"use strict";
|
/**
|
* @license
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
Object.defineProperty(exports, "__esModule", { value: true });
|
exports.nonMaxSuppressionV5Config = void 0;
|
var tfjs_1 = require("@tensorflow/tfjs");
|
var nodejs_kernel_backend_1 = require("../nodejs_kernel_backend");
|
// TODO(nsthorat, dsmilkov): Remove dependency on tensors, use dataId.
|
exports.nonMaxSuppressionV5Config = {
|
kernelName: 'NonMaxSuppressionV5',
|
backendName: 'tensorflow',
|
kernelFunc: function (_a) {
|
var inputs = _a.inputs, backend = _a.backend, attrs = _a.attrs;
|
var _b = inputs, boxes = _b.boxes, scores = _b.scores;
|
var _c = attrs, maxOutputSize = _c.maxOutputSize, iouThreshold = _c.iouThreshold, scoreThreshold = _c.scoreThreshold, softNmsSigma = _c.softNmsSigma;
|
var maxOutputSizeTensor = (0, tfjs_1.scalar)(maxOutputSize, 'int32');
|
var iouThresholdTensor = (0, tfjs_1.scalar)(iouThreshold);
|
var scoreThresholdTensor = (0, tfjs_1.scalar)(scoreThreshold);
|
var softNmsSigmaTensor = (0, tfjs_1.scalar)(softNmsSigma);
|
var opAttrs = [(0, nodejs_kernel_backend_1.createTensorsTypeOpAttr)('T', boxes.dtype)];
|
var nodeBackend = backend;
|
var _d = nodeBackend.executeMultipleOutputs('NonMaxSuppressionV5', opAttrs, [
|
boxes, scores, maxOutputSizeTensor,
|
iouThresholdTensor, scoreThresholdTensor, softNmsSigmaTensor
|
], 3), selectedIndices = _d[0], selectedScores = _d[1], validOutputs = _d[2];
|
maxOutputSizeTensor.dispose();
|
iouThresholdTensor.dispose();
|
scoreThresholdTensor.dispose();
|
softNmsSigmaTensor.dispose();
|
validOutputs.dispose();
|
return [selectedIndices, selectedScores];
|
}
|
};
|