"use strict";
|
/**
|
* @license
|
* Copyright 2018 Google Inc. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
Object.defineProperty(exports, "__esModule", { value: true });
|
var engine_1 = require("../engine");
|
var tensor_util_env_1 = require("../tensor_util_env");
|
var util_1 = require("../util");
|
var array_ops_1 = require("./array_ops");
|
var axis_util_1 = require("./axis_util");
|
var binary_ops_1 = require("./binary_ops");
|
var compare_1 = require("./compare");
|
var logical_ops_1 = require("./logical_ops");
|
var operation_1 = require("./operation");
|
var segment_util_1 = require("./segment_util");
|
var tensor_ops_1 = require("./tensor_ops");
|
/**
|
* Computes the sum along segments of a `tf.Tensor`.
|
*
|
* ```js
|
* const x = tf.tensor1d([1, 2, 3, 4]);
|
* const segmentIds = tf.tensor1d([1, 2, 0, 1], 'int32');
|
* const numSegments = 3;
|
*
|
* x.unsortedSegmentSum(segmentIds, numSegments).print()
|
* //or tf.unsortedSegmentSum(x, segmentIds, numSegments)
|
* ```
|
* @param x The `tf.Tensor` that will be summed along its segments.
|
* @param segmentIds A `tf.Tensor1D` whose rank is equal to the rank of `x`'s
|
* dimension along the `axis`. Maps each element of `x` to a segment.
|
* @param numSegments The number of distinct `segmentIds`.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Segment'} */
|
function unsortedSegmentSum_(x, segmentIds, numSegments) {
|
var $x = tensor_util_env_1.convertToTensor(x, 'x', 'unsortedSegmentSum');
|
var $segmentIds = tensor_util_env_1.convertToTensor(segmentIds, 'segmentIds', 'unsortedSegmentSum', 'int32');
|
util_1.assert(util_1.isInt(numSegments), function () { return 'numSegments must be of dtype int'; });
|
var gradFunc = function (dy, saved) {
|
var $segmentIds = saved[0];
|
var derX = function () {
|
return gatherDropNegatives(dy, $segmentIds);
|
};
|
return { $x: derX };
|
};
|
return engine_1.ENGINE.runKernelFunc(function (backend, save) {
|
var res = backend.unsortedSegmentSum($x, $segmentIds, numSegments);
|
save([$segmentIds]);
|
return res;
|
}, { $x: $x }, gradFunc);
|
}
|
/**
|
* Gather slices from tensor `x`'s axis `axis` according to `indices`.
|
*
|
* ```js
|
* const x = tf.tensor1d([1, 2, 3, 4]);
|
* const indices = tf.tensor1d([1, 3, 3], 'int32');
|
*
|
* x.gather(indices).print();
|
* ```
|
*
|
* ```js
|
* const x = tf.tensor2d([1, 2, 3, 4], [2, 2]);
|
* const indices = tf.tensor1d([1, 1, 0], 'int32');
|
*
|
* x.gather(indices).print();
|
* ```
|
* @param x The input tensor whose slices to be gathered.
|
* @param indices The indices of the values to extract.
|
* @param axis The axis over which to select values. Defaults to 0.
|
*/
|
/** @doc {heading: 'Tensors', subheading: 'Slicing and Joining'} */
|
function gather_(x, indices, axis) {
|
if (axis === void 0) { axis = 0; }
|
var $x = tensor_util_env_1.convertToTensor(x, 'x', 'gather');
|
var $indices = tensor_util_env_1.convertToTensor(indices, 'indices', 'gather', 'int32');
|
axis = util_1.parseAxisParam(axis, $x.shape)[0];
|
var shapeInfo = segment_util_1.collectGatherOpShapeInfo($x, $indices, axis);
|
var grad = function (dy, saved) {
|
var $indices = saved[0];
|
var derX = function () {
|
var paramsShape = $x.shape;
|
var indicesSize = $indices.size;
|
var outerShape = paramsShape.slice(0, axis);
|
var outerDims = outerShape.length;
|
var innerShape = paramsShape.slice(axis, paramsShape.length).slice(1);
|
var innerDims = innerShape.length;
|
var outerAxesIndices = arrayRange(0, outerDims);
|
var innerAxesIndices = arrayRange(outerDims + 1, outerDims + 1 + innerDims);
|
var valuesShape = arrayConcat([outerShape, [indicesSize], innerShape]);
|
var values = dy.reshape(valuesShape);
|
var reshapedIndices = $indices.reshape([indicesSize]);
|
var transposeDims = arrayConcat([[outerDims], outerAxesIndices, innerAxesIndices]);
|
var valuesTranspose = values.transpose(transposeDims);
|
var paramsGrad = exports.unsortedSegmentSum(valuesTranspose, reshapedIndices, $x.shape[axis]);
|
var invertTransposeDims = axis_util_1.getUndoAxesPermutation(transposeDims);
|
paramsGrad = paramsGrad.transpose(invertTransposeDims);
|
return paramsGrad;
|
};
|
return { x: derX, indices: function () { return $indices; } };
|
};
|
return (engine_1.ENGINE.runKernelFunc(function (backend, save) {
|
var res = backend.gather($x, $indices.flatten(), axis);
|
save([$indices]);
|
return res;
|
}, { x: $x, indices: $indices }, grad, 'Gather', { axis: axis }))
|
.reshape(shapeInfo.outputShape);
|
}
|
function arrayRange(start, stop) {
|
var result = [];
|
for (var i = start; i < stop; ++i) {
|
result.push(i);
|
}
|
return result;
|
}
|
function arrayConcat(arrays) {
|
var result = [];
|
for (var i = 0; i < arrays.length; ++i) {
|
for (var j = 0; j < arrays[i].length; ++j) {
|
result.push(arrays[i][j]);
|
}
|
}
|
return result;
|
}
|
function gatherDropNegatives(x, indices) {
|
// Helper function for unsorted segment ops. Gathers params for
|
// positive segment ids and gathers 0 for inputs with negative segment id.
|
// Mirrors _GatherDropNegatives from tensorflow/python/ops/math_grad.py
|
var zeroClippedIndices = binary_ops_1.maximum(indices, tensor_ops_1.zerosLike(indices));
|
var gathered = exports.gather(x, zeroClippedIndices);
|
var isPositive = compare_1.greaterEqual(indices, tensor_ops_1.scalar(0, 'int32'));
|
var numIters = gathered.rank - isPositive.rank;
|
for (var i = 0; i < numIters; ++i) {
|
isPositive = array_ops_1.expandDims(isPositive, i + 1);
|
}
|
isPositive = logical_ops_1.logicalAnd(isPositive, tensor_ops_1.ones(gathered.shape, 'bool'));
|
var zeroSlice = tensor_ops_1.zerosLike(gathered);
|
return logical_ops_1.where(isPositive, gathered, zeroSlice);
|
}
|
exports.gather = operation_1.op({ gather_: gather_ });
|
exports.unsortedSegmentSum = operation_1.op({ unsortedSegmentSum_: unsortedSegmentSum_ });
|
//# sourceMappingURL=segment_ops.js.map
|