBTyxFQUFzQyxjQUFjLEVBQUUsb0JBQW9CLEVBQUUsTUFBTSxvQkFBb0IsQ0FBQztBQUU5RyxPQUFPLEVBQUUsT0FBTyxFQUFFLE1BQU0seUJBQXlCLENBQUM7QUFDbEQsT0FBTyxFQUFFLE9BQU8sRUFBRSxNQUFNLFNBQVMsQ0FBQztBQUNsQyxPQUFPLEVBQUUsV0FBVyxFQUFFLE1BQU0sZ0JBQWdCLENBQUM7QUFFN0MsTUFBTSxRQUFRLEdBQUcsNEJBQTRCLENBQUMsS0FBSyxDQUFDLEVBQUUsQ0FBQyxDQUFDO0FBQ3hEOzs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7R0FxQkc7QUFDSCxTQUFTLHNCQUFzQixDQUM3QixJQUFZLEVBQUUsUUFBa0I7SUFFaEMsTUFBTSxpQkFBaUIsR0FBRyxRQUFRLENBQUMsS0FBSyxDQUFDLENBQUMsRUFBRSxJQUFJLENBQUMsQ0FBQztJQUNsRCxxQ0FBcUM7SUFDckMsTUFBTSxjQUFjLEdBQUcsQ0FBQyxHQUFHLFFBQVEsRUFBRSxJQUFJLEdBQUcsQ0FBQyxDQUFDLENBQUM7SUFDL0MsTUFBTSxTQUFTLEdBQUcsRUFBRSxDQUFDO0lBQ3JCLEtBQUssTUFBTSxDQUFDLElBQUksS0FBSyxDQUFDLElBQUksQ0FBQyxDQUFDLElBQUksRUFBRSxFQUFFO1FBQ2xDLElBQUksQ0FBQyxjQUFjLENBQUMsUUFBUSxDQUFDLENBQUMsQ0FBQyxFQUFFO1lBQy9CLFNBQVMsQ0FBQyxJQUFJLENBQUMsQ0FBQyxDQUFDLENBQUM7U0FDbkI7S0FDRjtJQUNELElBQUksWUFBWSxHQUFHLElBQUksQ0FBQztJQUN4QixJQUFJLGNBQWMsR0FBRyxFQUFFLENBQUM7SUFDeEIsS0FBSyxJQUFJLENBQUMsR0FBRyxDQUFDLEVBQUUsQ0FBQyxHQUFHLElBQUksRUFBRSxDQUFDLEVBQUUsRUFBRTtRQUM3QixJQUFJLFNBQVMsQ0FBQyxRQUFRLENBQUMsQ0FBQyxDQUFDLElBQUksQ0FBQyxLQUFLLElBQUksR0FBRyxDQUFDLEVBQUU7WUFDM0MsY0FBYyxJQUFJLGlCQUFpQixDQUFDLENBQUMsQ0FBQyxDQUFDO1NBQ3hDO2FBQU07WUFDTCxjQUFjLElBQUksUUFBUSxDQUFDLFlBQVksQ0FBQyxDQUFDO1lBQ3pDLFlBQVksRUFBRSxDQUFDO1NBQ2hCO0tBQ0Y7SUFFRCxNQUFNLGVBQWUsR0FDbkIsU0FBUyxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLGlCQUFpQixDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsTUFBTSxDQUMvQyxRQUFRLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsaUJBQWlCLENBQUMsQ0FBQyxDQUFDLENBQUMsRUFDdkMsUUFBUSxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLGNBQWMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUNyQyxDQUFDLElBQUksQ0FBQyxFQUFFLENBQUMsQ0FBQztJQUNYLE1BQU0sY0FBYyxHQUFHLGlCQUFpQixDQUFDLElBQUksQ0FBQyxFQUFFLENBQUMsQ0FBQztJQUVsRCxNQUFNLGtCQUFrQixHQUN0QixHQUFHLGNBQWMsSUFBSSxjQUFjLEtBQUssZUFBZSxFQUFFLENBQUM7SUFDNUQsTUFBTSxjQUFjLEdBQUcsZUFBZSxDQUFDLE1BQU0sQ0FBQztJQUM5QyxNQUFNLGVBQWUsR0FDbkIsR0FBRyxlQUFlLElBQUksY0FBYyxLQUFLLGNBQWMsRUFBRSxDQUFDO0lBRTVELE9BQU8sQ0FBQyxrQkFBa0IsRUFBRSxlQUFlLEVBQUUsY0FBYyxDQUFDLENBQUM7QUFDL0QsQ0FBQztBQUVEOztHQUVHO0FBQ0gsU0FBUyx1QkFBdUIsQ0FDOUIsUUFBZ0IsRUFBRSxTQUFpQixFQUFFLFVBQWtCO0lBRXZELElBQUksUUFBUSxHQUFHLEVBQUUsQ0FBQztJQUNsQixJQUFJLFNBQVMsR0FBRyxFQUFFLENBQUM7SUFDbkIsSUFBSSxTQUFTLEdBQUcsRUFBRSxDQUFDO0lBQ25CLElBQUksUUFBUSxHQUFHLEVBQUUsQ0FBQztJQUNsQixJQUFJLFlBQVksR0FBRyxDQUFDLENBQUM7SUFFckIsS0FBSyxJQUFJLENBQUMsR0FBRyxDQUFDLEVBQUUsQ0FBQyxHQUFHLFFBQVEsRUFBRSxDQUFDLEVBQUUsRUFBRTtRQUNqQyxNQUFNLElBQUksR0FBRyxRQUFRLENBQUMsQ0FBQyxHQUFHLFlBQVksQ0FBQyxDQUFDO1FBQ3hDLFFBQVEsSUFBSSxJQUFJLENBQUM7UUFDakIsU0FBUyxJQUFJLElBQUksQ0FBQztLQUNuQjtJQUVELFlBQVksSUFBSSxRQUFRLENBQUM7SUFDekIsS0FBSyxJQUFJLENBQUMsR0FBRyxDQUFDLEVBQUUsQ0FBQyxHQUFHLFNBQVMsRUFBRSxDQUFDLEVBQUUsRUFBRTtRQUNsQyxNQUFNLElBQUksR0FBRyxRQUFRLENBQUMsQ0FBQyxHQUFHLFlBQVksQ0FBQyxDQUFDO1FBQ3hDLFFBQVEsSUFBSSxJQUFJLENBQUM7UUFDakIsU0FBUyxJQUFJLElBQUksQ0FBQztLQUNuQjtJQUVELFlBQVksSUFBSSxTQUFTLENBQUM7SUFDMUIsS0FBSyxJQUFJLENBQUMsR0FBRyxDQUFDLEVBQUUsQ0FBQyxHQUFHLFVBQVUsRUFBRSxDQUFDLEVBQUUsRUFBRTtRQUNuQyxNQUFNLElBQUksR0FBRyxRQUFRLENBQUMsQ0FBQyxHQUFHLFlBQVksQ0FBQyxDQUFDO1FBQ3hDLFNBQVMsSUFBSSxJQUFJLENBQUM7UUFDbEIsU0FBUyxJQUFJLElBQUksQ0FBQztRQUNsQixRQUFRLElBQUksSUFBSSxDQUFDO0tBQ2xCO0lBRUQsTUFBTSxRQUFRLEdBQUcsR0FBRyxRQUFRLElBQUksU0FBUyxLQUFLLFNBQVMsRUFBRSxDQUFDO0lBQzFELE9BQU8sQ0FBQyxRQUFRLEVBQUUsUUFBUSxFQUFFLFNBQVMsQ0FBQyxNQUFNLENBQUMsQ0FBQztBQUNoRCxDQUFDO0FBRUQsU0FBUyxjQUFjLENBQ3JCLFVBQWtCLEVBQUUsYUFBdUI7SUFFM0MsTUFBTSxXQUFXLEdBQ2YsS0FBSyxDQUFDLFVBQVUsR0FBRyxhQUFhLENBQUMsTUFBTSxDQUFDLENBQUMsSUFBSSxDQUFDLElBQUksQ0FBQyxDQUFDLE1BQU0sQ0FBQyxhQUFhLENBQUMsQ0FBQztJQUM1RSxPQUFPLFdBQVcsQ0FBQztBQUNyQixDQUFDO0FBMkhEOzs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7R0E0REc7QUFDSCxNQUFhLGtCQUFtQixTQUFRLEtBQUs7SUE4QjNDLFlBQVksSUFBNEI7O1FBQ3RDLEtBQUssQ0FBQyxJQUFJLENBQUMsQ0FBQztRQUNaLElBQUksQ0FBQyxlQUFlLEdBQUcsSUFBSSxDQUFDO1FBQzVCLElBQUksQ0FBQyxRQUFRLEdBQUcsSUFBSSxDQUFDLFFBQVEsQ0FBQztRQUM5QixJQUFJLENBQUMsTUFBTSxHQUFHLElBQUksQ0FBQyxNQUFNLENBQUM7UUFDMUIsSUFBSSxDQUFDLFFBQVEsR0FBRyxNQUFBLElBQUksQ0FBQyxRQUFRLG1DQUFJLElBQUksQ0FBQyxNQUFNLENBQUM7UUFDN0MsSUFBSSxDQUFDLE9BQU8sR0FBRyxNQUFBLElBQUksQ0FBQyxPQUFPLG1DQUFJLENBQUMsQ0FBQztRQUNqQyxJQUFJLENBQUMsT0FBTyxHQUFHLE1BQUEsSUFBSSxDQUFDLE9BQU8sbUNBQUksSUFBSSxDQUFDO1FBQ3BDLElBQUksQ0FBQyxZQUFZLEdBQUcsSUFBSSxDQUFDLFdBQVcsQ0FBQztRQUNyQyxJQUFJLENBQUMsaUJBQWlCLEdBQUcsY0FBYyxDQUNyQyxNQUFBLElBQUksQ0FBQyxpQkFBaUIsbUNBQUksZUFBZSxDQUFDLENBQUM7UUFDN0MsSUFBSSxDQUFDLGVBQWUsR0FBRyxjQUFjLENBQUMsTUFBQSxJQUFJLENBQUMsZUFBZSxtQ0FBSSxPQUFPLENBQUMsQ0FBQztRQUN2RSxJQUFJLENBQUMsaUJBQWlCLEdBQUcsY0FBYyxDQUFDLElBQUksQ0FBQyxpQkFBaUIsQ0FBQyxDQUFDO1FBQ2hFLElBQUksQ0FBQyxlQUFlLEdBQUcsY0FBYyxDQUFDLElBQUksQ0FBQyxlQUFlLENBQUMsQ0FBQztRQUM1RCxJQUFJLENBQUMsbUJBQW1CLEdBQUcsY0FBYyxDQUFDLElBQUksQ0FBQyxtQkFBbUIsQ0FBQyxDQUFDO1FBQ3BFLElBQUksQ0FBQyxnQkFBZ0IsR0FBRyxhQUFhLENBQUMsSUFBSSxDQUFDLGdCQUFnQixDQUFDLENBQUM7UUFDN0QsSUFBSSxDQUFDLGNBQWMsR0FBRyxhQUFhLENBQUMsSUFBSSxDQUFDLGNBQWMsQ0FBQyxDQUFDO1FBQ3pELElBQUksSUFBSSxDQUFDLGFBQWEsSUFBSSxJQUFJLElBQUksQ0FBQyxLQUFLLENBQUMsT0FBTyxDQUFDLElBQUksQ0FBQyxhQUFhLENBQUMsRUFBRTtZQUNwRSxJQUFJLENBQUMsYUFBYSxHQUFHLENBQUMsSUFBSSxDQUFDLGFBQWEsQ0FBQyxDQUFDO1NBQzNDO2FBQU07WUFDTCxJQUFJLENBQUMsYUFBYSxHQUFHLElBQUksQ0FBQyxhQUF5QixDQUFDO1NBQ3JEO1FBQ0QsSUFBSSxDQUFDLGtCQUFrQixHQUFHLEtBQUssQ0FBQztRQUNoQyxJQUFJLENBQUMsVUFBVSxHQUFHLElBQUksQ0FBQztRQUN2QixJQUFJLENBQUMsUUFBUSxHQUFHLElBQUksQ0FBQztRQUNyQixJQUFJLENBQUMsVUFBVSxHQUFHLElBQUksQ0FBQztJQUN6QixDQUFDO0lBRUQ7O09BRUc7SUFDSCxJQUFJLFdBQVc7UUFDYixPQUFPLElBQUksQ0FBQyxVQUFVLENBQUM7SUFDekIsQ0FBQztJQUVEOztPQUVHO0lBQ0gsSUFBSSxTQUFTO1FBQ1gsT0FBTyxJQUFJLENBQUMsUUFBUSxDQUFDO0lBQ3ZCLENBQUM7SUFFRDs7T0FFRztJQUNILElBQUksV0FBVztRQUNiLE9BQU8sSUFBSSxDQUFDLFVBQVUsQ0FBQztJQUN6QixDQUFDO0lBRUQ7O09BRUc7SUFDSCxJQUFJLFlBQVk7UUFDZCxPQUFPLElBQUksQ0FBQyxXQUFXLENBQUM7SUFDMUIsQ0FBQztJQUVRLFNBQVM7UUFDaEIsTUFBTSxNQUFNLEdBQUc7WUFDYixRQUFRLEVBQUUsSUFBSSxDQUFDLFFBQVE7WUFDdkIsTUFBTSxFQUFFLElBQUksQ0FBQyxNQUFNO1lBQ25CLFFBQVEsRUFBRSxJQUFJLENBQUMsUUFBUTtZQUN2QixPQUFPLEVBQUUsSUFBSSxDQUFDLE9BQU87WUFDckIsT0FBTyxFQUFFLElBQUksQ0FBQyxPQUFPO1lBQ3JCLFdBQVcsRUFBRSxJQUFJLENBQUMsWUFBWTtZQUM5QixhQUFhLEVBQUUsSUFBSSxDQUFDLGFBQWE7WUFDakMsaUJBQWlCLEVBQUUsb0JBQW9CLENBQUMsSUFBSSxDQUFDLGlCQUFpQixDQUFDO1lBQy9ELGVBQWUsRUFBRSxvQkFBb0IsQ0FBQyxJQUFJLENBQUMsZUFBZSxDQUFDO1lBQzNELGlCQUFpQixFQUFFLG9CQUFvQixDQUFDLElBQUksQ0FBQyxpQkFBaUIsQ0FBQztZQUMvRCxlQUFlLEVBQUUsb0JBQW9CLENBQUMsSUFBSSxDQUFDLGVBQWUsQ0FBQztZQUMzRCxtQkFBbUIsRUFBRSxvQkFBb0IsQ0FBQyxJQUFJLENBQUMsbUJBQW1CLENBQUM7WUFDbkUsZ0JBQWdCLEVBQUUsbUJBQW1CLENBQUMsSUFBSSxDQUFDLGdCQUFnQixDQUFDO1lBQzVELGNBQWMsRUFBRSxtQkFBbUIsQ0FBQyxJQUFJLENBQUMsY0FBYyxDQUFDO1lBQ3hELFVBQVUsRUFBRSxJQUFJLENBQUMsVUFBVTtZQUMzQixRQUFRLEVBQUUsSUFBSSxDQUFDLFFBQVE7WUFDdkIsVUFBVSxFQUFFLElBQUksQ0FBQyxVQUFVO1NBQzVCLENBQUM7UUFDRixNQUFNLFVBQVUsR0FBRyxLQUFLLENBQUMsU0FBUyxFQUFFLENBQUM7UUFDckMsTUFBTSxDQUFDLE1BQU0sQ0FBQyxNQUFNLEVBQUUsVUFBVSxDQUFDLENBQUM7UUFDbEMsT0FBTyxNQUFNLENBQUM7SUFDaEIsQ0FBQztJQUVELE1BQU0sQ0FBVSxVQUFVLENBQ3hCLEdBQTZDLEVBQzdDLE1BQWdDO1FBRWhDLGtFQUFrRTtRQUNsRSw2REFBNkQ7UUFDN0QsTUFBTSxVQUFVLEdBQUcsTUFBTSxDQUFDLFlBQVksQ0FBVSxDQUFDO1FBQ2pELE1BQU0sUUFBUSxHQUFHLE1BQU0sQ0FBQyxVQUFVLENBQVUsQ0FBQztRQUM3QyxNQUFNLFVBQVUsR0FBRyxNQUFNLENBQUMsWUFBWSxDQUFVLENBQUM7UUFDakQsT0FBTyxNQUFNLENBQUMsWUFBWSxDQUFDLENBQUM7UUFDNUIsT0FBTyxNQUFNLENBQUMsVUFBVSxDQUFDLENBQUM7UUFDMUIsT0FBTyxNQUFNLENBQUMsWUFBWSxDQUFDLENBQUM7UUFFNUIsTUFBTSxLQUFLLEdBQUcsSUFBSSxHQUFHLENBQUMsTUFBTSxDQUFDLENBQUM7UUFDOUIsSUFBSSxDQUFDLFVBQVUsRUFBRSxRQUFRLEVBQUUsVUFBVSxDQUFDLENBQUMsUUFBUSxDQUFDLElBQUksQ0FBQyxFQUFFO1lBQ25ELE9BQU8sQ0FBQyxJQUFJLENBQ1Isc0RBQXNEO2dCQUN0RCw0REFBNEQ7Z0JBQzVELEdBQUcsR0FBRyxDQUFDLFFBQVEsRUFBRSw4QkFBOEIsQ0FDbEQsQ0FBQztTQUNMO2FBQU07WUFDSixLQUF1QyxDQUFDLGtCQUFrQixDQUN6RCxVQUFVLEVBQUUsVUFBVSxFQUFFLFFBQVEsQ0FBQyxDQUFDO1NBQ3JDO1FBQ0QsT0FBTyxLQUFLLENBQUM7SUFDZixDQUFDO0lBRUQ7Ozs7T0FJRztJQUNILGtCQUFrQixDQUNoQixVQUFpQixFQUNqQixVQUFpQixFQUNqQixRQUFnQjtRQUVoQixJQUFJLENBQUMsa0JBQWtCLEdBQUcsSUFBSSxDQUFDO1FBRS9CLElBQUksUUFBUSxJQUFJLElBQUksRUFBRTtZQUNwQixRQUFRLEdBQUcsVUFBVSxDQUFDO1NBQ3ZCO1FBRUQsSUFBSSxDQUFDLFVBQVUsR0FBRyxVQUFVLENBQUM7UUFDN0IsSUFBSSxDQUFDLFVBQVUsR0FBRyxVQUFVLENBQUM7UUFDN0IsSUFBSSxDQUFDLFFBQVEsR0FBRyxRQUFRLENBQUM7UUFFekIsMkVBQTJFO1FBQzNFLDJEQUEyRDtRQUMzRCxNQUFNLFNBQVMsR0FBRyxVQUFVLENBQUMsTUFBTSxDQUFDO1FBQ3BDLE1BQU0sU0FBUyxHQUFHLFVBQVUsQ0FBQyxNQUFNLENBQUM7UUFDcEMsTUFBTSxPQUFPLEdBQUcsUUFBUSxDQUFDLE1BQU0sQ0FBQztRQUVoQyxNQUFNLFFBQVEsR0FBRyxTQUFTLEdBQUcsQ0FBQyxDQUFDO1FBQy9CLElBQUksQ0FBQyxjQUFjLEVBQUUsUUFBUSxFQUFFLFVBQVUsQ0FBQyxHQUN4Qyx1QkFBdUIsQ0FBQyxRQUFRLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDO1FBQzFDLElBQUksQ0FBQyxVQUFVLEdBQUcsSUFBSSxXQUFXLGlCQUMvQixRQUFRLEVBQUUsY0FBYyxFQUN4QixXQUFXLEVBQUUsY0FBYyxDQUFDLFVBQVUsR0FBRyxDQUFDLEVBQUUsQ0FBQyxJQUFJLENBQUMsUUFBUSxFQUFFLElBQUksQ0FBQyxNQUFNLENBQUMsQ0FBQyxFQUN6RSxRQUFRLEVBQUUsSUFBSSxDQUFDLE9BQU8sQ0FBQyxDQUFDLENBQUMsUUFBUSxDQUFDLENBQUMsQ0FBQyxJQUFJLEVBQ3hDLElBQUksRUFBRSxPQUFPLElBQ1YsSUFBSSxDQUFDLDBCQUEwQixFQUFFLEVBQ3BDLENBQUM7UUFFSCxDQUFDLGNBQWMsRUFBRSxRQUFRLEVBQUUsVUFBVSxDQUFDO1lBQ3BDLHVCQUF1QixDQUFDLE9BQU8sR0FBRyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDO1FBQzdDLElBQUksQ0FBQyxRQUFRLEdBQUcsSUFBSSxXQUFXLGlCQUM3QixRQUFRLEVBQUUsY0FBYyxFQUN4QixXQUFXLEVBQUUsY0FBYyxDQUFDLFVBQVUsR0FBRyxDQUFDLEVBQUUsQ0FBQyxJQUFJLENBQUMsUUFBUSxFQUFFLElBQUksQ0FBQyxNQUFNLENBQUMsQ0FBQyxFQUN6RSxRQUFRLEVBQUUsSUFBSSxDQUFDLE9BQU8sQ0FBQyxDQUFDLENBQUMsUUFBUSxDQUFDLENBQUMsQ0FBQyxJQUFJLEVBQ3hDLElBQUksRUFBRSxLQUFLLElBQ1IsSUFBSSxDQUFDLDBCQUEwQixFQUFFLEVBQ3BDLENBQUM7UUFFSCxDQUFDLGNBQWMsRUFBRSxRQUFRLEVBQUUsVUFBVSxDQUFDO1lBQ3BDLHVCQUF1QixDQUFDLFNBQVMsR0FBRyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDO1FBQy9DLElBQUksQ0FBQyxVQUFVLEdBQUcsSUFBSSxXQUFXLGlCQUMvQixRQUFRLEVBQUUsY0FBYyxFQUN4QixXQUFXLEVBQUUsY0FBYyxDQUN6QixVQUFVLEdBQUcsQ0FBQyxFQUFFLENBQUMsSUFBSSxDQUFDLFFBQVEsRUFBRSxJQUFJLENBQUMsUUFBUSxDQUFDLENBQUMsRUFDakQsUUFBUSxFQUFFLElBQUksQ0FBQyxPQUFPLENBQUMsQ0FBQyxDQUFDLFFBQVEsQ0FBQyxDQUFDLENBQUMsSUFBSSxFQUN4QyxJQUFJLEVBQUUsT0FBTyxJQUNWLElBQUksQ0FBQywwQkFBMEIsRUFBRSxFQUNwQyxDQUFDO1FBRUgsMEVBQTBFO1FBQzFFLElBQUksQ0FBQyxjQUFjLENBQUMsVUFBVSxDQUFDLENBQUM7UUFDaEMsSUFBSSxDQUFDLFdBQVcsR0FBRyxJQUFJLENBQUMsZUFBZSxDQUNyQyxRQUFRLEVBQ1IsSUFBSSxDQUFDLDBCQUEwQixFQUFFLEVBQ2pDLGlCQUFpQixDQUNsQixDQUFDO0lBQ0osQ0FBQztJQUVPLDBCQUEwQjtRQUNoQyxzRUFBc0U7UUFDdEUsc0VBQXNFO1FBQ3RFLDRCQUE0QjtRQUM1QixNQUFNLGlCQUFpQixHQUFHLGNBQWMsQ0FBQztZQUN2QyxTQUFTLEVBQUUsSUFBSSxDQUFDLGlCQUFpQixDQUFDLFlBQVksRUFBRTtZQUNoRCxNQUFNLEVBQUUsSUFBSSxDQUFDLGlCQUFpQixDQUFDLFNBQVMsRUFBRTtTQUMzQyxDQUFDLENBQUM7UUFDSCxNQUFNLGVBQWUsR0FBRyxjQUFjLENBQUM7WUFDckMsU0FBUyxFQUFFLElBQUksQ0FBQyxlQUFlLENBQUMsWUFBWSxFQUFFO1lBQzlDLE1BQU0sRUFBRSxJQUFJLENBQUMsZUFBZSxDQUFDLFNBQVMsRUFBRTtTQUN6QyxDQUFDLENBQUM7UUFFSCxNQUFNLFlBQVksR0FBRztZQUNuQixpQkFBaUI7WUFDakIsZUFBZTtZQUNmLGlCQUFpQixFQUFFLElBQUksQ0FBQyxpQkFBaUI7WUFDekMsZUFBZSxFQUFFLElBQUksQ0FBQyxlQUFlO1lBQ3JDLG1CQUFtQixFQUFFLElBQUksQ0FBQyxtQkFBbUI7WUFDN0MsZ0JBQWdCLEVBQUUsSUFBSSxDQUFDLGdCQUFnQjtZQUN2QyxjQUFjLEVBQUUsSUFBSSxDQUFDLGNBQWM7U0FDcEMsQ0FBQztRQUNGLE9BQU8sWUFBWSxDQUFDO0lBQ3RCLENBQUM7SUFFRDs7Ozs7OztPQU9HO0lBQ0ssZUFBZSxDQUNyQixRQUFnQixFQUFFLFlBQW9CLEVBQUUsSUFBYTtRQUVyRCxJQUFJLFdBQWtCLENBQUM7UUFDdkIsSUFBSSxJQUFJLENBQUMsWUFBWSxFQUFFO1lBQ3JCLElBQUksQ0FBQyxLQUFLLENBQUMsT0FBTyxDQUFDLElBQUksQ0FBQyxZQUFZLENBQUMsRUFBRTtnQkFDckMsV0FBVyxHQUFHLENBQUMsSUFBSSxDQUFDLFlBQVksQ0FBQyxDQUFDO2FBQ25DO2lCQUFNO2dCQUNMLFdBQVcsR0FBRyxJQUFJLENBQUMsWUFBWSxDQUFDO2FBQ2pDO1NBQ0Y7YUFBTTtZQUNMLFdBQVcsR0FBRyxDQUFDLElBQUksQ0FBQyxVQUFVLENBQUMsSUFBSSxDQUFDLFVBQVUsQ0FBQyxNQUFNLEdBQUcsQ0FBQyxDQUFDLENBQUMsQ0FBQztTQUM3RDtRQUVELE1BQU0sQ0FBQyxjQUFjLEVBQUUsUUFBUSxFQUFFLFVBQVUsQ0FBQyxHQUMxQyx1QkFBdUIsQ0FBQyxRQUFRLEVBQUUsQ0FBQyxFQUFFLFdBQVcsQ0FBQyxNQUFNLENBQUMsQ0FBQztRQUUzRCxPQUFPLElBQUksV0FBVyxpQkFDcEIsUUFBUSxFQUFFLGNBQWMsRUFDeEIsV0FBVyxFQUFFLGNBQWMsQ0FBQyxVQUFVLEdBQUcsQ0FBQyxFQUFFLFdBQVcsQ0FBQyxFQUN4RCxRQUFRLEVBQUUsSUFBSSxDQUFDLE9BQU8sQ0FBQyxDQUFDLENBQUMsUUFBUSxDQUFDLENBQUMsQ0FBQyxJQUFJLEVBQ3hDLElBQUksSUFDRCxZQUFZLEVBQ2YsQ0FBQztJQUNMLENBQUM7SUFFRDs7Ozs7Ozs7T0FRRztJQUNPLGNBQWMsQ0FBQyxJQUFZO1FBQ25DLElBQUksSUFBSSxDQUFDLGFBQWEsSUFBSSxJQUFJLEVBQUU7WUFDOUIsSUFBSSxDQUFDLGFBQWEsR0FBRyxFQUFFLENBQUM7WUFDeEIsS0FBSyxJQUFJLENBQUMsR0FBRyxDQUFDLEVBQUUsQ0FBQyxHQUFHLElBQUksR0FBRyxDQUFDLEVBQUUsQ0FBQyxFQUFFLEVBQUU7Z0JBQ2pDLElBQUksQ0FBQyxhQUFhLENBQUMsSUFBSSxDQUFDLENBQUMsQ0FBQyxDQUFDO2FBQzVCO1NBQ0Y7YUFBTTtZQUNMLElBQUksQ0FBQyxhQUFhLEdBQUcsQ0FBQyxHQUFHLElBQUksQ0FBQyxhQUFhLENBQUMsQ0FBQztTQUM5QztRQUVELE1BQU0sQ0FBQyxrQkFBa0IsRUFBRSxlQUFlLEVBQUUsY0FBYyxDQUFDLEdBQ3pELHNCQUFzQixDQUFDLElBQUksRUFBRSxJQUFJLENBQUMsYUFBYSxDQUFDLENBQUM7UUFDbkQsSUFBSSxDQUFDLGtCQUFrQixHQUFHLGtCQUFrQixDQUFDO1FBQzdDLElBQUksQ0FBQyxlQUFlLEdBQUcsZUFBZSxDQUFDO1FBRXZDLE1BQU0sUUFBUSxHQUFhLEVBQUUsQ0FBQztRQUM5QixNQUFNLFFBQVEsR0FBRyxjQUFjLEdBQUcsSUFBSSxDQUFDLGFBQWEsQ0FBQyxNQUFNLENBQUM7UUFDNUQsS0FBSyxJQUFJLENBQUMsR0FBRyxRQUFRLEVBQUUsQ0FBQyxHQUFHLGNBQWMsRUFBRSxDQUFDLEVBQUUsRUFBRTtZQUM5QyxRQUFRLENBQUMsSUFBSSxDQUFDLENBQUMsQ0FBQyxDQUFDO1NBQ2xCO1FBQ0QsSUFBSSxDQUFDLE9BQU8sR0FBRyxJQUFJLE9BQU8sQ0FBQyxFQUFDLElBQUksRUFBRSxRQUFRLEVBQUMsQ0FBQyxDQUFDO1FBQzdDLElBQUksQ0FBQyxZQUFZLEdBQUcsSUFBSSxPQUFPLENBQUMsRUFBQyxJQUFJLEVBQUUsSUFBSSxDQUFDLE9BQU8sRUFBQyxDQUFDLENBQUM7SUFDeEQsQ0FBQztJQUVTLGFBQWEsQ0FDckIsZUFBdUIsRUFBRSxhQUFzQjtRQUUvQyxPQUFPLElBQUksQ0FBQyxHQUFHLEVBQUU7WUFDZixtREFBbUQ7WUFDbkQsbUNBQW1DO1lBQ25DLElBQUksYUFBYSxJQUFJLElBQUksRUFBRTtnQkFDekIsaUVBQWlFO2dCQUNqRSxrRUFBa0U7Z0JBQ2xFLE1BQU0saUJBQWlCLEdBQUcsQ0FBQyxJQUFJLENBQUMsYUFBYSxDQUFDLE1BQU0sR0FBRyxDQUFDLEdBQUcsQ0FBQyxDQUFDO2dCQUM3RCxNQUFNLE1BQU0sR0FDVixlQUFlLENBQUMsS0FBSyxDQUFDLE1BQU0sR0FBRyxhQUFhLENBQUMsS0FBSyxDQUFDLE1BQU0sQ0FBQztnQkFDNUQsS0FBSyxJQUFJLENBQUMsR0FBRyxDQUFDLEVBQUUsQ0FBQyxHQUFHLE1BQU0sRUFBRSxDQUFDLEVBQUUsRUFBRTtvQkFDL0IsYUFBYSxHQUFHLFVBQVUsQ0FBQyxhQUFhLEVBQUUsaUJBQWlCLENBQUMsQ0FBQztpQkFDOUQ7YUFDRjtZQUNELE9BQU8sSUFBSSxDQUFDLE9BQU8sQ0FBQyxLQUFLLENBQ3ZCLGVBQWUsRUFBRSxFQUFDLElBQUksRUFBRSxhQUFhLEVBQUMsQ0FBVyxDQUFDO1FBQ3RELENBQUMsQ0FBQyxDQUFDO0lBQ0wsQ0FBQztJQUVEOzs7Ozs7Ozs7Ozs7Ozs7Ozs7T0FrQkc7SUFDTyxnQkFBZ0IsQ0FDeEIsS0FBYSxFQUNiLEdBQVcsRUFDWCxLQUFhLEVBQ2IsYUFBc0IsRUFDdEIsUUFBa0I7UUFFbEIsT0FBTyxJQUFJLENBQUMsR0FBRyxFQUFFO1lBQ2YsdUVBQXVFO1lBQ3ZFLG1FQUFtRTtZQUNuRSxrQ0FBa0M7WUFDbEMsS0FBSyxHQUFHLEdBQUcsQ0FBQyxLQUFLLEVBQUUsR0FBRyxHQUFHLElBQUksQ0FBQyxJQUFJLENBQUMsSUFBSSxDQUFDLE1BQU0sQ0FBQyxDQUFDLENBQUM7WUFFakQsZ0VBQWdFO1lBQ2hFLG9CQUFvQjtZQUNwQixJQUFJLGVBQWUsR0FBRyxNQUFNLENBQUMsSUFBSSxDQUFDLGtCQUFrQixFQUFFLEdBQUcsRUFBRSxLQUFLLENBQUMsQ0FBQztZQUVsRSxlQUFlLEdBQUcsSUFBSSxDQUFDLGFBQWEsQ0FBQyxlQUFlLEVBQUUsYUFBYSxDQUFDLENBQUM7WUFFckUsd0VBQXdFO1lBQ3hFLHdFQUF3RTtZQUN4RSxNQUFNLHNCQUFzQixHQUMxQixJQUFJLENBQUMsWUFBWSxDQUFDLEtBQUssQ0FBQyxlQUFlLEVBQUUsRUFBQyxRQUFRLEVBQUMsQ0FBVyxDQUFDO1lBRWpFLGdDQUFnQztZQUNoQyxNQUFNLGVBQWUsR0FDbkIsTUFBTSxDQUFDLElBQUksQ0FBQyxlQUFlLEVBQUUsc0JBQXNCLEVBQUUsS0FBSyxDQUFDLENBQUM7WUFFOUQsT0FBTyxDQUFDLGVBQWUsRUFBRSxlQUFlLENBQUMsQ0FBQztRQUM1QyxDQUFDLENBQUMsQ0FBQztJQUNMLENBQUM7SUFFUSxLQUFLLENBQ1osTUFBK0IsRUFDL0IsTUFBZTs7UUFFZixJQUFJLENBQUMsTUFBTSxJQUFJLENBQUMsTUFBTSxDQUFDLE9BQU8sQ0FBQyxFQUFFO1lBQy9CLE1BQU0sSUFBSSxVQUFVLENBQUMsNENBQTRDLENBQUMsQ0FBQztTQUNwRTtRQUNELElBQUksU0FBb0MsQ0FBQztRQUV6QyxTQUFTLEdBQUcsQ0FBQyxNQUFNLEVBQUUsTUFBTSxDQUFDLE9BQU8sQ0FBQyxDQUFDLENBQUMsTUFBTSxDQUFDLE1BQUEsTUFBTSxDQUFDLEtBQUssQ0FBQyxtQ0FBSSxFQUFFLENBQUMsQ0FBQztRQUVsRSwrQ0FBK0M7UUFDL0MsT0FBTyxLQUFLLENBQUMsS0FBSyxDQUFDLFNBQVMsRUFBRSxNQUFNLENBQUMsQ0FBQztJQUN4QyxDQUFDO0lBRVEsSUFBSSxDQUNYLEtBQWEsRUFBRSxNQUFpQztRQUVoRCxPQUFPLElBQUksQ0FBQyxHQUFHLEVBQUU7WUFDZixPQUFPLElBQUksQ0FBQyw0QkFBNEIsQ0FBQyxLQUFLLEVBQUUsTUFBTSxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDN0QsQ0FBQyxDQUFDLENBQUM7SUFDTCxDQUFDO0lBRUQ7O09BRUc7SUFDSCw0QkFBNEIsQ0FDMUIsS0FBYSxFQUNiLEVBQ0UsS0FBSyxFQUNMLEdBQUcsRUFDSCxhQUFhLEVBQ2IsYUFBYSxFQUNiLFFBQVEsRUFDa0I7UUFFNUIsT0FBTyxJQUFJLENBQUMsR0FBRyxFQUFFO1lBQ2YsSUFBSSxDQUFDLElBQUksQ0FBQyxrQkFBa0IsRUFBRTtnQkFDNUIsSUFBSSxDQUFDLGtCQUFrQixDQUNyQixLQUFLLENBQUMsS0FBSyxFQUNYLEtBQUssQ0FBQyxLQUFLLEVBQ1gsR0FBRyxDQUFDLENBQUMsQ0FBQyxHQUFHLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxJQUFJLENBQ3ZCLENBQUM7YUFDSDtZQUNELElBQUksR0FBRyxJQUFJLElBQUksRUFBRTtnQkFDZixHQUFHLEdBQUcsS0FBSyxDQUFDO2FBQ2I7WUFFRCxrREFBa0Q7WUFFbEQsYUFBYSxHQUFHLElBQUksQ0FBQyxvQkFBb0IsQ0FDdkMsS0FBSyxFQUNMLEtBQUssRUFDTCxhQUFhLEVBQ2IsYUFBYSxDQUNkLENBQUM7WUFFRiw0QkFBNEI7WUFDNUIsc0JBQXNCO1lBQ3RCLHlCQUF5QjtZQUN6QixLQUFLLEdBQUcsSUFBSSxDQUFDLFVBQVUsQ0FBQyxLQUFLLENBQUMsS0FBSyxDQUFXLENBQUM7WUFFL0MsdUJBQXVCO1lBQ3ZCLEdBQUcsR0FBRyxJQUFJLENBQUMsUUFBUSxDQUFDLEtBQUssQ0FBQyxHQUFHLENBQVcsQ0FBQztZQUV6Qyx5QkFBeUI7WUFDekIsS0FBSyxHQUFHLElBQUksQ0FBQyxVQUFVLENBQUMsS0FBSyxDQUFDLEtBQUssQ0FBVyxDQUFDO1lBRS9DLE1BQU0sQ0FBQyx1QkFBdUIsRUFBRSxlQUFlLENBQUMsR0FBRyxJQUFJLENBQUMsZ0JBQWdCLENBQ3RFLEtBQUssRUFDTCxHQUFHLEVBQ0gsS0FBSyxFQUNMLGFBQWEsRUFDYixRQUFRLENBQ1QsQ0FBQztZQUNGLE1BQU0sZUFBZSxHQUNuQixJQUFJLENBQUMsV0FBVyxDQUFDLEtBQUssQ0FBQyx1QkFBdUIsQ0FBVyxDQUFDO1lBRTVELE9BQU8sQ0FBQyxlQUFlLEVBQUUsZUFBZSxDQUFDLENBQUM7UUFDNUMsQ0FBQyxDQUFDLENBQUM7SUFDTCxDQUFDO0lBRUQ7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7OztPQTJCRztJQUNLLG9CQUFvQixDQUMxQixLQUFhLEVBQ2IsS0FBYSxFQUNiLGFBQXNCLEVBQ3RCLGFBQWEsR0FBRyxLQUFLO1FBRXJCLE9BQU8sSUFBSSxDQUFDLEdBQUcsRUFBRTtZQUNmLElBQUksUUFBZ0IsQ0FBQztZQUVyQixNQUFNLFNBQVMsR0FBRyxLQUFLLENBQUMsU0FBUyxDQUFDO1lBQ2xDLE1BQU0sU0FBUyxHQUFHLEtBQUssQ0FBQyxTQUFTLENBQUM7WUFDbEMsSUFBSSxTQUFTLElBQUksSUFBSSxFQUFFO2dCQUNyQixRQUFRLEdBQUcsU0FBUyxDQUFDLFVBQVUsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLHFCQUFxQjthQUMxRDtZQUNELElBQUksU0FBUyxJQUFJLElBQUksRUFBRTtnQkFDckIsTUFBTSxJQUFJLEdBQUcsU0FBUyxDQUFDLFVBQVUsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLHFCQUFxQjtnQkFDM0QsUUFBUSxHQUFHLFFBQVEsQ0FBQyxDQUFDLENBQUMsVUFBVSxDQUFDLFFBQVEsRUFBRSxJQUFJLENBQUMsQ0FBQyxDQUFDLENBQUMsSUFBSSxDQUFDO2FBQ3pEO1lBQ0QsSUFBSSxhQUFhLEVBQUU7Z0JBQ2pCLDRDQUE0QztnQkFDNUMsTUFBTSxJQUFJLEdBQUcsSUFBSSxDQUFDLGlCQUFpQixDQUFDLEtBQUssRUFBRSxLQUFLLENBQUMsQ0FBQztnQkFDbEQsUUFBUSxHQUFHLFFBQVEsQ0FBQyxDQUFDLENBQUMsVUFBVSxDQUFDLFFBQVEsRUFBRSxJQUFJLENBQUMsQ0FBQyxDQUFDLENBQUMsSUFBSSxDQUFDO2FBQ3pEO1lBQ0QsSUFBSSxRQUFRLElBQUksSUFBSSxFQUFFO2dCQUNwQiwyREFBMkQ7Z0JBQzNELGFBQWEsR0FBRyxhQUFhLENBQUMsQ0FBQztvQkFDN0IsSUFBSSxDQUFDLGFBQWEsRUFBRSxNQUFNLENBQUMsQ0FBQyxVQUFVLENBQUMsUUFBUSxDQUFDLENBQUMsQ0FBQyxDQUFDLFFBQVEsQ0FBQzthQUMvRDtZQUVELE9BQU8sYUFBYSxDQUFDO1FBQ3ZCLENBQUMsQ0FBQyxDQUFDO0lBQ0wsQ0FBQztJQUVEOzs7Ozs7Ozs7Ozs7Ozs7OztPQWlCRztJQUNLLGlCQUFpQixDQUFDLEtBQWEsRUFBRSxLQUFjO1FBQ3JELE9BQU8sSUFBSSxDQUFDLEdBQUcsRUFBRTtZQUNmLE1BQU0sVUFBVSxHQUFHLEtBQUssQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLENBQUM7WUFDbEMsTUFBTSxVQUFVLEdBQUcsS0FBSyxDQUFDLENBQUMsQ0FBQyxLQUFLLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxVQUFVLENBQUM7WUFDdkQsb0NBQW9DO1lBQ3BDLE9BQU8sTUFBTSxDQUFDLFFBQVEsQ0FBQyxJQUFJLENBQUMsQ0FBQyxDQUFDLEVBQUUsVUFBVSxFQUFFLFVBQVUsQ0FBQyxFQUFFLE1BQU0sQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDO1FBQzNFLENBQUMsQ0FBQyxDQUFDO0lBQ0wsQ0FBQztJQUVEOzs7OztPQUtHO0lBQ00sa0JBQWtCLENBQUMsV0FBdUM7UUFDakUsTUFBTSxDQUFDLFVBQVUsRUFBRSxVQUFVLEVBQUUsYUFBYSxDQUFDLEdBQUcsV0FBVyxDQUFDO1FBQzVELE1BQU0sUUFBUSxHQUFHLGFBQWEsYUFBYixhQUFhLGNBQWIsYUFBYSxHQUFJLFVBQVUsQ0FBQztRQUU3QyxJQUFJLFVBQVUsQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsS0FBSyxVQUFVLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLEVBQUU7WUFDdkQsTUFBTSxJQUFJLFVBQVUsQ0FDbEIscUVBQXFFO2dCQUNyRSxXQUFXLFVBQVUsQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsS0FBSyxVQUFVLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLElBQUk7Z0JBQ2xFLHdCQUF3QixVQUFVLGdCQUFnQixVQUFVLEVBQUUsQ0FDL0QsQ0FBQztTQUNIO1FBRUQsSUFBSSxDQUFDLElBQUksQ0FBQyxXQUFXLENBQUMsVUFBVSxDQUFDLEtBQUssQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsRUFBRSxRQUFRLENBQUMsS0FBSyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDLEVBQUU7WUFDckUsTUFBTSxJQUFJLEtBQUssQ0FDYixvRUFBb0U7Z0JBQ3BFLG1CQUFtQixVQUFVLFFBQVEsUUFBUSxFQUFFLENBQ2hELENBQUM7U0FDSDtRQUVELElBQUksSUFBSSxDQUFDLFlBQVksRUFBRTtZQUNyQixPQUFPLFVBQVUsQ0FBQyxLQUFLLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUMsTUFBTSxDQUFDLElBQUksQ0FBQyxZQUFZLENBQUMsQ0FBQztTQUMxRDtRQUVELE9BQU8sVUFBVSxDQUFDO0lBQ3BCLENBQUM7O0FBeGpCRCxrQkFBa0I7QUFDRiw0QkFBUyxHQUFHLG9CQUFvQixDQUFDO1NBRnRDLGtCQUFrQjtBQTJqQi9CLGFBQWEsQ0FBQyxhQUFhLENBQUMsa0JBQWtCLENBQUMsQ0FBQyIsInNvdXJjZXNDb250ZW50IjpbIi8qKlxuICogQGxpY2Vuc2VcbiAqIENvcHlyaWdodCAyMDIzIEdvb2dsZSBMTEMuXG4gKiBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgXCJMaWNlbnNlXCIpO1xuICogeW91IG1heSBub3QgdXNlIHRoaXMgZmlsZSBleGNlcHQgaW4gY29tcGxpYW5jZSB3aXRoIHRoZSBMaWNlbnNlLlxuICogWW91IG1heSBvYnRhaW4gYSBjb3B5IG9mIHRoZSBMaWNlbnNlIGF0XG4gKlxuICogaHR0cDovL3d3dy5hcGFjaGUub3JnL2xpY2Vuc2VzL0xJQ0VOU0UtMi4wXG4gKlxuICogVW5sZXNzIHJlcXVpcmVkIGJ5IGFwcGxpY2FibGUgbGF3IG9yIGFncmVlZCB0byBpbiB3cml0aW5nLCBzb2Z0d2FyZVxuICogZGlzdHJpYnV0ZWQgdW5kZXIgdGhlIExpY2Vuc2UgaXMgZGlzdHJpYnV0ZWQgb24gYW4gXCJBUyBJU1wiIEJBU0lTLFxuICogV0lUSE9VVCBXQVJSQU5USUVTIE9SIENPTkRJVElPTlMgT0YgQU5ZIEtJTkQsIGVpdGhlciBleHByZXNzIG9yIGltcGxpZWQuXG4gKiBTZWUgdGhlIExpY2Vuc2UgZm9yIHRoZSBzcGVjaWZpYyBsYW5ndWFnZSBnb3Zlcm5pbmcgcGVybWlzc2lvbnMgYW5kXG4gKiBsaW1pdGF0aW9ucyB1bmRlciB0aGUgTGljZW5zZS5cbiAqID09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XG4gKi9cblxuLyoqXG4gKiAgVEZKUy1iYXNlZCBtdWx0aS1oZWFkIGF0dGVudGlvbiBsYXllci5cbiAqL1xuXG4vKiBPcmlnaW5hbCBzb3VyY2U6IGtlcmFzL2xheWVycy9hdHRlbnRpb24vbXVsdGlfaGVhZF9hdHRlbnRpb24ucHkgKi9cbmltcG9ydCB7IFRlbnNvciwgZWluc3VtLCBsaW5hbGcsIGxvZ2ljYWxBbmQsIG11bCwgb25lcywgc2VyaWFsaXphdGlvbiwgdGlkeSwgdXRpbCB9IGZyb20gJ0B0ZW5zb3JmbG93L3RmanMtY29yZSc7XG5cbmltcG9ydCB7IGNhc3QsIGV4cGFuZERpbXMgfSBmcm9tICcuLi8uLi9iYWNrZW5kL3RmanNfYmFja2VuZCc7XG5pbXBvcnQgeyBDb25zdHJhaW50LCBDb25zdHJhaW50SWRlbnRpZmllciwgZ2V0Q29uc3RyYWludCwgc2VyaWFsaXplQ29uc3RyYWludCB9IGZyb20gJy4uLy4uL2NvbnN0cmFpbnRzJztcbmltcG9ydCB7IExheWVyLCBMYXllckFyZ3MsIFN5bWJvbGljVGVuc29yIH0gZnJvbSAnLi4vLi4vZW5naW5lL3RvcG9sb2d5JztcbmltcG9ydCB7IFZhbHVlRXJyb3IgfSBmcm9tICcuLi8uLi9lcnJvcnMnO1xuaW1wb3J0IHsgSW5pdGlhbGl6ZXIsIEluaXRpYWxpemVySWRlbnRpZmllciwgZ2V0SW5pdGlhbGl6ZXIsIHNlcmlhbGl6ZUluaXRpYWxpemVyIH0gZnJvbSAnLi4vLi4vaW5pdGlhbGl6ZXJzJztcbmltcG9ydCB7IFNoYXBlIH0gZnJvbSAnLi4vLi4va2VyYXNfZm9ybWF0L2NvbW1vbic7XG5pbXBvcnQgeyBSZWd1bGFyaXplciwgUmVndWxhcml6ZXJJZGVudGlmaWVyLCBnZXRSZWd1bGFyaXplciwgc2VyaWFsaXplUmVndWxhcml6ZXIgfSBmcm9tICcuLi8uLi9yZWd1bGFyaXplcnMnO1xuaW1wb3J0IHsgS3dhcmdzIH0gZnJvbSAnLi4vLi4vdHlwZXMnO1xuaW1wb3J0IHsgU29mdG1heCB9IGZyb20gJy4uL2FkdmFuY2VkX2FjdGl2YXRpb25zJztcbmltcG9ydCB7IERyb3BvdXQgfSBmcm9tICcuLi9jb3JlJztcbmltcG9ydCB7IEVpbnN1bURlbnNlIH0gZnJvbSAnLi9laW5zdW1fZGVuc2UnO1xuXG5jb25zdCBfQ0hSX0lEWCA9ICdhYmNkZWZnaGlqa2xtbm9wcXJzdHV2d3h5eicuc3BsaXQoJycpO1xuLyoqXG4gKiBCdWlsZHMgZWluc3VtIGVxdWF0aW9ucyBmb3IgdGhlIGF0dGVudGlvbiBjb21wdXRhdGlvbi5cbiAqXG4gKiBRdWVyeSwga2V5LCB2YWx1ZSBpbnB1dHMgYWZ0ZXIgcHJvamVjdGlvbiBhcmUgZXhwZWN0ZWQgdG8gaGF2ZSB0aGUgc2hhcGUgYXM6XG4gKiBgKGJzLCA8bm9uLWF0dGVudGlvbiBkaW1zPiwgPGF0dGVudGlvbiBkaW1zPiwgbnVtSGVhZHMsIGNoYW5uZWxzKWAuXG4gKiBgYnNgIGFuZCBgPG5vbi1hdHRlbnRpb24gZGltcz5gIGFyZSB0cmVhdGVkIGFzIGA8YmF0Y2ggZGltcz5gLlxuICpcbiAqIFRoZSBhdHRlbnRpb24gb3BlcmF0aW9ucyBjYW4gYmUgZ2VuZXJhbGl6ZWQ6XG4gKiAoMSkgUXVlcnkta2V5IGRvdCBwcm9kdWN0OlxuICogYCg8YmF0Y2ggZGltcz4sIDxxdWVyeSBhdHRlbnRpb24gZGltcz4sIG51bUhlYWRzLCBjaGFubmVscyksICg8YmF0Y2ggZGltcz4sXG4gKiA8a2V5IGF0dGVudGlvbiBkaW1zPiwgbnVtSGVhZHMsIGNoYW5uZWxzKSAtPiAoPGJhdGNoIGRpbXM+LFxuICogbnVtSGVhZHMsIDxxdWVyeSBhdHRlbnRpb24gZGltcz4sIDxrZXkgYXR0ZW50aW9uIGRpbXM+KWBcbiAqICgyKSBDb21iaW5hdGlvbjpcbiAqIGAoPGJhdGNoIGRpbXM+LCBudW1IZWFkcywgPHF1ZXJ5IGF0dGVudGlvbiBkaW1zPiwgPGtleSBhdHRlbnRpb24gZGltcz4pLFxuICogKDxiYXRjaCBkaW1zPiwgPHZhbHVlIGF0dGVudGlvbiBkaW1zPiwgbnVtSGVhZHMsIGNoYW5uZWxzKSAtPiAoPGJhdGNoXG4gKiBkaW1zPiwgPHF1ZXJ5IGF0dGVudGlvbiBkaW1zPiwgbnVtSGVhZHMsIGNoYW5uZWxzKWBcbiAqXG4gKiBAcGFyYW0gcmFuayBSYW5rIG9mIHF1ZXJ5LCBrZXksIHZhbHVlIHRlbnNvcnMuXG4gKiBAcGFyYW0gYXR0bkF4ZXMgQXJyYXkgb2YgYXhlcywgYFstMSwgcmFuaylgLFxuICogICAgdGhhdCBhdHRlbnRpb24gd2lsbCBiZSBhcHBsaWVkIHRvLlxuICogQHJldHVybnMgRWluc3VtIGVxdWF0aW9ucy5cbiAqL1xuZnVuY3Rpb24gYnVpbGRBdHRlbnRpb25FcXVhdGlvbihcbiAgcmFuazogbnVtYmVyLCBhdHRuQXhlczogbnVtYmVyW11cbik6IFtzdHJpbmcsIHN0cmluZywgbnVtYmVyXSB7XG4gIGNvbnN0IHRhcmdldE5vdGF0aW9uQXJyID0gX0NIUl9JRFguc2xpY2UoMCwgcmFuayk7XG4gIC8vIGBiYXRjaERpbXNgIGluY2x1ZGVzIHRoZSBoZWFkIGRpbS5cbiAgY29uc3QgZXhjbHVkZUluZGljZXMgPSBbLi4uYXR0bkF4ZXMsIHJhbmsgLSAxXTtcbiAgY29uc3QgYmF0Y2hEaW1zID0gW107XG4gIGZvciAoY29uc3QgZSBvZiBBcnJheShyYW5rKS5rZXlzKCkpIHtcbiAgICBpZiAoIWV4Y2x1ZGVJbmRpY2VzLmluY2x1ZGVzKGUpKSB7XG4gICAgICBiYXRjaERpbXMucHVzaChlKTtcbiAgICB9XG4gIH1cbiAgbGV0IGxldHRlck9mZnNldCA9IHJhbms7XG4gIGxldCBzb3VyY2VOb3RhdGlvbiA9ICcnO1xuICBmb3IgKGxldCBpID0gMDsgaSA8IHJhbms7IGkrKykge1xuICAgIGlmIChiYXRjaERpbXMuaW5jbHVkZXMoaSkgfHwgaSA9PT0gcmFuayAtIDEpIHtcbiAgICAgIHNvdXJjZU5vdGF0aW9uICs9IHRhcmdldE5vdGF0aW9uQXJyW2ldO1xuICAgIH0gZWxzZSB7XG4gICAgICBzb3VyY2VOb3RhdGlvbiArPSBfQ0hSX0lEWFtsZXR0ZXJPZmZzZXRdO1xuICAgICAgbGV0dGVyT2Zmc2V0Kys7XG4gICAgfVxuICB9XG5cbiAgY29uc3QgcHJvZHVjdE5vdGF0aW9uID1cbiAgICBiYXRjaERpbXMubWFwKGkgPT4gdGFyZ2V0Tm90YXRpb25BcnJbaV0pLmNvbmNhdChcbiAgICBhdHRuQXhlcy5tYXAoaSA9PiB0YXJnZXROb3RhdGlvbkFycltpXSksXG4gICAgYXR0bkF4ZXMubWFwKGkgPT4gc291cmNlTm90YXRpb25baV0pLFxuICApLmpvaW4oJycpO1xuICBjb25zdCB0YXJnZXROb3RhdGlvbiA9IHRhcmdldE5vdGF0aW9uQXJyLmpvaW4oJycpO1xuXG4gIGNvbnN0IGRvdFByb2R1Y3RFcXVhdGlvbiA9XG4gICAgYCR7c291cmNlTm90YXRpb259LCR7dGFyZ2V0Tm90YXRpb259LT4ke3Byb2R1Y3ROb3RhdGlvbn1gO1xuICBjb25zdCBhdHRuU2NvcmVzUmFuayA9IHByb2R1Y3ROb3RhdGlvbi5sZW5ndGg7XG4gIGNvbnN0IGNvbWJpbmVFcXVhdGlvbiA9XG4gICAgYCR7cHJvZHVjdE5vdGF0aW9ufSwke3NvdXJjZU5vdGF0aW9ufS0+JHt0YXJnZXROb3RhdGlvbn1gO1xuXG4gIHJldHVybiBbZG90UHJvZHVjdEVxdWF0aW9uLCBjb21iaW5lRXF1YXRpb24sIGF0dG5TY29yZXNSYW5rXTtcbn1cblxuLyoqXG4gKiBCdWlsZHMgYW4gZWluc3VtIGVxdWF0aW9uIGZvciBwcm9qZWN0aW9ucyBpbnNpZGUgbXVsdGktaGVhZCBhdHRlbnRpb24uXG4gKi9cbmZ1bmN0aW9uIGJ1aWxkUHJvamVjdGlvbkVxdWF0aW9uKFxuICBmcmVlRGltczogbnVtYmVyLCBib3VuZERpbXM6IG51bWJlciwgb3V0cHV0RGltczogbnVtYmVyXG4pOiBbc3RyaW5nLCBzdHJpbmcsIG51bWJlcl0ge1xuICBsZXQgaW5wdXRTdHIgPSAnJztcbiAgbGV0IGtlcm5lbFN0ciA9ICcnO1xuICBsZXQgb3V0cHV0U3RyID0gJyc7XG4gIGxldCBiaWFzQXhlcyA9ICcnO1xuICBsZXQgbGV0dGVyT2Zmc2V0ID0gMDtcblxuICBmb3IgKGxldCBpID0gMDsgaSA8IGZyZWVEaW1zOyBpKyspIHtcbiAgICBjb25zdCBjaGFyID0gX0NIUl9JRFhbaSArIGxldHRlck9mZnNldF07XG4gICAgaW5wdXRTdHIgKz0gY2hhcjtcbiAgICBvdXRwdXRTdHIgKz0gY2hhcjtcbiAgfVxuXG4gIGxldHRlck9mZnNldCArPSBmcmVlRGltcztcbiAgZm9yIChsZXQgaSA9IDA7IGkgPCBib3VuZERpbXM7IGkrKykge1xuICAgIGNvbnN0IGNoYXIgPSBfQ0hSX0lEWFtpICsgbGV0dGVyT2Zmc2V0XTtcbiAgICBpbnB1dFN0ciArPSBjaGFyO1xuICAgIGtlcm5lbFN0ciArPSBjaGFyO1xuICB9XG5cbiAgbGV0dGVyT2Zmc2V0ICs9IGJvdW5kRGltcztcbiAgZm9yIChsZXQgaSA9IDA7IGkgPCBvdXRwdXREaW1zOyBpKyspIHtcbiAgICBjb25zdCBjaGFyID0gX0NIUl9JRFhbaSArIGxldHRlck9mZnNldF07XG4gICAga2VybmVsU3RyICs9IGNoYXI7XG4gICAgb3V0cHV0U3RyICs9IGNoYXI7XG4gICAgYmlhc0F4ZXMgKz0gY2hhcjtcbiAgfVxuXG4gIGNvbnN0IGVxdWF0aW9uID0gYCR7aW5wdXRTdHJ9LCR7a2VybmVsU3RyfS0+JHtvdXRwdXRTdHJ9YDtcbiAgcmV0dXJuIFtlcXVhdGlvbiwgYmlhc0F4ZXMsIG91dHB1dFN0ci5sZW5ndGhdO1xufVxuXG5mdW5jdGlvbiBnZXRPdXRwdXRTaGFwZShcbiAgb3V0cHV0UmFuazogbnVtYmVyLCBrbm93bkxhc3REaW1zOiBudW1iZXJbXVxuKTogU2hhcGUge1xuICBjb25zdCBvdXRwdXRTaGFwZSA9XG4gICAgQXJyYXkob3V0cHV0UmFuayAtIGtub3duTGFzdERpbXMubGVuZ3RoKS5maWxsKG51bGwpLmNvbmNhdChrbm93bkxhc3REaW1zKTtcbiAgcmV0dXJuIG91dHB1dFNoYXBlO1xufVxuXG5leHBvcnQgZGVjbGFyZSBpbnRlcmZhY2UgTXVsdGlIZWFkQXR0ZW50aW9uQXJncyBleHRlbmRzIExheWVyQXJncyB7XG4gIC8qKlxuICAgKiBJbnRlZ2VyLiBOdW1iZXIgb2YgYXR0ZW50aW9uIGhlYWRzLlxuICAgKi9cbiAgbnVtSGVhZHM6IG51bWJlcjtcblxuICAvKipcbiAgICogSW50ZWdlci4gU2l6ZSBvZiBlYWNoIGF0dGVudGlvbiBoZWFkIGZvciBxdWVyeSBhbmQga2V5LlxuICAgKi9cbiAga2V5RGltOiBudW1iZXI7XG5cbiAgLyoqXG4gICAqIEludGVnZXIuIFNpemUgb2YgZWFjaCBhdHRlbnRpb24gaGVhZCBmb3IgdmFsdWUuXG4gICAqIERlZmF1bHRzIHRvIGBrZXlEaW1gLlxuICAgKi9cbiAgdmFsdWVEaW0/OiBudW1iZXI7XG5cbiAgLyoqXG4gICAqIERyb3BvdXQgcHJvYmFiaWxpdHkuXG4gICAqIERlZmF1bHRzIHRvIDAuMC5cbiAgICovXG4gIGRyb3BvdXQ/OiBudW1iZXI7XG5cbiAgLyoqXG4gICAqIFdoZXRoZXIgdGhlIGRlbnNlIGxheWVycyB1c2UgYmlhcyB2ZWN0b3JzL21hdHJpY2VzLlxuICAgKiBEZWZhdWx0cyB0byB0cnVlLlxuICAgKi9cbiAgdXNlQmlhcz86IGJvb2xlYW47XG5cbiAgLyoqXG4gICAqIFRoZSBleHBlY3RlZCBzaGFwZSBvZiBhbiBvdXRwdXQgdGVuc29yLCBiZXNpZGVzIHRoZSBiYXRjaFxuICAgKiBhbmQgc2VxdWVuY2UgZGltcy4gSWYgbm90IHNwZWNpZmllZCwgcHJvamVjdHMgYmFjayB0byB0aGUgcXVlcnlcbiAgICogZmVhdHVyZSBkaW0gKHRoZSBxdWVyeSBpbnB1dCdzIGxhc3QgZGltZW5zaW9uKS5cbiAgICovXG4gIG91dHB1dFNoYXBlPzogU2hhcGU7XG5cbiAgLyoqXG4gICAqIEF4ZXMgb3ZlciB3aGljaCB0aGUgYXR0ZW50aW9uIGlzIGFwcGxpZWQuIGBudWxsYCBtZWFucyBhdHRlbnRpb24gb3ZlclxuICAgKiBhbGwgYXhlcywgYnV0IGJhdGNoLCBoZWFkcywgYW5kIGZlYXR1cmVzLlxuICAgKi9cbiAgYXR0ZW50aW9uQXhlcz86IG51bWJlcltdfG51bWJlcjtcblxuICAvKipcbiAgICogSW5pdGlhbGl6ZXIgZm9yIGRlbnNlIGxheWVyIGtlcm5lbHMuXG4gICAqIERlZmF1bHRzIHRvIGBcImdsb3JvdFVuaWZvcm1cImAuXG4gICAqL1xuICBrZXJuZWxJbml0aWFsaXplcj86IEluaXRpYWxpemVyfEluaXRpYWxpemVySWRlbnRpZmllcjtcblxuICAvKipcbiAgICogSW5pdGlhbGl6ZXIgZm9yIGRlbnNlIGxheWVyIGJpYXNlcy5cbiAgICogRGVmYXVsdHMgdG8gYFwiemVyb3NcImAuXG4gICAqL1xuICBiaWFzSW5pdGlhbGl6ZXI/OiBJbml0aWFsaXplcnxJbml0aWFsaXplcklkZW50aWZpZXI7XG5cbiAgLyoqXG4gICAqIFJlZ3VsYXJpemVyIGZvciBkZW5zZSBsYXllciBrZXJuZWxzLlxuICAgKi9cbiAga2VybmVsUmVndWxhcml6ZXI/OiBSZWd1bGFyaXplcnxSZWd1bGFyaXplcklkZW50aWZpZXI7XG5cbiAgLyoqXG4gICAqIFJlZ3VsYXJpemVyIGZvciBkZW5zZSBsYXllciBiaWFzZXMuXG4gICAqL1xuICBiaWFzUmVndWxhcml6ZXI/OiBSZWd1bGFyaXplcnxSZWd1bGFyaXplcklkZW50aWZpZXI7XG5cbiAgLyoqXG4gICAqIFJlZ3VsYXJpemVyIGZvciBkZW5zZSBsYXllciBhY3Rpdml0eS5cbiAgICovXG4gIGFjdGl2aXR5UmVndWxhcml6ZXI/OiBSZWd1bGFyaXplcnxSZWd1bGFyaXplcklkZW50aWZpZXI7XG5cbiAgLyoqXG4gICAqIENvbnN0cmFpbnQgZm9yIGRlbnNlIGxheWVyIGtlcm5lbHMuXG4gICAqL1xuICBrZXJuZWxDb25zdHJhaW50PzogQ29uc3RyYWludHxDb25zdHJhaW50SWRlbnRpZmllcjtcblxuICAvKipcbiAgICogQ29uc3RyYWludCBmb3IgZGVuc2UgbGF5ZXIga2VybmVscy5cbiAgICovXG4gIGJpYXNDb25zdHJhaW50PzogQ29uc3RyYWludHxDb25zdHJhaW50SWRlbnRpZmllcjtcbn1cblxuZXhwb3J0IGRlY2xhcmUgaW50ZXJmYWNlIE11bHRpSGVhZEF0dGVudGlvbk9wdGlvbnMge1xuICAvKipcbiAgICogUXVlcnkgYFRlbnNvcmAgb2Ygc2hhcGUgYChCLCBULCBkaW0pYC5cbiAgICovXG5cbiAgLyoqXG4gICAqIFZhbHVlIGBUZW5zb3JgIG9mIHNoYXBlIGAoQiwgUywgZGltKWAuXG4gICAqL1xuICB2YWx1ZTogVGVuc29yO1xuXG4gIC8qKlxuICAgKiBLZXkgYFRlbnNvcmAgb2Ygc2hhcGUgYChCLCBTLCBkaW0pYC4gSWYgbm90IGdpdmVuLCB3aWxsIHVzZSBgdmFsdWVgIGZvclxuICAgKiBib3RoIGBrZXlgIGFuZCBgdmFsdWVgLCB3aGljaCBpcyB0aGUgbW9zdCBjb21tb24gY2FzZS5cbiAgICovXG4gIGtleT86IFRlbnNvcjtcblxuICAvKipcbiAgICogQSBib29sZWFuIG1hc2sgb2Ygc2hhcGUgYChCLCBULCBTKWAsIHRoYXQgcHJldmVudHNcbiAgICogYXR0ZW50aW9uIHRvIGNlcnRhaW4gcG9zaXRpb25zLiBUaGUgYm9vbGVhbiBtYXNrIHNwZWNpZmllcyB3aGljaFxuICAgKiBxdWVyeSBlbGVtZW50cyBjYW4gYXR0ZW5kIHRvIHdoaWNoIGtleSBlbGVtZW50cywgMSBpbmRpY2F0ZXNcbiAgICogYXR0ZW50aW9uIGFuZCAwIGluZGljYXRlcyBubyBhdHRlbnRpb24uIEJyb2FkY2FzdGluZyBjYW4gaGFwcGVuIGZvclxuICAgKiB0aGUgbWlzc2luZyBiYXRjaCBkaW1lbnNpb25zIGFuZCB0aGUgaGVhZCBkaW1lbnNpb24uXG4gICAqL1xuICBhdHRlbnRpb25NYXNrPzogVGVuc29yO1xuXG4gIC8qKlxuICAgKiBJbmRpY2F0ZXMgd2hldGhlciB0aGUgbGF5ZXIgc2hvdWxkIGJlaGF2ZSBpbiB0cmFpbmluZyBtb2RlXG4gICAqIChhZGRpbmcgZHJvcG91dCkgb3IgaW4gaW5mZXJlbmNlIG1vZGUgKG5vIGRyb3BvdXQpLlxuICAgKiBXaWxsIGdvIHdpdGggZWl0aGVyIHVzaW5nIHRoZSB0cmFpbmluZyBtb2RlIG9mIHRoZSBwYXJlbnRcbiAgICogbGF5ZXIvbW9kZWwsIG9yIGZhbHNlIChpbmZlcmVuY2UpIGlmIHRoZXJlIGlzIG5vIHBhcmVudCBsYXllci5cbiAgICovXG4gIHRyYWluaW5nPzogYm9vbGVhbjtcblxuICAvKipcbiAgICogSW5kaWNhdGVzIHdoZXRoZXIgdG8gYXBwbHkgYSBjYXVzYWwgbWFzayB0byBwcmV2ZW50IHRva2VucyBmcm9tIGF0dGVuZGluZ1xuICAgKiB0byBmdXR1cmUgdG9rZW5zIChlLmcuLCB1c2VkIGluIGEgZGVjb2RlciBUcmFuc2Zvcm1lcikuXG4gICAqIERlZmF1bHRzIHRvIGZhbHNlLlxuICAgKi9cbiAgdXNlQ2F1c2FsTWFzaz86IGJvb2xlYW47XG59XG5cbi8qKlxuICogTXVsdGlIZWFkQXR0ZW50aW9uIGxheWVyLlxuICpcbiAqIFRoaXMgaXMgYW4gaW1wbGVtZW50YXRpb24gb2YgbXVsdGktaGVhZGVkIGF0dGVudGlvbiBhcyBkZXNjcmliZWQgaW4gdGhlXG4gKiBwYXBlciBcIkF0dGVudGlvbiBpcyBhbGwgeW91IE5lZWRcIiAoVmFzd2FuaSBldCBhbC4sIDIwMTcpLlxuICogSWYgYHF1ZXJ5YCwgYGtleSxgIGB2YWx1ZWAgYXJlIHRoZSBzYW1lLCB0aGVuXG4gKiB0aGlzIGlzIHNlbGYtYXR0ZW50aW9uLiBFYWNoIHRpbWVzdGVwIGluIGBxdWVyeWAgYXR0ZW5kcyB0byB0aGVcbiAqIGNvcnJlc3BvbmRpbmcgc2VxdWVuY2UgaW4gYGtleWAsIGFuZCByZXR1cm5zIGEgZml4ZWQtd2lkdGggdmVjdG9yLlxuICpcbiAqIFRoaXMgbGF5ZXIgZmlyc3QgcHJvamVjdHMgYHF1ZXJ5YCwgYGtleWAgYW5kIGB2YWx1ZWAuIFRoZXNlIGFyZVxuICogKGVmZmVjdGl2ZWx5KSBhIGxpc3Qgb2YgdGVuc29ycyBvZiBsZW5ndGggYG51bUF0dGVudGlvbkhlYWRzYCwgd2hlcmUgdGhlXG4gKiBjb3JyZXNwb25kaW5nIHNoYXBlcyBhcmUgYChiYXRjaFNpemUsIDxxdWVyeSBkaW1lbnNpb25zPiwga2V5RGltKWAsXG4gKiBgKGJhdGNoU2l6ZSwgPGtleS92YWx1ZSBkaW1lbnNpb25zPiwga2V5RGltKWAsXG4gKiBgKGJhdGNoU2l6ZSwgPGtleS92YWx1ZSBkaW1lbnNpb25zPiwgdmFsdWVEaW0pYC5cbiAqXG4gKiBUaGVuLCB0aGUgcXVlcnkgYW5kIGtleSB0ZW5zb3JzIGFyZSBkb3QtcHJvZHVjdGVkIGFuZCBzY2FsZWQuIFRoZXNlIGFyZVxuICogc29mdG1heGVkIHRvIG9idGFpbiBhdHRlbnRpb24gcHJvYmFiaWxpdGllcy4gVGhlIHZhbHVlIHRlbnNvcnMgYXJlIHRoZW5cbiAqIGludGVycG9sYXRlZCBieSB0aGVzZSBwcm9iYWJpbGl0aWVzLCB0aGVuIGNvbmNhdGVuYXRlZCBiYWNrIHRvIGEgc2luZ2xlXG4gKiB0ZW5zb3IuXG4gKlxuICogRmluYWxseSwgdGhlIHJlc3VsdCB0ZW5zb3Igd2l0aCB0aGUgbGFzdCBkaW1lbnNpb24gYXMgdmFsdWVEaW0gY2FuIHRha2UgYW5cbiAqIGxpbmVhciBwcm9qZWN0aW9uIGFuZCByZXR1cm4uXG4gKlxuICogV2hlbiB1c2luZyBgTXVsdGlIZWFkQXR0ZW50aW9uYCBpbnNpZGUgYSBjdXN0b20gbGF5ZXIsIHRoZSBjdXN0b20gbGF5ZXIgbXVzdFxuICogaW1wbGVtZW50IGl0cyBvd24gYGJ1aWxkKClgIG1ldGhvZCBhbmQgY2FsbCBgTXVsdGlIZWFkQXR0ZW50aW9uYCdzXG4gKiBgYnVpbGRGcm9tU2lnbmF0dXJlKClgIHRoZXJlLlxuICogVGhpcyBlbmFibGVzIHdlaWdodHMgdG8gYmUgcmVzdG9yZWQgY29ycmVjdGx5IHdoZW4gdGhlIG1vZGVsIGlzIGxvYWRlZC5cbiAqXG4gKiBFeGFtcGxlczpcbiAqXG4gKiBQZXJmb3JtcyAxRCBjcm9zcy1hdHRlbnRpb24gb3ZlciB0d28gc2VxdWVuY2UgaW5wdXRzIHdpdGggYW4gYXR0ZW50aW9uIG1hc2suXG4gKiBSZXR1cm5zIHRoZSBhZGRpdGlvbmFsIGF0dGVudGlvbiB3ZWlnaHRzIG92ZXIgaGVhZHMuXG4gKlxuICogYGBganNcbiAqIGNvbnN0IGxheWVyID0gbmV3IE11bHRpSGVhZEF0dGVudGlvbih7bnVtSGVhZHM6IDIsIGtleURpbTogMn0pO1xuICogY29uc3QgdGFyZ2V0ID0gdGYuaW5wdXQoe3NoYXBlOiBbOCwgMTZdfSk7XG4gKiBjb25zdCBzb3VyY2UgPSB0Zi5pbnB1dCh7c2hhcGU6IFs0LCAxNl19KTtcbiAqIGNvbnN0IG91dHB1dFRlbnNvciwgd2VpZ2h0cyA9IGxheWVyLmNhbGxBbmRSZXR1cm5BdHRlbnRpb25TY29yZXMoXG4gKiAgICAgdGFyZ2V0LCB7dmFsdWU6IHNvdXJjZX0pO1xuICogY29uc29sZS5sb2cob3V0cHV0VGVuc29yLnNoYXBlKTsgIC8vIFtudWxsLCA4LCAxNl1cbiAqIGNvbnNvbGUubG9nKHdlaWdodHMuc2hhcGUpOyAgLy8gW251bGwsIDIsIDgsIDRdXG4gKiBgYGBcbiAqXG4gKiBQZXJmb3JtcyAyRCBzZWxmLWF0dGVudGlvbiBvdmVyIGEgNUQgaW5wdXQgdGVuc29yIG9uIGF4ZXMgMiBhbmQgMy5cbiAqXG4gKiBgYGBqc1xuICogY29uc3QgbGF5ZXIgPSBuZXcgTXVsdGlIZWFkQXR0ZW50aW9uKHtcbiAqICAgIG51bUhlYWRzOiAyLCBrZXlEaW06IDIsIGF0dGVudGlvbkF4ZXM6IFsyLCAzXX0pO1xuICogY29uc3QgaW5wdXRUZW5zb3IgPSB0Zi5pbnB1dCh7c2hhcGU6IFs1LCAzLCA0LCAxNl19KTtcbiAqIGNvbnN0IG91dHB1dFRlbnNvciA9IGxheWVyLmNhbGwoaW5wdXRUZW5zb3IsIHt2YWx1ZTogaW5wdXRUZW5zb3J9KTtcbiAqIGNvbnNvbGUubG9nKG91dHB1dFRlbnNvci5zaGFwZSk7ICAvLyBbbnVsbCwgNSwgMywgNCwgMTZdXG4gKiBgYGBcbiAqXG4gKiBSZXR1cm5zOlxuICogICAgYXR0ZW50aW9uT3V0cHV0OiBUaGUgcmVzdWx0IG9mIHRoZSBjb21wdXRhdGlvbiwgb2Ygc2hhcGUgYChCLCBULCBFKWAsXG4gKiAgICAgICAgd2hlcmUgYFRgIGlzIGZvciB0YXJnZXQgc2VxdWVuY2Ugc2hhcGVzIGFuZCBgRWAgaXMgdGhlIHF1ZXJ5IGlucHV0XG4gKiAgICAgICAgbGFzdCBkaW1lbnNpb24gaWYgYG91dHB1dFNoYXBlYCBpcyBgTm9uZWAuIE90aGVyd2lzZSwgdGhlXG4gKiAgICAgICAgbXVsdGktaGVhZCBvdXRwdXRzIGFyZSBwcm9qZWN0ZWQgdG8gdGhlIHNoYXBlIHNwZWNpZmllZCBieVxuICogICAgICAgIGBvdXRwdXRTaGFwZWAuXG4gKiAgICBhdHRlbnRpb25TY29yZXM6IG11bHRpLWhlYWQgYXR0ZW50aW9uIGNvZWZmaWNpZW50cyBvdmVyIGF0dGVudGlvbiBheGVzLlxuICovXG5leHBvcnQgY2xhc3MgTXVsdGlIZWFkQXR0ZW50aW9uIGV4dGVuZHMgTGF5ZXIge1xuICAvKiogQG5vY29sbGFwc2UgKi9cbiAgc3RhdGljIHJlYWRvbmx5IGNsYXNzTmFtZSA9ICdNdWx0aUhlYWRBdHRlbnRpb24nO1xuXG4gIHByb3RlY3RlZCByZWFkb25seSBudW1IZWFkczogbnVtYmVyO1xuICBwcm90ZWN0ZWQgcmVhZG9ubHkga2V5RGltOiBudW1iZXI7XG4gIHByb3RlY3RlZCByZWFkb25seSB2YWx1ZURpbTogbnVtYmVyO1xuICBwcm90ZWN0ZWQgcmVhZG9ubHkgZHJvcG91dDogbnVtYmVyO1xuICBwcm90ZWN0ZWQgcmVhZG9ubHkgdXNlQmlhczogYm9vbGVhbjtcbiAgcHJvdGVjdGVkIHJlYWRvbmx5IF9vdXRwdXRTaGFwZTogU2hhcGU7XG4gIHByb3RlY3RlZCByZWFkb25seSBrZXJuZWxJbml0aWFsaXplcjogSW5pdGlhbGl6ZXI7XG4gIHByb3RlY3RlZCByZWFkb25seSBiaWFzSW5pdGlhbGl6ZXI6IEluaXRpYWxpemVyO1xuICBwcm90ZWN0ZWQgcmVhZG9ubHkga2VybmVsUmVndWxhcml6ZXI6IFJlZ3VsYXJpemVyO1xuICBwcm90ZWN0ZWQgcmVhZG9ubHkgYmlhc1JlZ3VsYXJpemVyOiBSZWd1bGFyaXplcjtcbiAgcHJvdGVjdGVkIHJlYWRvbmx5IGtlcm5lbENvbnN0cmFpbnQ6IENvbnN0cmFpbnQ7XG4gIHByb3RlY3RlZCByZWFkb25seSBiaWFzQ29uc3RyYWludDogQ29uc3RyYWludDtcbiAgcHJvdGVjdGVkIGRvdFByb2R1Y3RFcXVhdGlvbjogc3RyaW5nO1xuICBwcm90ZWN0ZWQgY29tYmluZUVxdWF0aW9uOiBzdHJpbmc7XG4gIHByb3RlY3RlZCBhdHRlbnRpb25BeGVzOiBudW1iZXJbXTtcbiAgcHJvdGVjdGVkIGJ1aWx0RnJvbVNpZ25hdHVyZTogYm9vbGVhbjtcbiAgcHJvdGVjdGVkIHNvZnRtYXg6IFNvZnRtYXg7XG4gIHByb3RlY3RlZCBkcm9wb3V0TGF5ZXI6IERyb3BvdXQ7XG4gIHByb3RlY3RlZCBxdWVyeVNoYXBlOiBTaGFwZTtcbiAgcHJvdGVjdGVkIGtleVNoYXBlOiBTaGFwZTtcbiAgcHJvdGVjdGVkIHZhbHVlU2hhcGU6IFNoYXBlO1xuICBwcm90ZWN0ZWQgcXVlcnlEZW5zZTogRWluc3VtRGVuc2U7XG4gIHByb3RlY3RlZCBrZXlEZW5zZTogRWluc3VtRGVuc2U7XG4gIHByb3RlY3RlZCB2YWx1ZURlbnNlOiBFaW5zdW1EZW5zZTtcbiAgcHJvdGVjdGVkIG91dHB1dERlbnNlOiBFaW5zdW1EZW5zZTtcblxuICBjb25zdHJ1Y3RvcihhcmdzOiBNdWx0aUhlYWRBdHRlbnRpb25BcmdzKSB7XG4gICAgc3VwZXIoYXJncyk7XG4gICAgdGhpcy5zdXBwb3J0c01hc2tpbmcgPSB0cnVlO1xuICAgIHRoaXMubnVtSGVhZHMgPSBhcmdzLm51bUhlYWRzO1xuICAgIHRoaXMua2V5RGltID0gYXJncy5rZXlEaW07XG4gICAgdGhpcy52YWx1ZURpbSA9IGFyZ3MudmFsdWVEaW0gPz8gYXJncy5rZXlEaW07XG4gICAgdGhpcy5kcm9wb3V0ID0gYXJncy5kcm9wb3V0ID8/IDA7XG4gICAgdGhpcy51c2VCaWFzID0gYXJncy51c2VCaWFzID8/IHRydWU7XG4gICAgdGhpcy5fb3V0cHV0U2hhcGUgPSBhcmdzLm91dHB1dFNoYXBlO1xuICAgIHRoaXMua2VybmVsSW5pdGlhbGl6ZXIgPSBnZXRJbml0aWFsaXplcihcbiAgICAgIGFyZ3Mua2VybmVsSW5pdGlhbGl6ZXIgPz8gJ2dsb3JvdFVuaWZvcm0nKTtcbiAgICB0aGlzLmJpYXNJbml0aWFsaXplciA9IGdldEluaXRpYWxpemVyKGFyZ3MuYmlhc0luaXRpYWxpemVyID8/ICd6ZXJvcycpO1xuICAgIHRoaXMua2VybmVsUmVndWxhcml6ZXIgPSBnZXRSZWd1bGFyaXplcihhcmdzLmtlcm5lbFJlZ3VsYXJpemVyKTtcbiAgICB0aGlzLmJpYXNSZWd1bGFyaXplciA9IGdldFJlZ3VsYXJpemVyKGFyZ3MuYmlhc1JlZ3VsYXJpemVyKTtcbiAgICB0aGlzLmFjdGl2aXR5UmVndWxhcml6ZXIgPSBnZXRSZWd1bGFyaXplcihhcmdzLmFjdGl2aXR5UmVndWxhcml6ZXIpO1xuICAgIHRoaXMua2VybmVsQ29uc3RyYWludCA9IGdldENvbnN0cmFpbnQoYXJncy5rZXJuZWxDb25zdHJhaW50KTtcbiAgICB0aGlzLmJpYXNDb25zdHJhaW50ID0gZ2V0Q29uc3RyYWludChhcmdzLmJpYXNDb25zdHJhaW50KTtcbiAgICBpZiAoYXJncy5hdHRlbnRpb25BeGVzICE9IG51bGwgJiYgIUFycmF5LmlzQXJyYXkoYXJncy5hdHRlbnRpb25BeGVzKSkge1xuICAgICAgdGhpcy5hdHRlbnRpb25BeGVzID0gW2FyZ3MuYXR0ZW50aW9uQXhlc107XG4gICAgfSBlbHNlIHtcbiAgICAgIHRoaXMuYXR0ZW50aW9uQXhlcyA9IGFyZ3MuYXR0ZW50aW9uQXhlcyBhcyBudW1iZXJbXTtcbiAgICB9XG4gICAgdGhpcy5idWlsdEZyb21TaWduYXR1cmUgPSBmYWxzZTtcbiAgICB0aGlzLnF1ZXJ5U2hhcGUgPSBudWxsO1xuICAgIHRoaXMua2V5U2hhcGUgPSBudWxsO1xuICAgIHRoaXMudmFsdWVTaGFwZSA9IG51bGw7XG4gIH1cblxuICAvKipcbiAgICogU2hvdWxkIGJlIHVzZWQgZm9yIHRlc3RpbmcgcHVycG9zZXMgb25seS5cbiAgICovXG4gIGdldCBfcXVlcnlEZW5zZSgpIHtcbiAgICByZXR1cm4gdGhpcy5xdWVyeURlbnNlO1xuICB9XG5cbiAgLyoqXG4gICAqIFNob3VsZCBiZSB1c2VkIGZvciB0ZXN0aW5nIHB1cnBvc2VzIG9ubHkuXG4gICAqL1xuICBnZXQgX2tleURlbnNlKCkge1xuICAgIHJldHVybiB0aGlzLmtleURlbnNlO1xuICB9XG5cbiAgLyoqXG4gICAqIFNob3VsZCBiZSB1c2VkIGZvciB0ZXN0aW5nIHB1cnBvc2VzIG9ubHkuXG4gICAqL1xuICBnZXQgX3ZhbHVlRGVuc2UoKSB7XG4gICAgcmV0dXJuIHRoaXMudmFsdWVEZW5zZTtcbiAgfVxuXG4gIC8qKlxuICAgKiBTaG91bGQgYmUgdXNlZCBmb3IgdGVzdGluZyBwdXJwb3NlcyBvbmx5LlxuICAgKi9cbiAgZ2V0IF9vdXRwdXREZW5zZSgpIHtcbiAgICByZXR1cm4gdGhpcy5vdXRwdXREZW5zZTtcbiAgfVxuXG4gIG92ZXJyaWRlIGdldENvbmZpZygpOiBzZXJpYWxpemF0aW9uLkNvbmZpZ0RpY3Qge1xuICAgIGNvbnN0IGNvbmZpZyA9IHtcbiAgICAgIG51bUhlYWRzOiB0aGlzLm51bUhlYWRzLFxuICAgICAga2V5RGltOiB0aGlzLmtleURpbSxcbiAgICAgIHZhbHVlRGltOiB0aGlzLnZhbHVlRGltLFxuICAgICAgZHJvcG91dDogdGhpcy5kcm9wb3V0LFxuICAgICAgdXNlQmlhczogdGhpcy51c2VCaWFzLFxuICAgICAgb3V0cHV0U2hhcGU6IHRoaXMuX291dHB1dFNoYXBlLFxuICAgICAgYXR0ZW50aW9uQXhlczogdGhpcy5hdHRlbnRpb25BeGVzLFxuICAgICAga2VybmVsSW5pdGlhbGl6ZXI6IHNlcmlhbGl6ZUluaXRpYWxpemVyKHRoaXMua2VybmVsSW5pdGlhbGl6ZXIpLFxuICAgICAgYmlhc0luaXRpYWxpemVyOiBzZXJpYWxpemVJbml0aWFsaXplcih0aGlzLmJpYXNJbml0aWFsaXplciksXG4gICAgICBrZXJuZWxSZWd1bGFyaXplcjogc2VyaWFsaXplUmVndWxhcml6ZXIodGhpcy5rZXJuZWxSZWd1bGFyaXplciksXG4gICAgICBiaWFzUmVndWxhcml6ZXI6IHNlcmlhbGl6ZVJlZ3VsYXJpemVyKHRoaXMuYmlhc1JlZ3VsYXJpemVyKSxcbiAgICAgIGFjdGl2aXR5UmVndWxhcml6ZXI6IHNlcmlhbGl6ZVJlZ3VsYXJpemVyKHRoaXMuYWN0aXZpdHlSZWd1bGFyaXplciksXG4gICAgICBrZXJuZWxDb25zdHJhaW50OiBzZXJpYWxpemVDb25zdHJhaW50KHRoaXMua2VybmVsQ29uc3RyYWludCksXG4gICAgICBiaWFzQ29uc3RyYWludDogc2VyaWFsaXplQ29uc3RyYWludCh0aGlzLmJpYXNDb25zdHJhaW50KSxcbiAgICAgIHF1ZXJ5U2hhcGU6IHRoaXMucXVlcnlTaGFwZSxcbiAgICAgIGtleVNoYXBlOiB0aGlzLmtleVNoYXBlLFxuICAgICAgdmFsdWVTaGFwZTogdGhpcy52YWx1ZVNoYXBlLFxuICAgIH07XG4gICAgY29uc3QgYmFzZUNvbmZpZyA9IHN1cGVyLmdldENvbmZpZygpO1xuICAgIE9iamVjdC5hc3NpZ24oY29uZmlnLCBiYXNlQ29uZmlnKTtcbiAgICByZXR1cm4gY29uZmlnO1xuICB9XG5cbiAgc3RhdGljIG92ZXJyaWRlIGZyb21Db25maWc8VCBleHRlbmRzIHNlcmlhbGl6YXRpb24uU2VyaWFsaXphYmxlPihcbiAgICBjbHM6IHNlcmlhbGl6YXRpb24uU2VyaWFsaXphYmxlQ29uc3RydWN0b3I8VD4sXG4gICAgY29uZmlnOiBzZXJpYWxpemF0aW9uLkNvbmZpZ0RpY3RcbiAgKTogVCB7XG4gICAgLy8gSWYgdGhlIGxheWVyIGhhcyBhIGRpZmZlcmVudCBidWlsZCgpIGZ1bmN0aW9uIGZyb20gdGhlIGRlZmF1bHQsXG4gICAgLy8gd2UgbmVlZCB0byB0cmlnZ2VyIHRoZSBjdXN0b21pemVkIGJ1aWxkIHRvIGNyZWF0ZSB3ZWlnaHRzLlxuICAgIGNvbnN0IHF1ZXJ5U2hhcGUgPSBjb25maWdbJ3F1ZXJ5U2hhcGUnXSBhcyBTaGFwZTtcbiAgICBjb25zdCBrZXlTaGFwZSA9IGNvbmZpZ1sna2V5U2hhcGUnXSBhcyBTaGFwZTtcbiAgICBjb25zdCB2YWx1ZVNoYXBlID0gY29uZmlnWyd2YWx1ZVNoYXBlJ10gYXMgU2hhcGU7XG4gICAgZGVsZXRlIGNvbmZpZ1sncXVlcnlTaGFwZSddO1xuICAgIGRlbGV0ZSBjb25maWdbJ2tleVNoYXBlJ107XG4gICAgZGVsZXRlIGNvbmZpZ1sndmFsdWVTaGFwZSddO1xuXG4gICAgY29uc3QgbGF5ZXIgPSBuZXcgY2xzKGNvbmZpZyk7XG4gICAgaWYgKFtxdWVyeVNoYXBlLCBrZXlTaGFwZSwgdmFsdWVTaGFwZV0uaW5jbHVkZXMobnVsbCkpIHtcbiAgICAgICAgY29uc29sZS53YXJuKFxuICAgICAgICAgICAgJ09uZSBvZiBkaW1lbnNpb25zIG9mIHRoZSBpbnB1dCBzaGFwZSBpcyBtaXNzaW5nLiBJdCAnICtcbiAgICAgICAgICAgICdzaG91bGQgaGF2ZSBiZWVuIG1lbW9yaXplZCB3aGVuIHRoZSBsYXllciB3YXMgc2VyaWFsaXplZC4gJyArXG4gICAgICAgICAgICBgJHtjbHMudG9TdHJpbmcoKX0gaXMgY3JlYXRlZCB3aXRob3V0IHdlaWdodHMuYFxuICAgICAgICApO1xuICAgIH0gZWxzZSB7XG4gICAgICAobGF5ZXIgYXMgdW5rbm93biBhcyBNdWx0aUhlYWRBdHRlbnRpb24pLmJ1aWxkRnJvbVNpZ25hdHVyZShcbiAgICAgICAgcXVlcnlTaGFwZSwgdmFsdWVTaGFwZSwga2V5U2hhcGUpO1xuICAgIH1cbiAgICByZXR1cm4gbGF5ZXI7XG4gIH1cblxuICAvKipcbiAgICogQnVpbGRzIGxheWVycyBhbmQgdmFyaWFibGVzLlxuICAgKlxuICAgKiBPbmNlIHRoZSBtZXRob2QgaXMgY2FsbGVkLCB0aGlzLmJ1aWx0RnJvbVNpZ25hdHVyZSB3aWxsIGJlIHNldCB0byB0cnVlLlxuICAgKi9cbiAgYnVpbGRGcm9tU2lnbmF0dXJlKFxuICAgIHF1ZXJ5U2hhcGU6IFNoYXBlLFxuICAgIHZhbHVlU2hhcGU6IFNoYXBlLFxuICAgIGtleVNoYXBlPzogU2hhcGVcbiAgKSB7XG4gICAgdGhpcy5idWlsdEZyb21TaWduYXR1cmUgPSB0cnVlO1xuXG4gICAgaWYgKGtleVNoYXBlID09IG51bGwpIHtcbiAgICAgIGtleVNoYXBlID0gdmFsdWVTaGFwZTtcbiAgICB9XG5cbiAgICB0aGlzLnF1ZXJ5U2hhcGUgPSBxdWVyeVNoYXBlO1xuICAgIHRoaXMudmFsdWVTaGFwZSA9IHZhbHVlU2hhcGU7XG4gICAgdGhpcy5rZXlTaGFwZSA9IGtleVNoYXBlO1xuXG4gICAgLy8gTm90IHVzaW5nIFN5bWJvbGljVGVuc29ycyBzaW5jZSB0Zi5pbnB1dCgpIGFkZHMgYSBiYXRjaCBkaW1lbnNpb24gdG8gdGhlXG4gICAgLy8gZ2l2ZW4gc2hhcGUsIHRoZXJlZm9yZSBnaXZpbmcgdGhlIHRlbnNvciB0aGUgd3JvbmcgcmFuay5cbiAgICBjb25zdCBxdWVyeVJhbmsgPSBxdWVyeVNoYXBlLmxlbmd0aDtcbiAgICBjb25zdCB2YWx1ZVJhbmsgPSB2YWx1ZVNoYXBlLmxlbmd0aDtcbiAgICBjb25zdCBrZXlSYW5rID0ga2V5U2hhcGUubGVuZ3RoO1xuXG4gICAgY29uc3QgZnJlZURpbXMgPSBxdWVyeVJhbmsgLSAxO1xuICAgIGxldCBbZWluc3VtRXF1YXRpb24sIGJpYXNBeGVzLCBvdXRwdXRSYW5rXSA9XG4gICAgICBidWlsZFByb2plY3Rpb25FcXVhdGlvbihmcmVlRGltcywgMSwgMik7XG4gICAgdGhpcy5xdWVyeURlbnNlID0gbmV3IEVpbnN1bURlbnNlKHtcbiAgICAgIGVxdWF0aW9uOiBlaW5zdW1FcXVhdGlvbixcbiAgICAgIG91dHB1dFNoYXBlOiBnZXRPdXRwdXRTaGFwZShvdXRwdXRSYW5rIC0gMSwgW3RoaXMubnVtSGVhZHMsIHRoaXMua2V5RGltXSksXG4gICAgICBiaWFzQXhlczogdGhpcy51c2VCaWFzID8gYmlhc0F4ZXMgOiBudWxsLFxuICAgICAgbmFtZTogJ3F1ZXJ5JyxcbiAgICAgIC4uLnRoaXMuZ2V0Q29tbW9uS3dhcmdzRm9yU3VibGF5ZXIoKSxcbiAgICB9KTtcblxuICAgIFtlaW5zdW1FcXVhdGlvbiwgYmlhc0F4ZXMsIG91dHB1dFJhbmtdID1cbiAgICAgIGJ1aWxkUHJvamVjdGlvbkVxdWF0aW9uKGtleVJhbmsgLSAxLCAxLCAyKTtcbiAgICB0aGlzLmtleURlbnNlID0gbmV3IEVpbnN1bURlbnNlKHtcbiAgICAgIGVxdWF0aW9uOiBlaW5zdW1FcXVhdGlvbixcbiAgICAgIG91dHB1dFNoYXBlOiBnZXRPdXRwdXRTaGFwZShvdXRwdXRSYW5rIC0gMSwgW3RoaXMubnVtSGVhZHMsIHRoaXMua2V5RGltXSksXG4gICAgICBiaWFzQXhlczogdGhpcy51c2VCaWFzID8gYmlhc0F4ZXMgOiBudWxsLFxuICAgICAgbmFtZTogJ2tleScsXG4gICAgICAuLi50aGlzLmdldENvbW1vbkt3YXJnc0ZvclN1YmxheWVyKCksXG4gICAgfSk7XG5cbiAgICBbZWluc3VtRXF1YXRpb24sIGJpYXNBeGVzLCBvdXRwdXRSYW5rXSA9XG4gICAgICBidWlsZFByb2plY3Rpb25FcXVhdGlvbih2YWx1ZVJhbmsgLSAxLCAxLCAyKTtcbiAgICB0aGlzLnZhbHVlRGVuc2UgPSBuZXcgRWluc3VtRGVuc2Uoe1xuICAgICAgZXF1YXRpb246IGVpbnN1bUVxdWF0aW9uLFxuICAgICAgb3V0cHV0U2hhcGU6IGdldE91dHB1dFNoYXBlKFxuICAgICAgICBvdXRwdXRSYW5rIC0gMSwgW3RoaXMubnVtSGVhZHMsIHRoaXMudmFsdWVEaW1dKSxcbiAgICAgIGJpYXNBeGVzOiB0aGlzLnVzZUJpYXMgPyBiaWFzQXhlcyA6IG51bGwsXG4gICAgICBuYW1lOiAndmFsdWUnLFxuICAgICAgLi4udGhpcy5nZXRDb21tb25Ld2FyZ3NGb3JTdWJsYXllcigpLFxuICAgIH0pO1xuXG4gICAgLy8gQnVpbGRzIHRoZSBhdHRlbnRpb24gY29tcHV0YXRpb25zIGZvciBtdWx0aS1oZWFkIGRvdCBwcm9kdWN0IGF0dGVudGlvbi5cbiAgICB0aGlzLmJ1aWxkQXR0ZW50aW9uKG91dHB1dFJhbmspO1xuICAgIHRoaXMub3V0cHV0RGVuc2UgPSB0aGlzLm1ha2VPdXRwdXREZW5zZShcbiAgICAgIGZyZWVEaW1zLFxuICAgICAgdGhpcy5nZXRDb21tb25Ld2FyZ3NGb3JTdWJsYXllcigpLFxuICAgICAgJ2F0dGVudGlvbk91dHB1dCdcbiAgICApO1xuICB9XG5cbiAgcHJpdmF0ZSBnZXRDb21tb25Ld2FyZ3NGb3JTdWJsYXllcigpOiBLd2FyZ3Mge1xuICAgIC8vIENyZWF0ZSBuZXcgY2xvbmUgb2Yga2VybmVsL2JpYXMgaW5pdGlhbGl6ZXIsIHNvIHRoYXQgd2UgZG9uJ3QgcmV1c2VcbiAgICAvLyB0aGUgaW5pdGlhbGl6ZXIgaW5zdGFuY2UsIHdoaWNoIGNvdWxkIGxlYWQgdG8gc2FtZSBpbml0IHZhbHVlIHNpbmNlXG4gICAgLy8gaW5pdGlhbGl6ZXIgaXMgc3RhdGVsZXNzLlxuICAgIGNvbnN0IGtlcm5lbEluaXRpYWxpemVyID0gZ2V0SW5pdGlhbGl6ZXIoe1xuICAgICAgY2xhc3NOYW1lOiB0aGlzLmtlcm5lbEluaXRpYWxpemVyLmdldENsYXNzTmFtZSgpLFxuICAgICAgY29uZmlnOiB0aGlzLmtlcm5lbEluaXRpYWxpemVyLmdldENvbmZpZygpLFxuICAgIH0pO1xuICAgIGNvbnN0IGJpYXNJbml0aWFsaXplciA9IGdldEluaXRpYWxpemVyKHtcbiAgICAgIGNsYXNzTmFtZTogdGhpcy5iaWFzSW5pdGlhbGl6ZXIuZ2V0Q2xhc3NOYW1lKCksXG4gICAgICBjb25maWc6IHRoaXMuYmlhc0luaXRpYWxpemVyLmdldENvbmZpZygpLFxuICAgIH0pO1xuXG4gICAgY29uc3QgY29tbW9uS3dhcmdzID0ge1xuICAgICAga2VybmVsSW5pdGlhbGl6ZXIsXG4gICAgICBiaWFzSW5pdGlhbGl6ZXIsXG4gICAgICBrZXJuZWxSZWd1bGFyaXplcjogdGhpcy5rZXJuZWxSZWd1bGFyaXplcixcbiAgICAgIGJpYXNSZWd1bGFyaXplcjogdGhpcy5iaWFzUmVndWxhcml6ZXIsXG4gICAgICBhY3Rpdml0eVJlZ3VsYXJpemVyOiB0aGlzLmFjdGl2aXR5UmVndWxhcml6ZXIsXG4gICAgICBrZXJuZWxDb25zdHJhaW50OiB0aGlzLmtlcm5lbENvbnN0cmFpbnQsXG4gICAgICBiaWFzQ29uc3RyYWludDogdGhpcy5iaWFzQ29uc3RyYWludCxcbiAgICB9O1xuICAgIHJldHVybiBjb21tb25Ld2FyZ3M7XG4gIH1cblxuICAvKipcbiAgICogQnVpbGRzIHRoZSBvdXRwdXQgcHJvamVjdGlvbiBtYXRyaXguXG4gICAqXG4gICAqIEBwYXJhbSBmcmVlRGltcyBOdW1iZXIgb2YgZnJlZSBkaW1lbnNpb25zIGZvciBlaW5zdW0gZXF1YXRpb24gYnVpbGRpbmcuXG4gICAqIEBwYXJhbSBjb21tb25Ld2FyZ3MgQ29tbW9uIGtleXdvcmQgYXJndW1lbnRzIGZvciBlaW5zdW0gbGF5ZXIuXG4gICAqIEBwYXJhbSBuYW1lIE5hbWUgZm9yIHRoZSBwcm9qZWN0aW9uIGxheWVyLlxuICAgKiBAcmV0dXJucyBQcm9qZWN0aW9uIGxheWVyLlxuICAgKi9cbiAgcHJpdmF0ZSBtYWtlT3V0cHV0RGVuc2UoXG4gICAgZnJlZURpbXM6IG51bWJlciwgY29tbW9uS3dhcmdzOiBLd2FyZ3MsIG5hbWU/OiBzdHJpbmdcbiAgKTogRWluc3VtRGVuc2Uge1xuICAgIGxldCBvdXRwdXRTaGFwZTogU2hhcGU7XG4gICAgaWYgKHRoaXMuX291dHB1dFNoYXBlKSB7XG4gICAgICBpZiAoIUFycmF5LmlzQXJyYXkodGhpcy5fb3V0cHV0U2hhcGUpKSB7XG4gICAgICAgIG91dHB1dFNoYXBlID0gW3RoaXMuX291dHB1dFNoYXBlXTtcbiAgICAgIH0gZWxzZSB7XG4gICAgICAgIG91dHB1dFNoYXBlID0gdGhpcy5fb3V0cHV0U2hhcGU7XG4gICAgICB9XG4gICAgfSBlbHNlIHtcbiAgICAgIG91dHB1dFNoYXBlID0gW3RoaXMucXVlcnlTaGFwZVt0aGlzLnF1ZXJ5U2hhcGUubGVuZ3RoIC0gMV1dO1xuICAgIH1cblxuICAgIGNvbnN0IFtlaW5zdW1FcXVhdGlvbiwgYmlhc0F4ZXMsIG91dHB1dFJhbmtdID1cbiAgICAgIGJ1aWxkUHJvamVjdGlvbkVxdWF0aW9uKGZyZWVEaW1zLCAyLCBvdXRwdXRTaGFwZS5sZW5ndGgpO1xuXG4gICAgcmV0dXJuIG5ldyBFaW5zdW1EZW5zZSh7XG4gICAgICBlcXVhdGlvbjogZWluc3VtRXF1YXRpb24sXG4gICAgICBvdXRwdXRTaGFwZTogZ2V0T3V0cHV0U2hhcGUob3V0cHV0UmFuayAtIDEsIG91dHB1dFNoYXBlKSxcbiAgICAgIGJpYXNBeGVzOiB0aGlzLnVzZUJpYXMgPyBiaWFzQXhlcyA6IG51bGwsXG4gICAgICBuYW1lLFxuICAgICAgLi4uY29tbW9uS3dhcmdzLFxuICAgIH0pO1xuICB9XG5cbiAgLyoqXG4gICAqIEJ1aWxkcyBtdWx0aS1oZWFkIGRvdC1wcm9kdWN0IGF0dGVudGlvbiBjb21wdXRhdGlvbnMuXG4gICAqXG4gICAqIFRoaXMgZnVuY3Rpb24gYnVpbGRzIGF0dHJpYnV0ZXMgbmVjZXNzYXJ5IGZvciBgY29tcHV0ZUF0dGVudGlvbmAgdG9cbiAgICogY3VzdG9taXplIGF0dGVudGlvbiBjb21wdXRhdGlvbiB0byByZXBsYWNlIHRoZSBkZWZhdWx0IGRvdC1wcm9kdWN0XG4gICAqIGF0dGVudGlvbi5cbiAgICpcbiAgICogQHBhcmFtIHJhbmsgVGhlIHJhbmsgb2YgcXVlcnksIGtleSwgdmFsdWUgdGVuc29ycy5cbiAgICovXG4gIHByb3RlY3RlZCBidWlsZEF0dGVudGlvbihyYW5rOiBudW1iZXIpIHtcbiAgICBpZiAodGhpcy5hdHRlbnRpb25BeGVzID09IG51bGwpIHtcbiAgICAgIHRoaXMuYXR0ZW50aW9uQXhlcyA9IFtdO1xuICAgICAgZm9yIChsZXQgaSA9IDE7IGkgPCByYW5rIC0gMjsgaSsrKSB7XG4gICAgICAgIHRoaXMuYXR0ZW50aW9uQXhlcy5wdXNoKGkpO1xuICAgICAgfVxuICAgIH0gZWxzZSB7XG4gICAgICB0aGlzLmF0dGVudGlvbkF4ZXMgPSBbLi4udGhpcy5hdHRlbnRpb25BeGVzXTtcbiAgICB9XG5cbiAgICBjb25zdCBbZG90UHJvZHVjdEVxdWF0aW9uLCBjb21iaW5lRXF1YXRpb24sIGF0dG5TY29yZXNSYW5rXSA9XG4gICAgICBidWlsZEF0dGVudGlvbkVxdWF0aW9uKHJhbmssIHRoaXMuYXR0ZW50aW9uQXhlcyk7XG4gICAgdGhpcy5kb3RQcm9kdWN0RXF1YXRpb24gPSBkb3RQcm9kdWN0RXF1YXRpb247XG4gICAgdGhpcy5jb21iaW5lRXF1YXRpb24gPSBjb21iaW5lRXF1YXRpb247XG5cbiAgICBjb25zdCBub3JtQXhlczogbnVtYmVyW10gPSBbXTtcbiAgICBjb25zdCBzdGFydElkeCA9IGF0dG5TY29yZXNSYW5rIC0gdGhpcy5hdHRlbnRpb25BeGVzLmxlbmd0aDtcbiAgICBmb3IgKGxldCBpID0gc3RhcnRJZHg7IGkgPCBhdHRuU2NvcmVzUmFuazsgaSsrKSB7XG4gICAgICBub3JtQXhlcy5wdXNoKGkpO1xuICAgIH1cbiAgICB0aGlzLnNvZnRtYXggPSBuZXcgU29mdG1heCh7YXhpczogbm9ybUF4ZXN9KTtcbiAgICB0aGlzLmRyb3BvdXRMYXllciA9IG5ldyBEcm9wb3V0KHtyYXRlOiB0aGlzLmRyb3BvdXR9KTtcbiAgfVxuXG4gIHByb3RlY3RlZCBtYXNrZWRTb2Z0bWF4KFxuICAgIGF0dGVudGlvblNjb3JlczogVGVuc29yLCBhdHRlbnRpb25NYXNrPzogVGVuc29yXG4gICk6IFRlbnNvciB7XG4gICAgcmV0dXJuIHRpZHkoKCkgPT4ge1xuICAgICAgLy8gTm9ybWFsaXplIHRoZSBhdHRlbnRpb24gc2NvcmVzIHRvIHByb2JhYmlsaXRpZXMuXG4gICAgICAvLyBgYXR0ZW50aW9uU2NvcmVzYCA9IFtCLCBOLCBULCBTXVxuICAgICAgaWYgKGF0dGVudGlvbk1hc2sgIT0gbnVsbCkge1xuICAgICAgICAvLyBUaGUgZXhwYW5kIGRpbSBoYXBwZW5zIHN0YXJ0aW5nIGZyb20gdGhlIGBudW1IZWFkc2AgZGltZW5zaW9uLFxuICAgICAgICAvLyAoPGJhdGNoRGltcz4sIG51bUhlYWRzLCA8cXVlcnlBdHRlbnRpb25EaW1zLCBrZXlBdHRlbnRpb25EaW1zPilcbiAgICAgICAgY29uc3QgbWFza0V4cGFuc2lvbkF4aXMgPSAtdGhpcy5hdHRlbnRpb25BeGVzLmxlbmd0aCAqIDIgLSAxO1xuICAgICAgICBjb25zdCBlbmRJZHggPVxuICAgICAgICAgIGF0dGVudGlvblNjb3Jlcy5zaGFwZS5sZW5ndGggLSBhdHRlbnRpb25NYXNrLnNoYXBlLmxlbmd0aDtcbiAgICAgICAgZm9yIChsZXQgXyA9IDA7IF8gPCBlbmRJZHg7IF8rKykge1xuICAgICAgICAgIGF0dGVudGlvbk1hc2sgPSBleHBhbmREaW1zKGF0dGVudGlvbk1hc2ssIG1hc2tFeHBhbnNpb25BeGlzKTtcbiAgICAgICAgfVxuICAgICAgfVxuICAgICAgcmV0dXJuIHRoaXMuc29mdG1heC5hcHBseShcbiAgICAgICAgYXR0ZW50aW9uU2NvcmVzLCB7bWFzazogYXR0ZW50aW9uTWFza30pIGFzIFRlbnNvcjtcbiAgICB9KTtcbiAgfVxuXG4gIC8qKlxuICAgKiBBcHBsaWVzIERvdC1wcm9kdWN0IGF0dGVudGlvbiB3aXRoIHF1ZXJ5LCBrZXksIHZhbHVlIHRlbnNvcnMuXG4gICAqXG4gICAqIFRoaXMgZnVuY3Rpb24gZGVmaW5lcyB0aGUgY29tcHV0YXRpb24gaW5zaWRlIGBjYWxsYCB3aXRoIHByb2plY3RlZFxuICAgKiBtdWx0aS1oZWFkIFEsIEssIFYgaW5wdXRzLiBVc2VycyBjYW4gb3ZlcnJpZGUgdGhpcyBmdW5jdGlvbiBmb3JcbiAgICogY3VzdG9taXplZCBhdHRlbnRpb24gaW1wbGVtZW50YXRpb24uXG4gICAqXG4gICAqIEBwYXJhbSBxdWVyeSBQcm9qZWN0ZWQgcXVlcnkgYFRlbnNvcmAgb2Ygc2hhcGUgYChCLCBULCBOLCBrZXlEaW0pYC5cbiAgICogQHBhcmFtIGtleSAgUHJvamVjdGVkIGtleSBgVGVuc29yYCBvZiBzaGFwZSBgKEIsIFMsIE4sIGtleURpbSlgLlxuICAgKiBAcGFyYW0gdmFsdWUgUHJvamVjdGVkIHZhbHVlIGBUZW5zb3JgIG9mIHNoYXBlIGAoQiwgUywgTiwgdmFsdWVEaW0pYC5cbiAgICogQHBhcmFtIGF0dGVudGlvbk1hc2sgQSBib29sZWFuIG1hc2sgb2Ygc2hhcGUgYChCLCBULCBTKWAsIHRoYXQgcHJldmVudHNcbiAgICogICAgYXR0ZW50aW9uIHRvIGNlcnRhaW4gcG9zaXRpb25zLiBJdCBpcyBnZW5lcmFsbHkgbm90IG5lZWRlZCBpZlxuICAgKiAgICB0aGUgYHF1ZXJ5YCBhbmQgYHZhbHVlYCAoYW5kL29yIGBrZXlgKSBhcmUgbWFza2VkLlxuICAgKiBAcGFyYW0gdHJhaW5pbmcgQm9vbGVhbiBpbmRpY2F0aW5nIHdoZXRoZXIgdGhlIGxheWVyIHNob3VsZCBiZWhhdmVcbiAgICogICAgaW4gdHJhaW5pbmcgbW9kZSAoYWRkaW5nIGRyb3BvdXQpIG9yIGluIGluZmVyZW5jZSBtb2RlIChkb2luZ1xuICAgKiAgICBub3RoaW5nKS5cbiAgICogQHJldHVybnMgYXR0ZW50aW9uT3V0cHV0OiBNdWx0aS1oZWFkZWQgb3V0cHV0cyBvZiBhdHRlbnRpb24gY29tcHV0YXRpb24uXG4gICAqIEByZXR1cm5zIGF0dGVudGlvblNjb3JlczogTXVsdGktaGVhZGVkIGF0dGVudGlvbiB3ZWlnaHRzLlxuICAgKi9cbiAgcHJvdGVjdGVkIGNvbXB1dGVBdHRlbnRpb24oXG4gICAgcXVlcnk6IFRlbnNvcixcbiAgICBrZXk6IFRlbnNvcixcbiAgICB2YWx1ZTogVGVuc29yLFxuICAgIGF0dGVudGlvbk1hc2s/OiBUZW5zb3IsXG4gICAgdHJhaW5pbmc/OiBib29sZWFuXG4gICk6IFtUZW5zb3IsIFRlbnNvcl0ge1xuICAgIHJldHVybiB0aWR5KCgpID0+IHtcbiAgICAgIC8vIE5vdGU6IEFwcGx5aW5nIHNjYWxhciBtdWx0aXBseSBhdCB0aGUgc21hbGxlciBlbmQgb2YgZWluc3VtIGltcHJvdmVzXG4gICAgICAvLyBYTEEgcGVyZm9ybWFuY2UsIGJ1dCBtYXkgaW50cm9kdWNlIHNsaWdodCBudW1lcmljIGRpZmZlcmVuY2VzIGluXG4gICAgICAvLyB0aGUgVHJhbnNmb3JtZXIgYXR0ZW50aW9uIGhlYWQuXG4gICAgICBxdWVyeSA9IG11bChxdWVyeSwgMS4wIC8gTWF0aC5zcXJ0KHRoaXMua2V5RGltKSk7XG5cbiAgICAgIC8vIFRha2UgdGhlIGRvdCBwcm9kdWN0IGJldHdlZW4gXCJxdWVyeVwiIGFuZCBcImtleVwiIHRvIGdldCB0aGUgcmF3XG4gICAgICAvLyBhdHRlbnRpb24gc2NvcmVzLlxuICAgICAgbGV0IGF0dGVudGlvblNjb3JlcyA9IGVpbnN1bSh0aGlzLmRvdFByb2R1Y3RFcXVhdGlvbiwga2V5LCBxdWVyeSk7XG5cbiAgICAgIGF0dGVudGlvblNjb3JlcyA9IHRoaXMubWFza2VkU29mdG1heChhdHRlbnRpb25TY29yZXMsIGF0dGVudGlvbk1hc2spO1xuXG4gICAgICAvLyBUaGlzIGlzIGFjdHVhbGx5IGRyb3BwaW5nIG91dCBlbnRpcmUgdG9rZW5zIHRvIGF0dGVuZCB0bywgd2hpY2ggbWlnaHRcbiAgICAgIC8vIHNlZW0gYSBiaXQgdW51c3VhbCwgYnV0IGlzIHRha2VuIGZyb20gdGhlIG9yaWdpbmFsIFRyYW5zZm9ybWVyIHBhcGVyLlxuICAgICAgY29uc3QgYXR0ZW50aW9uU2NvcmVzRHJvcG91dCA9XG4gICAgICAgIHRoaXMuZHJvcG91dExheWVyLmFwcGx5KGF0dGVudGlvblNjb3Jlcywge3RyYWluaW5nfSkgYXMgVGVuc29yO1xuXG4gICAgICAvLyBgY29udGV4dExheWVyYCA9IFtCLCBULCBOLCBIXVxuICAgICAgY29uc3QgYXR0ZW50aW9uT3V0cHV0ID1cbiAgICAgICAgZWluc3VtKHRoaXMuY29tYmluZUVxdWF0aW9uLCBhdHRlbnRpb25TY29yZXNEcm9wb3V0LCB2YWx1ZSk7XG5cbiAgICAgIHJldHVybiBbYXR0ZW50aW9uT3V0cHV0LCBhdHRlbnRpb25TY29yZXNdO1xuICAgIH0pO1xuICB9XG5cbiAgb3ZlcnJpZGUgYXBwbHkoXG4gICAgaW5wdXRzOiBUZW5zb3IgfCBTeW1ib2xpY1RlbnNvcixcbiAgICBrd2FyZ3M/OiBLd2FyZ3NcbiAgKTogVGVuc29yIHwgVGVuc29yW10gfCBTeW1ib2xpY1RlbnNvciB8IFN5bWJvbGljVGVuc29yW10ge1xuICAgIGlmICgha3dhcmdzIHx8ICFrd2FyZ3NbJ3ZhbHVlJ10pIHtcbiAgICAgIHRocm93IG5ldyBWYWx1ZUVycm9yKCdNdXN0IHBhc3MgaW4gYHZhbHVlYCBhcmd1bWVudCBpbiBga3dhcmdzLmAnKTtcbiAgICB9XG4gICAgbGV0IG5ld0lucHV0czogVGVuc29yW118U3ltYm9saWNUZW5zb3JbXTtcblxuICAgIG5ld0lucHV0cyA9IFtpbnB1dHMsIGt3YXJnc1sndmFsdWUnXV0uY29uY2F0KGt3YXJnc1sna2V5J10gPz8gW10pO1xuXG4gICAgLy8gVE9ETyhwZm9yZGVyaXF1ZSk6IFN1cHBvcnQgbWFzayBwcm9wb2dhdGlvbi5cbiAgICByZXR1cm4gc3VwZXIuYXBwbHkobmV3SW5wdXRzLCBrd2FyZ3MpO1xuICB9XG5cbiAgb3ZlcnJpZGUgY2FsbChcbiAgICBxdWVyeTogVGVuc29yLCBrd2FyZ3M6IE11bHRpSGVhZEF0dGVudGlvbk9wdGlvbnNcbiAgKTogVGVuc29yIHtcbiAgICByZXR1cm4gdGlkeSgoKSA9PiB7XG4gICAgICByZXR1cm4gdGhpcy5jYWxsQW5kUmV0dXJuQXR0ZW50aW9uU2NvcmVzKHF1ZXJ5LCBrd2FyZ3MpWzBdO1xuICAgIH0pO1xuICB9XG5cbiAgLyoqXG4gICAqIEV4YWN0bHkgbGlrZSBgY2FsbGAgZXhjZXB0IGFsc28gcmV0dXJucyB0aGUgYXR0ZW50aW9uIHNjb3Jlcy5cbiAgICovXG4gIGNhbGxBbmRSZXR1cm5BdHRlbnRpb25TY29yZXMoXG4gICAgcXVlcnk6IFRlbnNvcixcbiAgICB7XG4gICAgICB2YWx1ZSxcbiAgICAgIGtleSxcbiAgICAgIHVzZUNhdXNhbE1hc2ssXG4gICAgICBhdHRlbnRpb25NYXNrLFxuICAgICAgdHJhaW5pbmdcbiAgICB9OiBNdWx0aUhlYWRBdHRlbnRpb25PcHRpb25zXG4gICk6IFtUZW5zb3IsIFRlbnNvcl0ge1xuICAgIHJldHVybiB0aWR5KCgpID0+IHtcbiAgICAgIGlmICghdGhpcy5idWlsdEZyb21TaWduYXR1cmUpIHtcbiAgICAgICAgdGhpcy5idWlsZEZyb21TaWduYXR1cmUoXG4gICAgICAgICAgcXVlcnkuc2hhcGUsXG4gICAgICAgICAgdmFsdWUuc2hhcGUsXG4gICAgICAgICAga2V5ID8ga2V5LnNoYXBlIDogbnVsbFxuICAgICAgICApO1xuICAgICAgfVxuICAgICAgaWYgKGtleSA9PSBudWxsKSB7XG4gICAgICAgIGtleSA9IHZhbHVlO1xuICAgICAgfVxuXG4gICAgICAvLyBUT0RPKHBmb3JkZXJpcXVlKTogU3VwcG9ydCBSYWdnZWRUZW5zb3IgaW5wdXRzLlxuXG4gICAgICBhdHRlbnRpb25NYXNrID0gdGhpcy5jb21wdXRlQXR0ZW50aW9uTWFzayhcbiAgICAgICAgcXVlcnksXG4gICAgICAgIHZhbHVlLFxuICAgICAgICBhdHRlbnRpb25NYXNrLFxuICAgICAgICB1c2VDYXVzYWxNYXNrLFxuICAgICAgKTtcblxuICAgICAgLy8gICBOID0gYG51bUF0dGVudGlvbkhlYWRzYFxuICAgICAgLy8gICBIID0gYHNpemVQZXJIZWFkYFxuICAgICAgLy8gYHF1ZXJ5YCA9IFtCLCBULCBOICxIXVxuICAgICAgcXVlcnkgPSB0aGlzLnF1ZXJ5RGVuc2UuYXBwbHkocXVlcnkpIGFzIFRlbnNvcjtcblxuICAgICAgLy8gYGtleWAgPSBbQiwgUywgTiwgSF1cbiAgICAgIGtleSA9IHRoaXMua2V5RGVuc2UuYXBwbHkoa2V5KSBhcyBUZW5zb3I7XG5cbiAgICAgIC8vIGB2YWx1ZWAgPSBbQiwgUywgTiwgSF1cbiAgICAgIHZhbHVlID0gdGhpcy52YWx1ZURlbnNlLmFwcGx5KHZhbHVlKSBhcyBUZW5zb3I7XG5cbiAgICAgIGNvbnN0IFthdHRlbnRpb25PdXRwdXRQcmVEZW5zZSwgYXR0ZW50aW9uU2NvcmVzXSA9IHRoaXMuY29tcHV0ZUF0dGVudGlvbihcbiAgICAgICAgcXVlcnksXG4gICAgICAgIGtleSxcbiAgICAgICAgdmFsdWUsXG4gICAgICAgIGF0dGVudGlvbk1hc2ssXG4gICAgICAgIHRyYWluaW5nXG4gICAgICApO1xuICAgICAgY29uc3QgYXR0ZW50aW9uT3V0cHV0ID1cbiAgICAgICAgdGhpcy5vdXRwdXREZW5zZS5hcHBseShhdHRlbnRpb25PdXRwdXRQcmVEZW5zZSkgYXMgVGVuc29yO1xuXG4gICAgICByZXR1cm4gW2F0dGVudGlvbk91dHB1dCwgYXR0ZW50aW9uU2NvcmVzXTtcbiAgICB9KTtcbiAgfVxuXG4gIC8qKlxuICAgKiBDb21wdXRlcyB0aGUgYXR0ZW50aW9uIG1hc2suXG4gICAqXG4gICAqICogVGhlIGBxdWVyeWAncyBtYXNrIGlzIHJlc2hhcGVkIGZyb20gW0IsIFRdIHRvIFtCLCBULCAxXS5cbiAgICogKiBUaGUgYHZhbHVlYCdzIG1hc2sgaXMgcmVzaGFwZWQgZnJvbSBbQiwgU10gdG8gW0IsIDEsIFNdLlxuICAgKiAqIFRoZSBga2V5YCdzIG1hc2sgaXMgcmVzaGFwZWQgZnJvbSBbQiwgU10gdG8gW0IsIDEsIFNdLiBUaGUgYGtleWAnc1xuICAgKiAgIG1hc2sgaXMgaWdub3JlZCBpZiBga2V5YCBpcyBgTm9uZWAgb3IgaWYgYGtleSBpcyB2YWx1ZWAuXG4gICAqICogSWYgYHVzZUNhdXNhbE1hc2s9dHJ1ZWAsIHRoZW4gdGhlIGNhdXNhbCBtYXNrIGlzIGNvbXB1dGVkLiBJdHMgc2hhcGVcbiAgICogICBpcyBbMSwgVCwgU10uXG4gICAqXG4gICAqIEFsbCBkZWZpbmVkIG1hc2tzIGFyZSBtZXJnZWQgdXNpbmcgYSBsb2dpY2FsIEFORCBvcGVyYXRpb24gKGAmYCkuXG4gICAqXG4gICAqIEluIGdlbmVyYWwsIGlmIHRoZSBgcXVlcnlgIGFuZCBgdmFsdWVgIGFyZSBtYXNrZWQsIHRoZW4gdGhlcmUgaXMgbm8gbmVlZFxuICAgKiB0byBkZWZpbmUgdGhlIGBhdHRlbnRpb25NYXNrYC5cbiAgICpcbiAgICogQHBhcmFtIHF1ZXJ5IFByb2plY3RlZCBxdWVyeSBgVGVuc29yYCBvZiBzaGFwZSBgKEIsIFQsIE4sIGtleURpbSlgLlxuICAgKiBAcGFyYW0ga2V5ICBQcm9qZWN0ZWQga2V5IGBUZW5zb3JgIG9mIHNoYXBlIGAoQiwgUywgTiwga2V5RGltKWAuXG4gICAqIEBwYXJhbSB2YWx1ZSBQcm9qZWN0ZWQgdmFsdWUgYFRlbnNvcmAgb2Ygc2hhcGUgYChCLCBTLCBOLCB2YWx1ZURpbSlgLlxuICAgKiBAcGFyYW0gYXR0ZW50aW9uTWFzayBBIGJvb2xlYW4gbWFzayBvZiBzaGFwZSBgKEIsIFQsIFMpYCwgdGhhdCBwcmV2ZW50c1xuICAgKiAgICBhdHRlbnRpb24gdG8gY2VydGFpbiBwb3NpdGlvbnMuXG4gICAqIEBwYXJhbSB1c2VDYXVzYWxNYXNrICBBIGJvb2xlYW4gdG8gaW5kaWNhdGUgd2hldGhlciB0byBhcHBseSBhIGNhdXNhbFxuICAgKiAgICBtYXNrIHRvIHByZXZlbnQgdG9rZW5zIGZyb20gYXR0ZW5kaW5nIHRvIGZ1dHVyZSB0b2tlbnMgKGUuZy4sXG4gICAqICAgIHVzZWQgaW4gYSBkZWNvZGVyIFRyYW5zZm9ybWVyKS5cbiAgICogQHJldHVybnMgYXR0ZW50aW9uTWFzazogQSBib29sZWFuIG1hc2sgb2Ygc2hhcGUgYChCLCBULCBTKWAsIHRoYXQgcHJldmVudHNcbiAgICogICAgYXR0ZW50aW9uIHRvIGNlcnRhaW4gcG9zaXRpb25zLCBiYXNlZCBvbiB0aGUgS2VyYXMgbWFza3Mgb2YgdGhlXG4gICAqICAgIGBxdWVyeWAsIGBrZXlgLCBgdmFsdWVgLCBhbmQgYGF0dGVudGlvbk1hc2tgIHRlbnNvcnMsIGFuZCB0aGVcbiAgICogICAgY2F1c2FsIG1hc2sgaWYgYHVzZUNhdXNhbE1hc2s9dHJ1ZWAuXG4gICAqL1xuICBwcml2YXRlIGNvbXB1dGVBdHRlbnRpb25NYXNrKFxuICAgIHF1ZXJ5OiBUZW5zb3IsXG4gICAgdmFsdWU6IFRlbnNvcixcbiAgICBhdHRlbnRpb25NYXNrPzogVGVuc29yLFxuICAgIHVzZUNhdXNhbE1hc2sgPSBmYWxzZVxuICApOiBUZW5zb3Ige1xuICAgIHJldHVybiB0aWR5KCgpID0+IHtcbiAgICAgIGxldCBhdXRvTWFzazogVGVuc29yO1xuXG4gICAgICBjb25zdCBxdWVyeU1hc2sgPSBxdWVyeS5rZXJhc01hc2s7XG4gICAgICBjb25zdCB2YWx1ZU1hc2sgPSB2YWx1ZS5rZXJhc01hc2s7XG4gICAgICBpZiAocXVlcnlNYXNrICE9IG51bGwpIHtcbiAgICAgICAgYXV0b01hc2sgPSBxdWVyeU1hc2suZXhwYW5kRGltcygyKTsgLy8gU2hhcGUgaXMgW0IsIFQsIDFdXG4gICAgICB9XG4gICAgICBpZiAodmFsdWVNYXNrICE9IG51bGwpIHtcbiAgICAgICAgY29uc3QgbWFzayA9IHZhbHVlTWFzay5leHBhbmREaW1zKDEpOyAvLyBTaGFwZSBpcyBbQiwgMSwgU11cbiAgICAgICAgYXV0b01hc2sgPSBhdXRvTWFzayA/IGxvZ2ljYWxBbmQoYXV0b01hc2ssIG1hc2spIDogbWFzaztcbiAgICAgIH1cbiAgICAgIGlmICh1c2VDYXVzYWxNYXNrKSB7XG4gICAgICAgIC8vIHRoZSBzaGFwZSBvZiB0aGUgY2F1c2FsIG1hc2sgaXMgWzEsIFQsIFNdXG4gICAgICAgIGNvbnN0IG1hc2sgPSB0aGlzLmNvbXB1dGVDYXVzYWxNYXNrKHF1ZXJ5LCB2YWx1ZSk7XG4gICAgICAgIGF1dG9NYXNrID0gYXV0b01hc2sgPyBsb2dpY2FsQW5kKGF1dG9NYXNrLCBtYXNrKSA6IG1hc2s7XG4gICAgICB9XG4gICAgICBpZiAoYXV0b01hc2sgIT0gbnVsbCkge1xuICAgICAgICAvLyBNZXJnZSBhdHRlbnRpb25NYXNrICYgYXV0b21hdGljIG1hc2ssIHRvIHNoYXBlIFtCLCBULCBTXVxuICAgICAgICBhdHRlbnRpb25NYXNrID0gYXR0ZW50aW9uTWFzayA/XG4gICAgICAgICAgY2FzdChhdHRlbnRpb25NYXNrLCAnYm9vbCcpLmxvZ2ljYWxBbmQoYXV0b01hc2spIDogYXV0b01hc2s7XG4gICAgICB9XG5cbiAgICAgIHJldHVybiBhdHRlbnRpb25NYXNrO1xuICAgIH0pO1xuICB9XG5cbiAgLyoqXG4gICAqIENvbXB1dGVzIGEgY2F1c2FsIG1hc2sgKGUuZy4sIGZvciBtYXNrZWQgc2VsZi1hdHRlbnRpb24gbGF5ZXJzKS5cbiAgICpcbiAgICogRm9yIGV4YW1wbGUsIGlmIHF1ZXJ5IGFuZCB2YWx1ZSBib3RoIGNvbnRhaW4gc2VxdWVuY2VzIG9mIGxlbmd0aCA0LFxuICAgKiB0aGlzIGZ1bmN0aW9uIHJldHVybnMgYSBib29sZWFuIGBUZW5zb3JgIGVxdWFsIHRvOlxuICAgKlxuICAgKiBgYGBcbiAgICogW1tbdHJ1ZSwgIGZhbHNlLCBmYWxzZSwgZmFsc2VdLFxuICAgKiAgIFt0cnVlLCAgdHJ1ZSwgIGZhbHNlLCBmYWxzZV0sXG4gICAqICAgW3RydWUsICB0cnVlLCAgdHJ1ZSwgIGZhbHNlXSxcbiAgICogICBbdHJ1ZSwgIHRydWUsICB0cnVlLCAgdHJ1ZV1dXVxuICAgKiBgYGBcbiAgICpcbiAgICogQHBhcmFtIHF1ZXJ5IHF1ZXJ5IGBUZW5zb3JgIG9mIHNoYXBlIGAoQiwgVCwgLi4uKWAuXG4gICAqIEBwYXJhbSB2YWx1ZSB2YWx1ZSBgVGVuc29yYCBvZiBzaGFwZSBgKEIsIFMsIC4uLilgIChkZWZhdWx0cyB0byBxdWVyeSkuXG4gICAqIEByZXR1cm5zIG1hc2s6IEEgYm9vbGVhbiBgVGVuc29yYCBvZiBzaGFwZSBbMSwgVCwgU10gY29udGFpbmluZyBhIGxvd2VyXG4gICAqICAgIHRyaWFuZ3VsYXIgbWF0cml4IG9mIHNoYXBlIFtULCBTXS5cbiAgICovXG4gIHByaXZhdGUgY29tcHV0ZUNhdXNhbE1hc2socXVlcnk6IFRlbnNvciwgdmFsdWU/OiBUZW5zb3IpOiBUZW5zb3Ige1xuICAgIHJldHVybiB0aWR5KCgpID0+IHtcbiAgICAgIGNvbnN0IHFTZXFMZW5ndGggPSBxdWVyeS5zaGFwZVsxXTtcbiAgICAgIGNvbnN0IHZTZXFMZW5ndGggPSB2YWx1ZSA/IHZhbHVlLnNoYXBlWzFdIDogcVNlcUxlbmd0aDtcbiAgICAgIC8vIENyZWF0ZSBhIGxvd2VyIHRyaWFuZ3VsYXIgbWF0cml4LlxuICAgICAgcmV0dXJuIGxpbmFsZy5iYW5kUGFydChvbmVzKFsxLCBxU2VxTGVuZ3RoLCB2U2VxTGVuZ3RoXSwgJ2Jvb2wnKSwgLTEsIDApO1xuICAgIH0pO1xuICB9XG5cbiAgLyoqXG4gICAqXG4gICAqIEBwYXJhbSBpbnB1dFNoYXBlcyBBIGxpc3Qgb2YgW3F1ZXJ5U2hhcGUsIHZhbHVlU2hhcGVdIG9yXG4gICAqICAgIFtxdWVyeVNoYXBlLCB2YWx1ZVNoYXBlLCBrZXlTaGFwZV0uIElmIG5vIGtleVNoYXBlIHByb3ZpZGVkLCB2YWx1ZVNoYXBlXG4gICAqICAgIGlzIGFzc3VtZWQgYXMgdGhlIGtleVNoYXBlLlxuICAgKi9cbiAgb3ZlcnJpZGUgY29tcHV0ZU91dHB1dFNoYXBlKGlucHV0U2hhcGVzOiBbU2hhcGUsIFNoYXBlLCBTaGFwZXxudWxsXSk6IFNoYXBlIHtcbiAgICBjb25zdCBbcXVlcnlTaGFwZSwgdmFsdWVTaGFwZSwgbWF5YmVLZXlTaGFwZV0gPSBpbnB1dFNoYXBlcztcbiAgICBjb25zdCBrZXlTaGFwZSA9IG1heWJlS2V5U2hhcGUgPz8gdmFsdWVTaGFwZTtcblxuICAgIGlmIChxdWVyeVNoYXBlLnNsaWNlKC0xKVswXSAhPT0gdmFsdWVTaGFwZS5zbGljZSgtMSlbMF0pIHtcbiAgICAgIHRocm93IG5ldyBWYWx1ZUVycm9yKFxuICAgICAgICBgVGhlIGxhc3QgZGltZW5zaW9uIG9mICdxdWVyeVNoYXBlJyBhbmQgJ3ZhbHVlU2hhcGUnIG11c3QgYmUgZXF1YWwsIGAgK1xuICAgICAgICBgYnV0IGFyZSAke3F1ZXJ5U2hhcGUuc2xpY2UoLTEpWzBdfSwgJHt2YWx1ZVNoYXBlLnNsaWNlKC0xKVswXX0uIGAgK1xuICAgICAgICBgUmVjZWl2ZWQ6IHF1ZXJ5U2hhcGU9JHtxdWVyeVNoYXBlfSwgdmFsdWVTaGFwZT0ke3ZhbHVlU2hhcGV9YFxuICAgICAgKTtcbiAgICB9XG5cbiAgICBpZiAoIXV0aWwuYXJyYXlzRXF1YWwodmFsdWVTaGFwZS5zbGljZSgxLCAtMSksIGtleVNoYXBlLnNsaWNlKDEsIC0xKSkpIHtcbiAgICAgIHRocm93IG5ldyBFcnJvcihcbiAgICAgICAgYEFsbCBkaW1lbnNpb25zIG9mICd2YWx1ZScgYW5kICdrZXknLCBleGNlcHQgdGhlIGxhc3Qgb25lLCBtdXN0IGJlIGAgK1xuICAgICAgICBgZXF1YWwuIFJlY2VpdmVkICR7dmFsdWVTaGFwZX0gYW5kICR7a2V5U2hhcGV9YFxuICAgICAgKTtcbiAgICB9XG5cbiAgICBpZiAodGhpcy5fb3V0cHV0U2hhcGUpIHtcbiAgICAgIHJldHVybiBxdWVyeVNoYXBlLnNsaWNlKDAsIC0xKS5jb25jYXQodGhpcy5fb3V0cHV0U2hhcGUpO1xuICAgIH1cblxuICAgIHJldHVybiBxdWVyeVNoYXBlO1xuICB9XG59XG5zZXJpYWxpemF0aW9uLnJlZ2lzdGVyQ2xhc3MoTXVsdGlIZWFkQXR0ZW50aW9uKTtcbiJdfQ==