"use strict";
|
/**
|
* @license
|
* Copyright 2018 Google Inc. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
var __extends = (this && this.__extends) || (function () {
|
var extendStatics = function (d, b) {
|
extendStatics = Object.setPrototypeOf ||
|
({ __proto__: [] } instanceof Array && function (d, b) { d.__proto__ = b; }) ||
|
function (d, b) { for (var p in b) if (b.hasOwnProperty(p)) d[p] = b[p]; };
|
return extendStatics(d, b);
|
};
|
return function (d, b) {
|
extendStatics(d, b);
|
function __() { this.constructor = d; }
|
d.prototype = b === null ? Object.create(b) : (__.prototype = b.prototype, new __());
|
};
|
})();
|
var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) {
|
return new (P || (P = Promise))(function (resolve, reject) {
|
function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } }
|
function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } }
|
function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); }
|
step((generator = generator.apply(thisArg, _arguments || [])).next());
|
});
|
};
|
var __generator = (this && this.__generator) || function (thisArg, body) {
|
var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g;
|
return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g;
|
function verb(n) { return function (v) { return step([n, v]); }; }
|
function step(op) {
|
if (f) throw new TypeError("Generator is already executing.");
|
while (_) try {
|
if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t;
|
if (y = 0, t) op = [op[0] & 2, t.value];
|
switch (op[0]) {
|
case 0: case 1: t = op; break;
|
case 4: _.label++; return { value: op[1], done: false };
|
case 5: _.label++; y = op[1]; op = [0]; continue;
|
case 7: op = _.ops.pop(); _.trys.pop(); continue;
|
default:
|
if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; }
|
if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; }
|
if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; }
|
if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; }
|
if (t[2]) _.ops.pop();
|
_.trys.pop(); continue;
|
}
|
op = body.call(thisArg, _);
|
} catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; }
|
if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true };
|
}
|
};
|
Object.defineProperty(exports, "__esModule", { value: true });
|
var globals_1 = require("../globals");
|
var gradients_1 = require("../gradients");
|
var ops_1 = require("../ops/ops");
|
var serialization_1 = require("../serialization");
|
/** @doc {heading: 'Training', subheading: 'Classes', namespace: 'train'} */
|
var Optimizer = /** @class */ (function (_super) {
|
__extends(Optimizer, _super);
|
function Optimizer() {
|
return _super !== null && _super.apply(this, arguments) || this;
|
}
|
/**
|
* Executes `f()` and minimizes the scalar output of `f()` by computing
|
* gradients of y with respect to the list of trainable variables provided by
|
* `varList`. If no list is provided, it defaults to all trainable variables.
|
*
|
* @param f The function to execute and whose output to minimize.
|
* @param returnCost Whether to return the scalar cost value produced by
|
* executing `f()`.
|
* @param varList An optional list of variables to update. If specified, only
|
* the trainable variables in varList will be updated by minimize. Defaults to
|
* all trainable variables.
|
*/
|
/** @doc {heading: 'Training', subheading: 'Optimizers'} */
|
Optimizer.prototype.minimize = function (f, returnCost, varList) {
|
if (returnCost === void 0) { returnCost = false; }
|
var _a = this.computeGradients(f, varList), value = _a.value, grads = _a.grads;
|
if (varList != null) {
|
var gradArray = varList.map(function (v) { return ({ name: v.name, tensor: grads[v.name] }); });
|
this.applyGradients(gradArray);
|
}
|
else {
|
this.applyGradients(grads);
|
}
|
// Dispose gradients.
|
globals_1.dispose(grads);
|
if (returnCost) {
|
return value;
|
}
|
else {
|
value.dispose();
|
return null;
|
}
|
};
|
Object.defineProperty(Optimizer.prototype, "iterations", {
|
/**
|
* The number of iterations that this optimizer instance has been invoked for.
|
*/
|
get: function () {
|
if (this.iterations_ == null) {
|
this.iterations_ = 0;
|
}
|
return this.iterations_;
|
},
|
enumerable: true,
|
configurable: true
|
});
|
Optimizer.prototype.incrementIterations = function () {
|
this.iterations_ = this.iterations + 1;
|
};
|
/**
|
* Executes f() and computes the gradient of the scalar output of f() with
|
* respect to the list of trainable variables provided by `varList`. If no
|
* list is provided, it defaults to all trainable variables.
|
*
|
* @param f The function to execute and whose output to use for computing
|
* gradients with respect to variables.
|
* @param varList An optional list of variables to compute gradients with
|
* respect to. If specified, only the trainable variables in varList will have
|
* gradients computed with respect to. Defaults to all trainable variables.
|
*/
|
Optimizer.prototype.computeGradients = function (f, varList) {
|
return gradients_1.variableGrads(f, varList);
|
};
|
/**
|
* Dispose the variables (if any) owned by this optimizer instance.
|
*/
|
Optimizer.prototype.dispose = function () {
|
if (this.iterations_ != null) {
|
globals_1.dispose(this.iterations_);
|
}
|
};
|
Optimizer.prototype.saveIterations = function () {
|
return __awaiter(this, void 0, void 0, function () {
|
return __generator(this, function (_a) {
|
if (this.iterations_ == null) {
|
this.iterations_ = 0;
|
}
|
return [2 /*return*/, {
|
name: 'iter',
|
// TODO(cais): Use 'int64' type when available.
|
tensor: ops_1.scalar(this.iterations_, 'int32')
|
}];
|
});
|
});
|
};
|
Optimizer.prototype.getWeights = function () {
|
return __awaiter(this, void 0, void 0, function () {
|
return __generator(this, function (_a) {
|
throw new Error('getWeights() is not implemented for this optimizer yet.');
|
});
|
});
|
};
|
Optimizer.prototype.setWeights = function (weightValues) {
|
return __awaiter(this, void 0, void 0, function () {
|
return __generator(this, function (_a) {
|
throw new Error("setWeights() is not implemented for this optimizer class " +
|
("" + this.getClassName()));
|
});
|
});
|
};
|
/**
|
* Extract the first element of the weight values and set it
|
* as the iterations counter variable of this instance of optimizer.
|
*
|
* @param weightValues
|
* @returns Weight values with the first element consumed and excluded.
|
*/
|
Optimizer.prototype.extractIterations = function (weightValues) {
|
return __awaiter(this, void 0, void 0, function () {
|
var _a;
|
return __generator(this, function (_b) {
|
switch (_b.label) {
|
case 0:
|
_a = this;
|
return [4 /*yield*/, weightValues[0].tensor.data()];
|
case 1:
|
_a.iterations_ = (_b.sent())[0];
|
return [2 /*return*/, weightValues.slice(1)];
|
}
|
});
|
});
|
};
|
return Optimizer;
|
}(serialization_1.Serializable));
|
exports.Optimizer = Optimizer;
|
Object.defineProperty(Optimizer, Symbol.hasInstance, {
|
value: function (instance) {
|
return instance.minimize != null && instance.computeGradients != null &&
|
instance.applyGradients != null;
|
}
|
});
|
//# sourceMappingURL=optimizer.js.map
|