"use strict";
|
/**
|
* @license
|
* Copyright 2018 Google Inc. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) {
|
return new (P || (P = Promise))(function (resolve, reject) {
|
function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } }
|
function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } }
|
function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); }
|
step((generator = generator.apply(thisArg, _arguments || [])).next());
|
});
|
};
|
var __generator = (this && this.__generator) || function (thisArg, body) {
|
var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g;
|
return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g;
|
function verb(n) { return function (v) { return step([n, v]); }; }
|
function step(op) {
|
if (f) throw new TypeError("Generator is already executing.");
|
while (_) try {
|
if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t;
|
if (y = 0, t) op = [op[0] & 2, t.value];
|
switch (op[0]) {
|
case 0: case 1: t = op; break;
|
case 4: _.label++; return { value: op[1], done: false };
|
case 5: _.label++; y = op[1]; op = [0]; continue;
|
case 7: op = _.ops.pop(); _.trys.pop(); continue;
|
default:
|
if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; }
|
if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; }
|
if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; }
|
if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; }
|
if (t[2]) _.ops.pop();
|
_.trys.pop(); continue;
|
}
|
op = body.call(thisArg, _);
|
} catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; }
|
if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true };
|
}
|
};
|
var _this = this;
|
Object.defineProperty(exports, "__esModule", { value: true });
|
var tf = require("../index");
|
var jasmine_util_1 = require("../jasmine_util");
|
var test_util_1 = require("../test_util");
|
jasmine_util_1.describeWithFlags('AdagradOptimizer', jasmine_util_1.ALL_ENVS, function () {
|
it('basic', function () { return __awaiter(_this, void 0, void 0, function () {
|
var learningRate, initialAccumulatorValue, optimizer, x, f, numTensors, cost, _a, _b;
|
return __generator(this, function (_c) {
|
switch (_c.label) {
|
case 0:
|
learningRate = .1;
|
initialAccumulatorValue = .1;
|
optimizer = tf.train.adagrad(learningRate, initialAccumulatorValue);
|
x = tf.tensor1d([1, 2]).variable();
|
f = function () { return x.square().sum(); };
|
numTensors = tf.memory().numTensors;
|
cost = optimizer.minimize(f, /* returnCost */ true);
|
// Cost & accumulator should be the only additional arrays.
|
expect(tf.memory().numTensors).toBe(numTensors + 2);
|
// epsilon = 1-e8
|
// newAccumulatedGrad = accumulatedGrad + grad^2
|
// x -= (learningRate * grad) / sqrt(newAccumulatedGrad + eps)
|
// de/dx = [2, 4]
|
// accumulatedGrad = [0.1, 0.1]
|
// newAccumulatedGrad = [4.1, 16.1]
|
// x = [0.9012270405, 1.900311042]
|
_a = test_util_1.expectArraysClose;
|
return [4 /*yield*/, x.data()];
|
case 1:
|
// epsilon = 1-e8
|
// newAccumulatedGrad = accumulatedGrad + grad^2
|
// x -= (learningRate * grad) / sqrt(newAccumulatedGrad + eps)
|
// de/dx = [2, 4]
|
// accumulatedGrad = [0.1, 0.1]
|
// newAccumulatedGrad = [4.1, 16.1]
|
// x = [0.9012270405, 1.900311042]
|
_a.apply(void 0, [_c.sent(), [0.9012270405, 1.9003110428]]);
|
cost.dispose();
|
numTensors = tf.memory().numTensors;
|
cost = optimizer.minimize(f, /* returnCost */ false);
|
// de/dx = [1.802454081, 3.9501555214]
|
// accumulatedGrad = [4.1, 16.1]
|
// newAccumulatedGrad = [7.3488407141, 31.7037286432]
|
// x = [0.8347372764, 1.83015597828]
|
// TODO: Fix numerical precision.
|
_b = test_util_1.expectArraysClose;
|
return [4 /*yield*/, x.data()];
|
case 2:
|
// de/dx = [1.802454081, 3.9501555214]
|
// accumulatedGrad = [4.1, 16.1]
|
// newAccumulatedGrad = [7.3488407141, 31.7037286432]
|
// x = [0.8347372764, 1.83015597828]
|
// TODO: Fix numerical precision.
|
_b.apply(void 0, [_c.sent(), [0.8347372764, 1.83015597828], 1e-2]);
|
// There should be no new additional Tensors.
|
expect(tf.memory().numTensors).toBe(numTensors);
|
expect(cost).toBe(null);
|
x.dispose();
|
optimizer.dispose();
|
// The only tensor remaining is the argument to variable().
|
expect(tf.memory().numTensors).toBe(1);
|
return [2 /*return*/];
|
}
|
});
|
}); });
|
it('Continue training after loading weights', function () { return __awaiter(_this, void 0, void 0, function () {
|
var learningRate, initialAccumulatorValue, optimizer1, x, f, cost, _a, weights, optimizer2, _b;
|
return __generator(this, function (_c) {
|
switch (_c.label) {
|
case 0:
|
learningRate = .1;
|
initialAccumulatorValue = .1;
|
optimizer1 = tf.train.adagrad(learningRate, initialAccumulatorValue);
|
x = tf.tensor1d([2, 4]).variable();
|
f = function () { return x.square().sum(); };
|
cost = optimizer1.minimize(f, /* returnCost */ true);
|
_a = test_util_1.expectArraysClose;
|
return [4 /*yield*/, cost.data()];
|
case 1:
|
_a.apply(void 0, [_c.sent(), 20]);
|
return [4 /*yield*/, optimizer1.getWeights()];
|
case 2:
|
weights = _c.sent();
|
expect(weights.length).toEqual(2);
|
expect(weights[0].name).toEqual('iter');
|
expect(weights[1].name).toEqual(x.name + "/accumulator");
|
optimizer2 = tf.train.adam(learningRate, initialAccumulatorValue);
|
return [4 /*yield*/, optimizer2.setWeights(weights)];
|
case 3:
|
_c.sent();
|
cost = optimizer2.minimize(f, /* returnCost */ true);
|
_b = test_util_1.expectArraysClose;
|
return [4 /*yield*/, cost.data()];
|
case 4:
|
_b.apply(void 0, [_c.sent(), 18.82179]);
|
expect(optimizer2.iterations).toEqual(2);
|
return [2 /*return*/];
|
}
|
});
|
}); });
|
it('serialization round-trip', function () {
|
var originalOpt = tf.train.adagrad(0.1, 0.2);
|
var reserialized = tf.AdagradOptimizer.fromConfig(tf.AdagradOptimizer, originalOpt.getConfig());
|
expect(reserialized.getConfig()).toEqual(originalOpt.getConfig());
|
});
|
});
|
//# sourceMappingURL=adagrad_optimizer_test.js.map
|