/**
|
* @license
|
* Copyright 2018 Google Inc. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
|
import {ENGINE} from '../engine';
|
import {Tensor, Tensor3D, Tensor4D} from '../tensor';
|
import {convertToTensor} from '../tensor_util_env';
|
import {TensorLike} from '../types';
|
import * as util from '../util';
|
import {op} from './operation';
|
|
/**
|
* Normalizes the activation of a local neighborhood across or within
|
* channels.
|
*
|
* @param x The input tensor. The 4-D input tensor is treated as a 3-D array
|
* of 1D vectors (along the last dimension), and each vector is
|
* normalized independently.
|
* @param depthRadius The number of adjacent channels in the 1D normalization
|
* window.
|
* @param bias A constant bias term for the basis.
|
* @param alpha A scale factor, usually positive.
|
* @param beta An exponent.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Normalization'} */
|
function localResponseNormalization_<T extends Tensor3D|Tensor4D>(
|
x: T|TensorLike, depthRadius = 5, bias = 1, alpha = 1, beta = 0.5): T {
|
const $x = convertToTensor(x, 'x', 'localResponseNormalization');
|
util.assert(
|
$x.rank === 4 || $x.rank === 3,
|
() => `Error in localResponseNormalization: x must be rank 3 or 4 but got
|
rank ${$x.rank}.`);
|
util.assert(
|
util.isInt(depthRadius),
|
() => `Error in localResponseNormalization: depthRadius must be an ` +
|
`integer but got depthRadius ${depthRadius}.`);
|
|
let x4D = $x as Tensor4D;
|
let reshapedTo4D = false;
|
if ($x.rank === 3) {
|
reshapedTo4D = true;
|
x4D = $x.as4D(1, $x.shape[0], $x.shape[1], $x.shape[2]);
|
}
|
const backward = (dy: Tensor4D, saved: Tensor[]) => {
|
const [x4D, y] = saved;
|
return {
|
x4D: () => ENGINE.runKernelFunc(
|
backend => backend.LRNGrad(
|
dy, x4D as Tensor4D, y as Tensor4D, depthRadius, bias, alpha,
|
beta),
|
{})
|
};
|
};
|
const res = ENGINE.runKernelFunc((backend, save) => {
|
const y = backend.localResponseNormalization4D(
|
x4D, depthRadius, bias, alpha, beta);
|
save([x4D, y]);
|
return y;
|
}, {x4D}, backward);
|
if (reshapedTo4D) {
|
return res.as3D(res.shape[1], res.shape[2], res.shape[3]) as T;
|
} else {
|
return res as T;
|
}
|
}
|
|
export const localResponseNormalization = op({localResponseNormalization_});
|