gx
chenyc
2025-02-12 ea42ff3ebee1eeb3fb29423aa848a249441db81c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
"use strict";
/**
 * @license
 * Copyright 2018 Google LLC. All Rights Reserved.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 * =============================================================================
 */
var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) {
    function adopt(value) { return value instanceof P ? value : new P(function (resolve) { resolve(value); }); }
    return new (P || (P = Promise))(function (resolve, reject) {
        function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } }
        function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } }
        function step(result) { result.done ? resolve(result.value) : adopt(result.value).then(fulfilled, rejected); }
        step((generator = generator.apply(thisArg, _arguments || [])).next());
    });
};
var __generator = (this && this.__generator) || function (thisArg, body) {
    var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g;
    return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g;
    function verb(n) { return function (v) { return step([n, v]); }; }
    function step(op) {
        if (f) throw new TypeError("Generator is already executing.");
        while (g && (g = 0, op[0] && (_ = 0)), _) try {
            if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t;
            if (y = 0, t) op = [op[0] & 2, t.value];
            switch (op[0]) {
                case 0: case 1: t = op; break;
                case 4: _.label++; return { value: op[1], done: false };
                case 5: _.label++; y = op[1]; op = [0]; continue;
                case 7: op = _.ops.pop(); _.trys.pop(); continue;
                default:
                    if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; }
                    if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; }
                    if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; }
                    if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; }
                    if (t[2]) _.ops.pop();
                    _.trys.pop(); continue;
            }
            op = body.call(thisArg, _);
        } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; }
        if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true };
    }
};
Object.defineProperty(exports, "__esModule", { value: true });
var tf = require("@tensorflow/tfjs");
var tfn = require("../index");
// We still need node-fetch so that we can mock the core
// tf.env().platform.fetch call and return a valid response.
// tslint:disable-next-line:no-require-imports
var fetch = require('node-fetch');
var OCTET_STREAM_TYPE = 'application/octet-stream';
var JSON_TYPE = 'application/json';
// Test data;
var modelTopology1 = {
    'class_name': 'Sequential',
    'keras_version': '2.1.4',
    'config': [{
            'class_name': 'Dense',
            'config': {
                'kernel_initializer': {
                    'class_name': 'VarianceScaling',
                    'config': {
                        'distribution': 'uniform',
                        'scale': 1.0,
                        'seed': null,
                        'mode': 'fan_avg'
                    }
                },
                'name': 'dense',
                'kernel_constraint': null,
                'bias_regularizer': null,
                'bias_constraint': null,
                'dtype': 'float32',
                'activation': 'linear',
                'trainable': true,
                'kernel_regularizer': null,
                'bias_initializer': { 'class_name': 'Zeros', 'config': {} },
                'units': 1,
                'batch_input_shape': [null, 3],
                'use_bias': true,
                'activity_regularizer': null
            }
        }],
    'backend': 'tensorflow'
};
describe('nodeHTTPRequest-load', function () {
    var requestInits;
    var setupFakeWeightFiles = function (fileBufferMap) {
        spyOn(tf.env().platform, 'fetch')
            .and.callFake(function (path, init) {
            return new Promise(function (resolve, reject) {
                var contentType = '';
                if (path.endsWith('model.json')) {
                    contentType = JSON_TYPE;
                }
                else if (path.endsWith('weightfile0') || path.endsWith('weightfile1')) {
                    contentType = OCTET_STREAM_TYPE;
                }
                else {
                    reject(new Error("Invalid path: ".concat(path)));
                }
                requestInits.push(init);
                resolve(new fetch.Response(fileBufferMap[path], { 'headers': { 'Content-Type': contentType } }));
            });
        });
    };
    beforeEach(function () {
        requestInits = [];
    });
    it('Constructor', function () {
        var handler = tfn.io.nodeHTTPRequest('./foo_model.json');
        expect(handler == null).toEqual(false);
        expect(typeof handler.load).toEqual('function');
        expect(typeof handler.save).toEqual('function');
    });
    it('Load through NodeHTTPRequest object', function () { return __awaiter(void 0, void 0, void 0, function () {
        var weightManifest1, trainingConfig1, floatData, handler, modelArtifacts;
        return __generator(this, function (_a) {
            switch (_a.label) {
                case 0:
                    weightManifest1 = [{
                            paths: ['weightfile0'],
                            weights: [
                                {
                                    name: 'dense/kernel',
                                    shape: [3, 1],
                                    dtype: 'float32',
                                },
                                {
                                    name: 'dense/bias',
                                    shape: [1],
                                    dtype: 'float32',
                                }
                            ]
                        }];
                    trainingConfig1 = {
                        loss: 'categorical_crossentropy',
                        metrics: ['accuracy'],
                        optimizer_config: { class_name: 'SGD', config: { learningRate: 0.1 } }
                    };
                    floatData = new Float32Array([1, 3, 3, 7]);
                    setupFakeWeightFiles({
                        'http://localhost/model.json': JSON.stringify({
                            modelTopology: modelTopology1,
                            weightsManifest: weightManifest1,
                            trainingConfig: trainingConfig1
                        }),
                        'http://localhost/weightfile0': floatData,
                    });
                    handler = tfn.io.nodeHTTPRequest('http://localhost/model.json', { credentials: 'include', cache: 'no-cache' });
                    return [4 /*yield*/, handler.load()];
                case 1:
                    modelArtifacts = _a.sent();
                    expect(modelArtifacts.modelTopology).toEqual(modelTopology1);
                    expect(modelArtifacts.weightSpecs).toEqual(weightManifest1[0].weights);
                    expect(modelArtifacts.trainingConfig).toEqual(trainingConfig1);
                    expect(new Float32Array(tf.io.CompositeArrayBuffer.join(modelArtifacts.weightData))).toEqual(floatData);
                    expect(requestInits).toEqual([
                        { credentials: 'include', cache: 'no-cache' },
                        { credentials: 'include', cache: 'no-cache' }
                    ]);
                    return [2 /*return*/];
            }
        });
    }); });
    it('Load through registered handler', function () { return __awaiter(void 0, void 0, void 0, function () {
        var weightManifest1, floatData, model;
        return __generator(this, function (_a) {
            switch (_a.label) {
                case 0:
                    weightManifest1 = [{
                            paths: ['weightfile0'],
                            weights: [
                                {
                                    name: 'dense/kernel',
                                    shape: [3, 1],
                                    dtype: 'float32',
                                },
                                {
                                    name: 'dense/bias',
                                    shape: [1],
                                    dtype: 'float32',
                                }
                            ]
                        }];
                    floatData = new Float32Array([1, 3, 3, 7]);
                    setupFakeWeightFiles({
                        'https://localhost/model.json': JSON.stringify({ modelTopology: modelTopology1, weightsManifest: weightManifest1 }),
                        'https://localhost/weightfile0': floatData,
                    });
                    return [4 /*yield*/, tf.loadLayersModel('https://localhost/model.json')];
                case 1:
                    model = _a.sent();
                    expect(model.inputs.length).toEqual(1);
                    expect(model.inputs[0].shape).toEqual([null, 3]);
                    expect(model.outputs.length).toEqual(1);
                    expect(model.outputs[0].shape).toEqual([null, 1]);
                    return [2 /*return*/];
            }
        });
    }); });
});