/**
|
* @license
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
|
import {add, fill, FusedBatchNorm, FusedBatchNormAttrs, FusedBatchNormInputs, KernelConfig, mul, Rank, rsqrt, scalar, sub, Tensor, Tensor4D, tidy} from '@tensorflow/tfjs';
|
|
import {createTensorsTypeOpAttr, NodeJSKernelBackend} from '../nodejs_kernel_backend';
|
|
export const fusedBatchNormConfig: KernelConfig = {
|
kernelName: FusedBatchNorm,
|
backendName: 'tensorflow',
|
kernelFunc: (args) => {
|
const {x, mean, variance} = args.inputs as FusedBatchNormInputs;
|
let {scale, offset} = args.inputs as FusedBatchNormInputs;
|
const backend = args.backend as NodeJSKernelBackend;
|
const {varianceEpsilon} = args.attrs as unknown as FusedBatchNormAttrs;
|
|
return tidy(() => {
|
if ((mean as Tensor).rank > 1) {
|
// Fused batch norm doesn't work with high-dim mean/var/scale/offset.
|
let inv = rsqrt(add(variance as Tensor, scalar(varianceEpsilon)));
|
if (scale != null) {
|
inv = mul(inv, scale as Tensor);
|
}
|
const xNorm: Tensor4D = mul(sub(x as Tensor, mean as Tensor), inv);
|
return offset != null ? add(xNorm, offset as Tensor) : xNorm;
|
}
|
const dataFormat = 'NHWC';
|
const depth = x.shape[3];
|
const opAttrs = [
|
createTensorsTypeOpAttr('T', x.dtype),
|
{
|
name: 'epsilon',
|
type: backend.binding.TF_ATTR_FLOAT,
|
value: varianceEpsilon
|
},
|
{
|
name: 'data_format',
|
type: backend.binding.TF_ATTR_STRING,
|
value: dataFormat
|
},
|
{name: 'is_training', type: backend.binding.TF_ATTR_BOOL, value: false},
|
];
|
const numOutputs = 5;
|
|
if (scale == null) {
|
scale = fill<Rank.R1>([depth], 1);
|
}
|
if (offset == null) {
|
offset = fill<Rank.R1>([depth], 0);
|
}
|
return backend.executeMultipleOutputs(
|
FusedBatchNorm, opAttrs, [x, scale, offset, mean, variance],
|
numOutputs)[0];
|
});
|
}
|
};
|