/**
|
* @license
|
* Copyright 2023 Google LLC.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
/// <amd-module name="@tensorflow/tfjs-layers/dist/layers/nlp/utils" />
|
import { ModelPredictConfig, Scalar, Tensor } from '@tensorflow/tfjs-core';
|
import { History } from '../../base_callbacks';
|
import { ContainerArgs } from '../../engine/container';
|
import { LayersModel, ModelEvaluateArgs } from '../../engine/training';
|
import { ModelFitArgs } from '../../engine/training_tensors';
|
export declare function tensorToArr(input: Tensor): unknown[];
|
export declare function tensorArrTo2DArr(inputs: Tensor[]): unknown[][];
|
/**
|
* Returns a new Tensor with `updates` inserted into `inputs` starting at the
|
* index `startIndices`.
|
*
|
* @param inputs Tensor to "modify"
|
* @param startIndices the starting index to insert the slice.
|
* Length must be equal to `inputs.rank`;
|
* @param updates the update tensor. Shape must fit within `inputs` shape.
|
* @returns a new tensor with the modification.
|
*/
|
export declare function sliceUpdate(inputs: Tensor, startIndices: number[], updates: Tensor): Tensor;
|
/**
|
* A model which allows automatically applying preprocessing.
|
*/
|
export interface PipelineModelArgs extends ContainerArgs {
|
/**
|
* Defaults to true.
|
*/
|
includePreprocessing?: boolean;
|
}
|
export declare class PipelineModel extends LayersModel {
|
/** @nocollapse */
|
static className: string;
|
protected includePreprocessing: boolean;
|
constructor(args: PipelineModelArgs);
|
/**
|
* An overridable function which preprocesses features.
|
*/
|
preprocessFeatures(x: Tensor): Tensor<import("@tensorflow/tfjs-core").Rank>;
|
/**
|
* An overridable function which preprocesses labels.
|
*/
|
preprocessLabels(y: Tensor): Tensor<import("@tensorflow/tfjs-core").Rank>;
|
/**
|
* An overridable function which preprocesses entire samples.
|
*/
|
preprocessSamples(x: Tensor, y?: Tensor, sampleWeight?: Tensor): Tensor | [Tensor, Tensor] | [Tensor, Tensor, Tensor];
|
fit(x: Tensor | Tensor[] | {
|
[inputName: string]: Tensor;
|
}, y: Tensor | Tensor[] | {
|
[inputName: string]: Tensor;
|
}, args?: ModelFitArgs): Promise<History>;
|
evaluate(x: Tensor | Tensor[], y: Tensor | Tensor[], args?: ModelEvaluateArgs): Scalar | Scalar[];
|
predict(x: Tensor | Tensor[], args?: ModelPredictConfig): Tensor | Tensor[];
|
trainOnBatch(x: Tensor | Tensor[] | {
|
[inputName: string]: Tensor;
|
}, y: Tensor | Tensor[] | {
|
[inputName: string]: Tensor;
|
}, sampleWeight?: Tensor): Promise<number | number[]>;
|
predictOnBatch(x: Tensor | Tensor[]): Tensor | Tensor[];
|
}
|