/**
|
* @license
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
|
import {add, backend_util, FusedConv2D, FusedConv2DAttrs, FusedConv2DInputs, KernelConfig, Tensor} from '@tensorflow/tfjs';
|
|
import {NodeJSKernelBackend} from '../nodejs_kernel_backend';
|
|
import {conv2dImpl} from './Conv2D';
|
|
export const fusedConv2DConfig: KernelConfig = {
|
kernelName: FusedConv2D,
|
backendName: 'tensorflow',
|
kernelFunc: (args) => {
|
const {x, filter, bias, preluActivationWeights} =
|
args.inputs as FusedConv2DInputs;
|
const backend = args.backend as NodeJSKernelBackend;
|
const {
|
strides,
|
pad,
|
dataFormat,
|
dilations,
|
dimRoundingMode,
|
activation,
|
leakyreluAlpha
|
} = args.attrs as unknown as FusedConv2DAttrs;
|
|
if (dataFormat !== 'NHWC') {
|
throw new Error(
|
`Node backend FusedConv2D does not support dataFormat:'` +
|
`${dataFormat}'. Please use 'NHWC'.`);
|
}
|
|
const $dataFormat = backend_util.convertConv2DDataFormat(dataFormat);
|
const convInfo = backend_util.computeConv2DInfo(
|
x.shape as [number, number, number, number],
|
filter.shape as [number, number, number, number], strides, dilations,
|
pad, dimRoundingMode, false /* depthwise */, $dataFormat);
|
|
let result = conv2dImpl(x, filter, convInfo, backend);
|
|
const toDispose = [];
|
if (bias != null) {
|
toDispose.push(result);
|
result = add(result, bias as Tensor);
|
}
|
|
const temp = result;
|
result = backend.applyActivation(
|
result, activation, preluActivationWeights as Tensor, leakyreluAlpha);
|
if (temp !== result) {
|
toDispose.push(temp);
|
}
|
|
toDispose.forEach(t => t.dispose());
|
return result;
|
}
|
};
|