/**
|
* @license
|
* Copyright 2018 Google Inc. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
|
import {ENGINE} from '../engine';
|
import {deprecationWarn} from '../globals';
|
import {Tensor, Tensor1D, Tensor2D, Tensor3D, Tensor4D} from '../tensor';
|
import {convertToTensor} from '../tensor_util_env';
|
import {Rank, ShapeMap, TensorLike} from '../types';
|
import * as util from '../util';
|
|
import {tile} from './array_ops';
|
import {getReductionAxes} from './broadcast_util';
|
import {op} from './operation';
|
import {scalar} from './tensor_ops';
|
import {rsqrt} from './unary_ops';
|
|
/**
|
* Batch normalization, strictly for 2D. For the more relaxed version, see
|
* `tf.batchNorm`.
|
*
|
* @param x The input Tensor.
|
* @param mean A mean Tensor.
|
* @param variance A variance Tensor.
|
* @param offset An offset Tensor.
|
* @param scale A scale Tensor.
|
* @param varianceEpsilon A small float number to avoid dividing by 0.
|
*/
|
function batchNorm2d_(
|
x: Tensor2D|TensorLike, mean: Tensor2D|Tensor1D|TensorLike,
|
variance: Tensor2D|Tensor1D|TensorLike,
|
offset?: Tensor2D|Tensor1D|TensorLike, scale?: Tensor2D|Tensor1D|TensorLike,
|
varianceEpsilon?: number): Tensor2D {
|
const $x = convertToTensor(x, 'x', 'batchNorm');
|
const $mean = convertToTensor(mean, 'mean', 'batchNorm');
|
const $variance = convertToTensor(variance, 'variance', 'batchNorm');
|
let $scale: Tensor2D|Tensor1D;
|
if (scale != null) {
|
$scale = convertToTensor(scale, 'scale', 'batchNorm');
|
}
|
let $offset: Tensor2D|Tensor1D;
|
if (offset != null) {
|
$offset = convertToTensor(offset, 'offset', 'batchNorm');
|
}
|
util.assert(
|
$x.rank === 2,
|
() => `Error in batchNorm3D: x must be rank 3 but got rank ` +
|
`${$x.rank}.`);
|
util.assert(
|
$mean.rank === 2 || $mean.rank === 1,
|
() => `Error in batchNorm2D: mean must be rank 2 or rank 1 but ` +
|
`got rank ${$mean.rank}.`);
|
util.assert(
|
$variance.rank === 2 || $variance.rank === 1,
|
() => `Error in batchNorm2D: variance must be rank 2 or rank 1 ` +
|
`but got rank ${$variance.rank}.`);
|
if ($scale != null) {
|
util.assert(
|
$scale.rank === 2 || $scale.rank === 1,
|
() => `Error in batchNorm2D: scale must be rank 2 or rank 1 ` +
|
`but got rank ${$scale.rank}.`);
|
}
|
if ($offset != null) {
|
util.assert(
|
$offset.rank === 2 || $offset.rank === 1,
|
() => `Error in batchNorm2D: offset must be rank 2 or rank 1 ` +
|
`but got rank ${$offset.rank}.`);
|
}
|
|
return batchNorm_($x, $mean, $variance, $offset, $scale, varianceEpsilon);
|
}
|
|
/**
|
* Batch normalization, strictly for 3D. For the more relaxed version, see
|
* `tf.batchNorm`.
|
*
|
* @param x The input Tensor.
|
* @param mean A mean Tensor.
|
* @param variance A variance Tensor.
|
* @param offset An offset Tensor.
|
* @param scale A scale Tensor.
|
* @param varianceEpsilon A small float number to avoid dividing by 0.
|
*/
|
function batchNorm3d_(
|
x: Tensor3D|TensorLike, mean: Tensor3D|Tensor1D|TensorLike,
|
variance: Tensor3D|Tensor1D|TensorLike,
|
offset?: Tensor3D|Tensor1D|TensorLike, scale?: Tensor3D|Tensor1D|TensorLike,
|
varianceEpsilon?: number): Tensor3D {
|
const $x = convertToTensor(x, 'x', 'batchNorm');
|
const $mean = convertToTensor(mean, 'mean', 'batchNorm');
|
const $variance = convertToTensor(variance, 'variance', 'batchNorm');
|
let $scale: Tensor3D|Tensor1D;
|
if (scale != null) {
|
$scale = convertToTensor(scale, 'scale', 'batchNorm');
|
}
|
let $offset: Tensor3D|Tensor1D;
|
if (offset != null) {
|
$offset = convertToTensor(offset, 'offset', 'batchNorm');
|
}
|
util.assert(
|
$x.rank === 3,
|
() => `Error in batchNorm3D: x must be rank 3 but got rank ` +
|
`${$x.rank}.`);
|
util.assert(
|
$mean.rank === 3 || $mean.rank === 1,
|
() => `Error in batchNorm3D: mean must be rank 3 or rank 1 but ` +
|
`got rank ${$mean.rank}.`);
|
util.assert(
|
$variance.rank === 3 || $variance.rank === 1,
|
() => `Error in batchNorm3D: variance must be rank 3 or rank 1 ` +
|
`but got rank ${$variance.rank}.`);
|
if ($scale != null) {
|
util.assert(
|
$scale.rank === 3 || $scale.rank === 1,
|
() => `Error in batchNorm3D: scale must be rank 3 or rank 1 ` +
|
`but got rank ${$scale.rank}.`);
|
}
|
if ($offset != null) {
|
util.assert(
|
$offset.rank === 3 || $offset.rank === 1,
|
() => `Error in batchNorm3D: offset must be rank 3 or rank 1 ` +
|
`but got rank ${$offset.rank}.`);
|
}
|
|
return batchNorm_($x, $mean, $variance, $offset, $scale, varianceEpsilon);
|
}
|
|
/**
|
* Batch normalization, strictly for 4D. For the more relaxed version, see
|
* `tf.batchNorm`.
|
*
|
* @param x The input Tensor.
|
* @param mean A mean Tensor.
|
* @param variance A variance Tensor.
|
* @param offset An offset Tensor.
|
* @param scale A scale Tensor.
|
* @param varianceEpsilon A small float number to avoid dividing by 0.
|
*/
|
function batchNorm4d_(
|
x: Tensor4D|TensorLike, mean: Tensor4D|Tensor1D|TensorLike,
|
variance: Tensor4D|Tensor1D|TensorLike,
|
offset?: Tensor4D|Tensor1D|TensorLike, scale?: Tensor4D|Tensor1D|TensorLike,
|
varianceEpsilon?: number): Tensor4D {
|
const $x = convertToTensor(x, 'x', 'batchNorm');
|
const $mean = convertToTensor(mean, 'mean', 'batchNorm');
|
const $variance = convertToTensor(variance, 'variance', 'batchNorm');
|
let $scale: Tensor4D|Tensor1D;
|
if (scale != null) {
|
$scale = convertToTensor(scale, 'scale', 'batchNorm');
|
}
|
let $offset: Tensor4D|Tensor1D;
|
if (offset != null) {
|
$offset = convertToTensor(offset, 'offset', 'batchNorm');
|
}
|
util.assert(
|
$x.rank === 4,
|
() => `Error in batchNorm4D: x must be rank 4 but got rank ` +
|
`${$x.rank}.`);
|
util.assert(
|
$mean.rank === 4 || $mean.rank === 1,
|
() => `Error in batchNorm4D: mean must be rank 4 or rank 1 but ` +
|
`got rank ${$mean.rank}.`);
|
util.assert(
|
$variance.rank === 4 || $variance.rank === 1,
|
() => `Error in batchNorm4D: variance must be rank 4 or rank 1 ` +
|
`but got rank ${$variance.rank}.`);
|
if ($scale != null) {
|
util.assert(
|
$scale.rank === 4 || $scale.rank === 1,
|
() => `Error in batchNorm4D: scale must be rank 4 or rank 1 ` +
|
`but got rank ${$scale.rank}.`);
|
}
|
if ($offset != null) {
|
util.assert(
|
$offset.rank === 4 || $offset.rank === 1,
|
() => `Error in batchNorm4D: offset must be rank 4 or rank 1 ` +
|
`but got rank ${$offset.rank}.`);
|
}
|
return batchNorm_($x, $mean, $variance, $offset, $scale, varianceEpsilon);
|
}
|
|
/**
|
* @deprecated Please use `tf.batchNorm` instead and note the positional
|
* argument change of scale, offset, and varianceEpsilon.
|
*/
|
function batchNormalization_<R extends Rank>(
|
x: Tensor<R>|TensorLike, mean: Tensor<R>|Tensor1D|TensorLike,
|
variance: Tensor<R>|Tensor1D|TensorLike, varianceEpsilon = .001,
|
scale?: Tensor<R>|Tensor1D|TensorLike,
|
offset?: Tensor<R>|Tensor1D|TensorLike): Tensor<R> {
|
warnDeprecation();
|
return batchNorm_(x, mean, variance, offset, scale, varianceEpsilon);
|
}
|
|
/**
|
* Batch normalization.
|
*
|
* As described in
|
* [http://arxiv.org/abs/1502.03167](http://arxiv.org/abs/1502.03167).
|
*
|
* Mean, variance, scale, and offset can be of two shapes:
|
* - The same shape as the input.
|
* - In the common case, the depth dimension is the last dimension of x, so
|
* the values would be an `tf.Tensor1D` of shape [depth].
|
*
|
* Also available are stricter rank-specific methods with the same signature
|
* as this method that assert that parameters passed are of given rank
|
* - `tf.batchNorm2d`
|
* - `tf.batchNorm3d`
|
* - `tf.batchNorm4d`
|
*
|
* @param x The input Tensor.
|
* @param mean A mean Tensor.
|
* @param variance A variance Tensor.
|
* @param offset An offset Tensor.
|
* @param scale A scale Tensor.
|
* @param varianceEpsilon A small float number to avoid dividing by 0.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Normalization'} */
|
function batchNorm_<R extends Rank>(
|
x: Tensor<R>|TensorLike, mean: Tensor<R>|Tensor1D|TensorLike,
|
variance: Tensor<R>|Tensor1D|TensorLike,
|
offset?: Tensor<R>|Tensor1D|TensorLike,
|
scale?: Tensor<R>|Tensor1D|TensorLike,
|
varianceEpsilon?: number): Tensor<R> {
|
if (varianceEpsilon == null) {
|
varianceEpsilon = 0.001;
|
}
|
const $x = convertToTensor(x, 'x', 'batchNorm');
|
const $mean = convertToTensor(mean, 'mean', 'batchNorm');
|
const $variance = convertToTensor(variance, 'variance', 'batchNorm');
|
let $scale: Tensor<R>|Tensor1D;
|
if (scale != null) {
|
$scale = convertToTensor(scale, 'scale', 'batchNorm');
|
}
|
let $offset: Tensor<R>|Tensor1D;
|
if (offset != null) {
|
$offset = convertToTensor(offset, 'offset', 'batchNorm');
|
}
|
|
util.assert(
|
$mean.rank === $variance.rank,
|
() => 'Batch normalization gradient requires mean and variance to have ' +
|
'equal ranks.');
|
util.assert(
|
$offset == null || $mean.rank === $offset.rank,
|
() => 'Batch normalization gradient requires mean and offset to have ' +
|
'equal ranks.');
|
util.assert(
|
$scale == null || $mean.rank === $scale.rank,
|
() => 'Batch normalization gradient requires mean and scale to have ' +
|
'equal ranks.');
|
|
let x4D: Tensor4D;
|
if ($x.rank === 0 || $x.rank === 1) {
|
x4D = $x.as4D(1, 1, 1, $x.size);
|
} else if ($x.rank === 2) {
|
x4D = $x.as4D(1, 1, $x.shape[0], $x.shape[1]);
|
} else if ($x.rank === 3) {
|
x4D = $x.as4D(1, $x.shape[0], $x.shape[1], $x.shape[2]);
|
} else {
|
x4D = $x as Tensor4D;
|
}
|
|
const der = (dy: Tensor, saved: Tensor[]) => {
|
type Saved = [
|
Tensor<R>, Tensor<R>| Tensor1D, Tensor<R>| Tensor1D, Tensor<R>| Tensor1D
|
];
|
const [$x, $mean, $variance, $scale] = saved as Saved;
|
const scaleValue = $scale == null ? scalar(1) : $scale;
|
const reductionAxes = getReductionAxes($mean.shape, x4D.shape);
|
const tileShape: number[] = [];
|
if ($mean.rank === 1) {
|
for (let i = 0; i < x4D.shape.length - 1; ++i) {
|
tileShape.push(x4D.shape[i]);
|
}
|
tileShape.push(1);
|
}
|
|
const xMinusMean = $x.sub($mean);
|
const dyTimesScaleValue = dy.mul(scaleValue);
|
const oneOverSqrtVariance = rsqrt($variance.add(scalar(varianceEpsilon)));
|
const minusHalfRCube = oneOverSqrtVariance.mul(oneOverSqrtVariance)
|
.mul(oneOverSqrtVariance)
|
.mul(scalar(-0.5));
|
|
const derX = () => {
|
if ($mean.rank === 1) {
|
return dy
|
.mul(tile(
|
oneOverSqrtVariance.as4D(1, 1, 1, $mean.shape[0]), tileShape))
|
.mul(scaleValue)
|
.reshape($x.shape);
|
} else {
|
return dy.mul(oneOverSqrtVariance).mul(scaleValue).reshape($x.shape);
|
}
|
};
|
const derMean = () => {
|
let meanDer = oneOverSqrtVariance.mul(scalar(-1)).mul(dyTimesScaleValue);
|
if ($mean.rank === 1) {
|
meanDer = meanDer.sum(reductionAxes);
|
}
|
return meanDer.reshape($mean.shape as ShapeMap[R]);
|
};
|
const derVariance = () => {
|
let varianceDer = minusHalfRCube.mul(xMinusMean).mul(dyTimesScaleValue);
|
if ($mean.rank === 1) {
|
varianceDer = varianceDer.sum(reductionAxes);
|
}
|
return varianceDer.reshape($mean.shape as ShapeMap[R]);
|
};
|
const derScale = () => {
|
const xMinusMean2TimesRsqrt = xMinusMean.mul(oneOverSqrtVariance);
|
let scaleDer = dy.mul(xMinusMean2TimesRsqrt);
|
if ($mean.rank === 1) {
|
scaleDer = scaleDer.sum(reductionAxes);
|
}
|
return scaleDer.reshape($mean.shape as ShapeMap[R]);
|
};
|
const derOffset = () => {
|
let offsetDer = dy;
|
if ($mean.rank === 1) {
|
offsetDer = offsetDer.sum(reductionAxes);
|
}
|
return offsetDer.reshape($mean.shape as ShapeMap[R]);
|
};
|
return {
|
x: derX,
|
mean: derMean,
|
variance: derVariance,
|
scale: derScale,
|
offset: derOffset
|
};
|
};
|
|
const inputsToSave = [$x, $mean, $variance, $scale];
|
|
const res = ENGINE.runKernelFunc(
|
(backend, save) => {
|
const res = backend.batchNormalization(
|
x4D, batchnormReshape4D($mean), batchnormReshape4D($variance),
|
varianceEpsilon, batchnormReshape4D($scale),
|
batchnormReshape4D($offset));
|
save([$x, $mean, $variance, $scale]);
|
return res;
|
},
|
{x: $x, mean: $mean, variance: $variance, scale: $scale, offset: $offset},
|
der, 'BatchNormalization', {varianceEpsilon}, inputsToSave);
|
return res.reshape($x.shape);
|
}
|
|
function batchnormReshape4D(x: Tensor): Tensor4D|Tensor1D {
|
if (x == null) {
|
return null;
|
}
|
if (x.rank === 0) {
|
return x.as1D();
|
} else if (x.rank === 1) {
|
return x as Tensor1D;
|
} else if (x.rank === 2) {
|
return x.as4D(1, 1, x.shape[0], x.shape[1]);
|
} else if (x.rank === 3) {
|
return x.as4D(1, x.shape[0], x.shape[1], x.shape[2]);
|
}
|
return x as Tensor4D;
|
}
|
|
/**
|
* @deprecated Please use `tf.batchNorm2d` instead and note the positional
|
* argument change of scale, offset, and varianceEpsilon.
|
*/
|
function batchNormalization2d_(
|
x: Tensor2D|TensorLike, mean: Tensor2D|Tensor1D|TensorLike,
|
variance: Tensor2D|Tensor1D|TensorLike, varianceEpsilon = .001,
|
scale?: Tensor2D|Tensor1D|TensorLike,
|
offset?: Tensor2D|Tensor1D|TensorLike): Tensor2D {
|
warnDeprecation();
|
return batchNorm2d_(x, mean, variance, offset, scale, varianceEpsilon);
|
}
|
|
/**
|
* @deprecated Please use `tf.batchNorm3d` instead and note the positional
|
* argument change of scale, offset, and varianceEpsilon.
|
*/
|
function batchNormalization3d_(
|
x: Tensor3D|TensorLike, mean: Tensor3D|Tensor1D|TensorLike,
|
variance: Tensor3D|Tensor1D|TensorLike, varianceEpsilon = .001,
|
scale?: Tensor3D|Tensor1D|TensorLike,
|
offset?: Tensor3D|Tensor1D|TensorLike): Tensor3D {
|
warnDeprecation();
|
return batchNorm3d_(x, mean, variance, offset, scale, varianceEpsilon);
|
}
|
|
/**
|
* @deprecated Please use `tf.batchNorm4d` instead and note the positional
|
* argument change of scale, offset, and varianceEpsilon.
|
*/
|
function batchNormalization4d_(
|
x: Tensor4D|TensorLike, mean: Tensor4D|Tensor1D|TensorLike,
|
variance: Tensor4D|Tensor1D|TensorLike, varianceEpsilon = .001,
|
scale?: Tensor4D|Tensor1D|TensorLike,
|
offset?: Tensor4D|Tensor1D|TensorLike): Tensor4D {
|
warnDeprecation();
|
return batchNorm4d_(x, mean, variance, offset, scale, varianceEpsilon);
|
}
|
|
function warnDeprecation() {
|
deprecationWarn(
|
'tf.batchNormalization() is going away. ' +
|
'Use tf.batchNorm() instead, and note the positional argument change ' +
|
'of scale, offset, and varianceEpsilon');
|
}
|
|
export const batchNormalization2d = op({batchNormalization2d_});
|
export const batchNormalization3d = op({batchNormalization3d_});
|
export const batchNormalization4d = op({batchNormalization4d_});
|
export const batchNormalization = op({batchNormalization_});
|
|
export const batchNorm = op({batchNorm_});
|
export const batchNorm2d = op({batchNorm2d_});
|
export const batchNorm3d = op({batchNorm3d_});
|
export const batchNorm4d = op({batchNorm4d_});
|