/**
|
* @license
|
* Copyright 2018 Google Inc. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
|
import {ENGINE} from '../engine';
|
import {Tensor, Tensor1D} from '../tensor';
|
import {convertToTensor} from '../tensor_util_env';
|
import {TensorLike} from '../types';
|
import {assert, isInt, parseAxisParam} from '../util';
|
import {expandDims} from './array_ops';
|
import {getUndoAxesPermutation} from './axis_util';
|
import {maximum} from './binary_ops';
|
import {greaterEqual} from './compare';
|
import {logicalAnd, where} from './logical_ops';
|
import {op} from './operation';
|
import {collectGatherOpShapeInfo} from './segment_util';
|
import {ones, scalar, zerosLike} from './tensor_ops';
|
|
/**
|
* Computes the sum along segments of a `tf.Tensor`.
|
*
|
* ```js
|
* const x = tf.tensor1d([1, 2, 3, 4]);
|
* const segmentIds = tf.tensor1d([1, 2, 0, 1], 'int32');
|
* const numSegments = 3;
|
*
|
* x.unsortedSegmentSum(segmentIds, numSegments).print()
|
* //or tf.unsortedSegmentSum(x, segmentIds, numSegments)
|
* ```
|
* @param x The `tf.Tensor` that will be summed along its segments.
|
* @param segmentIds A `tf.Tensor1D` whose rank is equal to the rank of `x`'s
|
* dimension along the `axis`. Maps each element of `x` to a segment.
|
* @param numSegments The number of distinct `segmentIds`.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Segment'} */
|
function unsortedSegmentSum_<T extends Tensor>(
|
x: T|TensorLike, segmentIds: Tensor1D|TensorLike, numSegments: number): T {
|
const $x = convertToTensor(x, 'x', 'unsortedSegmentSum');
|
const $segmentIds =
|
convertToTensor(segmentIds, 'segmentIds', 'unsortedSegmentSum', 'int32');
|
assert(isInt(numSegments), () => 'numSegments must be of dtype int');
|
|
const gradFunc = (dy: T, saved: Tensor[]) => {
|
const [$segmentIds] = saved;
|
const derX = () => {
|
return gatherDropNegatives(dy, $segmentIds as Tensor1D);
|
};
|
return {$x: derX};
|
};
|
return ENGINE.runKernelFunc((backend, save) => {
|
const res = backend.unsortedSegmentSum($x, $segmentIds, numSegments);
|
save([$segmentIds]);
|
return res;
|
}, {$x}, gradFunc) as T;
|
}
|
|
/**
|
* Gather slices from tensor `x`'s axis `axis` according to `indices`.
|
*
|
* ```js
|
* const x = tf.tensor1d([1, 2, 3, 4]);
|
* const indices = tf.tensor1d([1, 3, 3], 'int32');
|
*
|
* x.gather(indices).print();
|
* ```
|
*
|
* ```js
|
* const x = tf.tensor2d([1, 2, 3, 4], [2, 2]);
|
* const indices = tf.tensor1d([1, 1, 0], 'int32');
|
*
|
* x.gather(indices).print();
|
* ```
|
* @param x The input tensor whose slices to be gathered.
|
* @param indices The indices of the values to extract.
|
* @param axis The axis over which to select values. Defaults to 0.
|
*/
|
/** @doc {heading: 'Tensors', subheading: 'Slicing and Joining'} */
|
function gather_<T extends Tensor>(
|
x: T|TensorLike, indices: Tensor|TensorLike, axis = 0): T {
|
const $x = convertToTensor(x, 'x', 'gather');
|
const $indices = convertToTensor(indices, 'indices', 'gather', 'int32');
|
axis = parseAxisParam(axis, $x.shape)[0];
|
const shapeInfo = collectGatherOpShapeInfo($x, $indices, axis);
|
|
const grad = (dy: T, saved: Tensor[]) => {
|
const [$indices] = saved;
|
const derX = () => {
|
const paramsShape = $x.shape;
|
const indicesSize = $indices.size;
|
|
const outerShape = paramsShape.slice(0, axis);
|
const outerDims = outerShape.length;
|
const innerShape = paramsShape.slice(axis, paramsShape.length).slice(1);
|
const innerDims = innerShape.length;
|
|
const outerAxesIndices = arrayRange(0, outerDims);
|
const innerAxesIndices =
|
arrayRange(outerDims + 1, outerDims + 1 + innerDims);
|
|
const valuesShape = arrayConcat([outerShape, [indicesSize], innerShape]);
|
|
const values = dy.reshape(valuesShape);
|
const reshapedIndices = $indices.reshape([indicesSize]);
|
|
const transposeDims =
|
arrayConcat([[outerDims], outerAxesIndices, innerAxesIndices]);
|
const valuesTranspose = values.transpose(transposeDims);
|
let paramsGrad = unsortedSegmentSum(
|
valuesTranspose, reshapedIndices as Tensor1D, $x.shape[axis]);
|
|
const invertTransposeDims = getUndoAxesPermutation(transposeDims);
|
paramsGrad = paramsGrad.transpose(invertTransposeDims);
|
|
return paramsGrad as T;
|
};
|
return {x: derX, indices: () => $indices};
|
};
|
return (ENGINE.runKernelFunc(
|
(backend, save) => {
|
const res = backend.gather($x, $indices.flatten(), axis);
|
save([$indices]);
|
return res;
|
},
|
{x: $x, indices: $indices}, grad, 'Gather', {axis}))
|
.reshape(shapeInfo.outputShape) as T;
|
}
|
|
function arrayRange(start: number, stop: number): number[] {
|
const result = [];
|
for (let i = start; i < stop; ++i) {
|
result.push(i);
|
}
|
return result;
|
}
|
|
function arrayConcat(arrays: number[][]): number[] {
|
const result = [];
|
for (let i = 0; i < arrays.length; ++i) {
|
for (let j = 0; j < arrays[i].length; ++j) {
|
result.push(arrays[i][j]);
|
}
|
}
|
return result;
|
}
|
|
function gatherDropNegatives<T extends Tensor>(x: T, indices: Tensor1D) {
|
// Helper function for unsorted segment ops. Gathers params for
|
// positive segment ids and gathers 0 for inputs with negative segment id.
|
// Mirrors _GatherDropNegatives from tensorflow/python/ops/math_grad.py
|
const zeroClippedIndices = maximum(indices, zerosLike(indices));
|
const gathered = gather(x, zeroClippedIndices as Tensor1D);
|
let isPositive = greaterEqual(indices, scalar(0, 'int32'));
|
const numIters = gathered.rank - isPositive.rank;
|
for (let i = 0; i < numIters; ++i) {
|
isPositive = expandDims(isPositive, i + 1);
|
}
|
isPositive = logicalAnd(isPositive, ones(gathered.shape, 'bool'));
|
const zeroSlice = zerosLike(gathered);
|
return where(isPositive, gathered, zeroSlice);
|
}
|
|
export const gather = op({gather_});
|
export const unsortedSegmentSum = op({unsortedSegmentSum_});
|