/**
|
* @license
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
|
import * as tf from '@tensorflow/tfjs';
|
import {backend_util, BackendTimingInfo, DataId, DataType, KernelBackend, ModelTensorInfo, Rank, Scalar, scalar, ScalarLike, Tensor, Tensor1D, Tensor2D, Tensor3D, Tensor4D, TensorInfo, tidy, util} from '@tensorflow/tfjs';
|
import {isArray, isNullOrUndefined} from 'util';
|
|
import {encodeInt32ArrayAsInt64, Int64Scalar} from './int64_tensors';
|
import {TensorMetadata, TFEOpAttr, TFJSBinding} from './tfjs_binding';
|
|
// tslint:disable-next-line:no-require-imports
|
const messages = require('./proto/api_pb');
|
|
type TensorData = {
|
shape: number[],
|
dtype: number,
|
values: backend_util.BackendValues,
|
id: number,
|
refCount: number;
|
};
|
|
export class NodeJSKernelBackend extends KernelBackend {
|
binding: TFJSBinding;
|
isGPUPackage: boolean;
|
isUsingGpuDevice: boolean;
|
private tensorMap: tf.DataStorage<TensorData>;
|
|
constructor(binding: TFJSBinding, packageName: string) {
|
super();
|
this.binding = binding;
|
this.isGPUPackage = packageName === '@tensorflow/tfjs-node-gpu';
|
this.isUsingGpuDevice = this.binding.isUsingGpuDevice();
|
this.tensorMap = new tf.DataStorage<TensorData>(this, tf.engine());
|
}
|
|
getDTypeInteger(dtype: DataType): number {
|
switch (dtype) {
|
case 'float32':
|
return this.binding.TF_FLOAT;
|
case 'int32':
|
return this.binding.TF_INT32;
|
case 'bool':
|
return this.binding.TF_BOOL;
|
case 'complex64':
|
return this.binding.TF_COMPLEX64;
|
case 'string':
|
return this.binding.TF_STRING;
|
default:
|
throw new Error(`Unsupported DType: ${dtype}`);
|
}
|
}
|
|
private typeAttributeFromTensor(value: Tensor): number {
|
return this.getDTypeInteger(value.dtype);
|
}
|
|
// Creates a new Tensor and maps the dataId to the passed in ID.
|
private createOutputTensor(metadata: TensorMetadata): Tensor {
|
const newId = {};
|
|
this.tensorMap.set(newId, {
|
shape: metadata.shape,
|
dtype: metadata.dtype,
|
id: metadata.id,
|
values: null,
|
refCount: 1
|
});
|
|
let dtype: DataType;
|
switch (metadata.dtype) {
|
case this.binding.TF_FLOAT:
|
dtype = 'float32';
|
break;
|
case this.binding.TF_INT32:
|
dtype = 'int32';
|
break;
|
case this.binding.TF_INT64:
|
console.warn('INT64 output tensor will be stored as BigInt64Array.');
|
// INT64 is not supported in TFJS yet, cast it to int32.
|
dtype = 'int32';
|
break;
|
case this.binding.TF_BOOL:
|
dtype = 'bool';
|
break;
|
case this.binding.TF_COMPLEX64:
|
dtype = 'complex64';
|
break;
|
case this.binding.TF_STRING:
|
dtype = 'string';
|
break;
|
case this.binding.TF_RESOURCE:
|
// NOTE(cais): We currently represent resource-type Tensors
|
// as string of ubytes.
|
dtype = 'string';
|
break;
|
case this.binding.TF_UINT8:
|
// TensorFlow uses UINT8 as dtype for image tensor. UINT8 is not
|
// supported in TFJS yet, cast it to int32.
|
dtype = 'int32';
|
break;
|
default:
|
throw new Error(`Unknown dtype enum ${metadata.dtype}`);
|
}
|
|
// TODO(yassogba) Enable this once all the kernels are removed from backend.
|
// We can then change the return type from Tensor to TensorInfo.
|
// return {dataId: newId, shape: metadata.shape, dtype};
|
|
const tensorInfo:
|
TensorInfo = {dataId: newId, shape: metadata.shape, dtype};
|
return tf.engine().makeTensorFromTensorInfo(tensorInfo);
|
}
|
|
// Prepares Tensor instances for Op execution.
|
private getInputTensorIds(tensors: Array<TensorInfo|Int64Scalar>): number[] {
|
const ids: number[] = [];
|
for (let i = 0; i < tensors.length; i++) {
|
if (tensors[i] instanceof Int64Scalar) {
|
// Then `tensors[i]` is a Int64Scalar, which we currently represent
|
// using an `Int32Array`.
|
const value = (tensors[i] as Int64Scalar).valueArray;
|
const id = this.binding.createTensor([], this.binding.TF_INT64, value);
|
ids.push(id);
|
} else {
|
const info = this.tensorMap.get((tensors[i] as TensorInfo).dataId);
|
// TODO - what about ID in this case? Handle in write()??
|
if (info.values != null) {
|
// Values were delayed to write into the TensorHandle. Do that before
|
// Op execution and clear stored values.
|
info.id =
|
this.binding.createTensor(info.shape, info.dtype, info.values);
|
info.values = null;
|
}
|
ids.push(info.id);
|
}
|
}
|
return ids;
|
}
|
|
createReductionOpAttrs(tensor: TensorInfo, keepDims = false): TFEOpAttr[] {
|
return [
|
{name: 'keep_dims', type: this.binding.TF_ATTR_BOOL, value: keepDims},
|
createTensorsTypeOpAttr('T', tensor.dtype),
|
createTensorsTypeOpAttr('Tidx', 'int32')
|
];
|
}
|
|
floatPrecision(): 16|32 {
|
return 32;
|
}
|
|
epsilon(): number {
|
return super.epsilon();
|
}
|
|
/**
|
* Executes an op that has a single input and output.
|
*
|
* Helper function to wrap executeSingleOutput in a particular case.
|
* @param name The name of the Op to execute.
|
* @param input The input Tensor for the Op.
|
*/
|
executeSingleInput(name: string, input: TensorInfo): Tensor {
|
const opAttrs = [createTensorsTypeOpAttr('T', input.dtype)];
|
return this.executeSingleOutput(name, opAttrs, [input]);
|
}
|
|
/**
|
* Executes a TensorFlow Eager Op that provides one output Tensor.
|
* @param name The name of the Op to execute.
|
* @param opAttrs The list of Op attributes required to execute.
|
* @param inputs The list of input Tensors for the Op.
|
* @return A resulting Tensor from Op execution.
|
*/
|
executeSingleOutput(name: string, opAttrs: TFEOpAttr[], inputs: TensorInfo[]):
|
Tensor {
|
const outputMetadata = this.binding.executeOp(
|
name, opAttrs, this.getInputTensorIds(inputs), 1);
|
return this.createOutputTensor(outputMetadata[0]);
|
}
|
|
/**
|
* Executes a TensorFlow Eager Op that provides multiple output Tensors.
|
* @param name The name of the Op to execute.
|
* @param opAttrs The list of Op attributes required to execute.
|
* @param inputs The list of input Tensors for the Op.
|
* @param numOutputs The number of output Tensors for Op execution.
|
* @return A resulting Tensor array from Op execution.
|
*/
|
executeMultipleOutputs(
|
name: string, opAttrs: TFEOpAttr[], inputs: TensorInfo[],
|
numOutputs: number): Tensor[] {
|
const outputMetadata = this.binding.executeOp(
|
name, opAttrs, this.getInputTensorIds(inputs), numOutputs);
|
return outputMetadata.map(m => this.createOutputTensor(m));
|
}
|
|
numDataIds(): number {
|
return this.tensorMap.numDataIds();
|
}
|
|
dispose(): void {}
|
|
async read(dataId: DataId): Promise<backend_util.BackendValues> {
|
return this.readSync(dataId);
|
}
|
|
readSync(dataId: DataId): backend_util.BackendValues {
|
if (!this.tensorMap.has(dataId)) {
|
throw new Error(`Tensor ${dataId} was not registered!`);
|
}
|
const info = this.tensorMap.get(dataId);
|
if (info.values != null) {
|
return info.values;
|
} else {
|
return this.binding.tensorDataSync(info.id);
|
}
|
}
|
|
/**
|
* Dispose the memory if the dataId has 0 refCount. Return true if the memory
|
* is released, false otherwise.
|
* @param dataId
|
* @oaram force Optional, remove the data regardless of refCount
|
*/
|
disposeData(dataId: DataId, force = false): boolean {
|
// No-op if already disposed.
|
if (this.tensorMap.has(dataId)) {
|
const id = this.tensorMap.get(dataId).id;
|
this.tensorMap.get(dataId).refCount--;
|
if (!force && this.tensorMap.get(dataId).refCount > 0) {
|
return false;
|
}
|
|
if (id != null && id >= 0) {
|
this.binding.deleteTensor(id);
|
}
|
this.tensorMap.delete(dataId);
|
}
|
return true;
|
}
|
/** Return refCount of a `TensorData`. */
|
refCount(dataId: DataId): number {
|
if (this.tensorMap.has(dataId)) {
|
const tensorData = this.tensorMap.get(dataId);
|
return tensorData.refCount;
|
}
|
return 0;
|
}
|
|
incRef(dataId: DataId) {
|
this.tensorMap.get(dataId).refCount++;
|
}
|
|
move(
|
dataId: DataId, values: backend_util.BackendValues, shape: number[],
|
dtype: DataType, refCount: number): void {
|
this.tensorMap.set(
|
dataId, {shape, dtype: getTFDType(dtype), values, id: -1, refCount});
|
}
|
|
write(values: backend_util.BackendValues, shape: number[], dtype: DataType):
|
DataId {
|
const dataId = {};
|
this.move(dataId, values, shape, dtype, 1);
|
return dataId;
|
}
|
|
applyActivation<T extends Tensor>(
|
input: T, activation: string, preluActivationWeights?: Tensor,
|
leakyreluAlpha?: number): T {
|
let result = input;
|
if (activation != null) {
|
if (activation === 'linear') {
|
// No-op
|
} else if (activation === 'relu') {
|
result = tf.relu(result);
|
} else if (activation === 'prelu') {
|
result = tf.prelu(result, preluActivationWeights) as T;
|
} else if (activation === 'leakyrelu') {
|
result = tf.leakyRelu(result, leakyreluAlpha);
|
} else if (activation === 'elu') {
|
result = tf.elu(result);
|
} else if (activation === 'relu6') {
|
result = tf.relu6(result);
|
} else if (activation === 'sigmoid') {
|
result = tf.sigmoid(result);
|
} else {
|
throw new Error(`Activation: ${
|
activation} has not been implemented for the Node.js backend`);
|
}
|
}
|
return result;
|
}
|
|
divide(a: Tensor, b: Tensor): Tensor {
|
const opAttrs = [createTensorsTypeOpAttr(
|
'T', backend_util.upcastType(a.dtype, b.dtype))];
|
return this.executeSingleOutput('Div', opAttrs, [a, b]);
|
}
|
|
divNoNan(a: Tensor, b: Tensor): Tensor {
|
const opAttrs = [createTensorsTypeOpAttr(
|
'T', backend_util.upcastType(a.dtype, b.dtype))];
|
return this.executeSingleOutput('DivNoNan', opAttrs, [a, b]);
|
}
|
|
where(condition: Tensor): Tensor2D {
|
return this.executeSingleOutput('Where', [], [condition]) as Tensor2D;
|
}
|
|
topKValues<T extends Tensor>(x: T, k: number): Tensor1D {
|
throw new Error('Method not implemented.');
|
}
|
|
topKIndices(x: Tensor, k: number): Tensor1D {
|
throw new Error('Method not implemented.');
|
}
|
|
int<T extends Tensor>(x: T): T {
|
throw new Error('Method not implemented.');
|
}
|
|
decodeJpeg(
|
contents: Uint8Array, channels: number, ratio: number,
|
fancyUpscaling: boolean, tryRecoverTruncated: boolean,
|
acceptableFraction: number, dctMethod: string): Tensor3D {
|
const opAttrs = [
|
{name: 'channels', type: this.binding.TF_ATTR_INT, value: channels},
|
{name: 'ratio', type: this.binding.TF_ATTR_INT, value: ratio}, {
|
name: 'fancy_upscaling',
|
type: this.binding.TF_ATTR_BOOL,
|
value: fancyUpscaling
|
},
|
{
|
name: 'try_recover_truncated',
|
type: this.binding.TF_ATTR_BOOL,
|
value: tryRecoverTruncated
|
},
|
{
|
name: 'acceptable_fraction',
|
type: this.binding.TF_ATTR_FLOAT,
|
value: acceptableFraction
|
},
|
{name: 'dct_method', type: this.binding.TF_ATTR_STRING, value: dctMethod}
|
];
|
const inputArgs = [scalar(contents, 'string')];
|
return this.executeSingleOutput('DecodeJpeg', opAttrs, inputArgs) as
|
Tensor<Rank.R3>;
|
}
|
|
decodePng(contents: Uint8Array, channels: number): Tensor3D {
|
const opAttrs =
|
[{name: 'channels', type: this.binding.TF_ATTR_INT, value: channels}];
|
const inputArgs = [scalar(contents, 'string')];
|
|
return this.executeSingleOutput('DecodePng', opAttrs, inputArgs) as
|
Tensor<Rank.R3>;
|
}
|
|
decodeBmp(contents: Uint8Array, channels: number): Tensor3D {
|
const opAttrs =
|
[{name: 'channels', type: this.binding.TF_ATTR_INT, value: channels}];
|
const inputArgs = [scalar(contents, 'string')];
|
return this.executeSingleOutput('DecodeBmp', opAttrs, inputArgs) as
|
Tensor<Rank.R3>;
|
}
|
|
decodeGif(contents: Uint8Array): Tensor4D {
|
const inputArgs = [scalar(contents, 'string')];
|
return this.executeSingleOutput('DecodeGif', [], inputArgs) as
|
Tensor<Rank.R4>;
|
}
|
|
executeEncodeImageOp(
|
name: string, opAttrs: TFEOpAttr[], imageData: Uint8Array,
|
imageShape: number[]): Tensor {
|
const inputTensorId =
|
this.binding.createTensor(imageShape, this.binding.TF_UINT8, imageData);
|
const outputMetadata =
|
this.binding.executeOp(name, opAttrs, [inputTensorId], 1);
|
this.binding.deleteTensor(inputTensorId);
|
const outputTensorInfo = outputMetadata[0];
|
// prevent the tensor data from being converted to a UTF8 string, since
|
// the encoded data is not valid UTF8
|
outputTensorInfo.dtype = this.binding.TF_UINT8;
|
return this.createOutputTensor(outputTensorInfo);
|
}
|
|
encodeJpeg(
|
imageData: Uint8Array, imageShape: number[], format: ''|'grayscale'|'rgb',
|
quality: number, progressive: boolean, optimizeSize: boolean,
|
chromaDownsampling: boolean, densityUnit: 'in'|'cm', xDensity: number,
|
yDensity: number, xmpMetadata: string): Tensor {
|
const opAttrs = [
|
{name: 'format', type: this.binding.TF_ATTR_STRING, value: format},
|
{name: 'quality', type: this.binding.TF_ATTR_INT, value: quality}, {
|
name: 'progressive',
|
type: this.binding.TF_ATTR_BOOL,
|
value: progressive
|
},
|
{
|
name: 'optimize_size',
|
type: this.binding.TF_ATTR_BOOL,
|
value: optimizeSize
|
},
|
{
|
name: 'chroma_downsampling',
|
type: this.binding.TF_ATTR_BOOL,
|
value: chromaDownsampling
|
},
|
{
|
name: 'density_unit',
|
type: this.binding.TF_ATTR_STRING,
|
value: densityUnit
|
},
|
{name: 'x_density', type: this.binding.TF_ATTR_INT, value: xDensity},
|
{name: 'y_density', type: this.binding.TF_ATTR_INT, value: yDensity}, {
|
name: 'xmp_metadata',
|
type: this.binding.TF_ATTR_STRING,
|
value: xmpMetadata
|
}
|
];
|
return this.executeEncodeImageOp(
|
'EncodeJpeg', opAttrs, imageData, imageShape);
|
}
|
|
encodePng(imageData: Uint8Array, imageShape: number[], compression: number):
|
Tensor {
|
const opAttrs = [
|
{name: 'compression', type: this.binding.TF_ATTR_INT, value: compression}
|
];
|
return this.executeEncodeImageOp(
|
'EncodePng', opAttrs, imageData, imageShape);
|
}
|
|
deleteSavedModel(id: number): void {
|
this.binding.deleteSavedModel(id);
|
}
|
|
loadSavedModelMetaGraph(path: string, tags: string): number {
|
return this.binding.loadSavedModel(path, tags);
|
}
|
|
private getMappedInputTensorIds(
|
inputs: Tensor[], inputTensorInfos: ModelTensorInfo[]) {
|
const tensorIds = this.getInputTensorIds(inputs);
|
const newTensors = [];
|
for (let i = 0; i < inputs.length; i++) {
|
if (inputTensorInfos[i] != null) {
|
if (inputTensorInfos[i].tfDtype === 'DT_UINT8') {
|
const data = Uint8Array.from(inputs[i].dataSync());
|
const inputTensorId = this.binding.createTensor(
|
inputs[i].shape, this.binding.TF_UINT8, data);
|
tensorIds[i] = inputTensorId;
|
newTensors.push(i);
|
} else if (inputTensorInfos[i].tfDtype === 'DT_INT64') {
|
const data =
|
encodeInt32ArrayAsInt64(inputs[i].dataSync() as Int32Array);
|
const inputTensorId = this.binding.createTensor(
|
inputs[i].shape, this.binding.TF_INT64, data);
|
tensorIds[i] = inputTensorId;
|
newTensors.push(i);
|
}
|
}
|
}
|
return {tensorIds, newTensors};
|
}
|
|
runSavedModel(
|
id: number, inputs: Tensor[], inputTensorInfos: ModelTensorInfo[],
|
outputOpNames: string[]): Tensor[] {
|
const {tensorIds, newTensors} =
|
this.getMappedInputTensorIds(inputs, inputTensorInfos);
|
const outputMetadata = this.binding.runSavedModel(
|
id, tensorIds, inputTensorInfos.map(info => info.name).join(','),
|
outputOpNames.join(','));
|
for (let i = 0; i < tensorIds.length; i++) {
|
if (newTensors.includes(i)) {
|
this.binding.deleteTensor(tensorIds[i]);
|
}
|
}
|
return outputMetadata.map(m => this.createOutputTensor(m));
|
}
|
|
// ------------------------------------------------------------
|
// TensorBoard-related (tfjs-node-specific) backend kernels.
|
|
summaryWriter(logdir: string): Tensor1D {
|
const opAttrs = [
|
{
|
name: 'shared_name',
|
type: this.binding.TF_ATTR_STRING,
|
value: `logdir:${logdir}`
|
},
|
{name: 'container', type: this.binding.TF_ATTR_STRING, value: ''}
|
];
|
const writerResource =
|
this.executeSingleOutput('SummaryWriter', opAttrs, []);
|
return writerResource as Tensor1D;
|
}
|
|
createSummaryFileWriter(
|
resourceHandle: Tensor, logdir: string, maxQueue?: number,
|
flushMillis?: number, filenameSuffix?: string): void {
|
const inputArgs = [
|
resourceHandle, scalar(logdir),
|
scalar(maxQueue == null ? 10 : maxQueue, 'int32'),
|
scalar(flushMillis == null ? 2 * 60 * 1000 : flushMillis, 'int32'),
|
scalar(filenameSuffix == null ? '.v2' : filenameSuffix)
|
];
|
this.executeMultipleOutputs('CreateSummaryFileWriter', [], inputArgs, 0);
|
}
|
|
writeScalarSummary(
|
resourceHandle: Tensor, step: number, name: string,
|
value: Scalar|number): void {
|
tidy(() => {
|
util.assert(
|
Number.isInteger(step),
|
() => `step is expected to be an integer, but is instead ${step}`);
|
const inputArgs: Array<Tensor|Int64Scalar> =
|
[resourceHandle, new Int64Scalar(step), scalar(name, 'string')];
|
|
let typeAttr: number;
|
if (typeof value === 'number') {
|
inputArgs.push(scalar(value));
|
typeAttr = this.binding.TF_FLOAT;
|
} else {
|
// `value` is a Scalar.
|
util.assert(
|
value.rank === 0,
|
() => `A non-scalar tensor (rank ${value.rank}) is passed to ` +
|
`writeScalarSummary()`);
|
inputArgs.push(value);
|
typeAttr = this.typeAttributeFromTensor(value);
|
}
|
const opAttrs: TFEOpAttr[] =
|
[{name: 'T', type: this.binding.TF_ATTR_TYPE, value: typeAttr}];
|
const ids = this.getInputTensorIds(inputArgs);
|
this.binding.executeOp('WriteScalarSummary', opAttrs, ids, 0);
|
// release the tensorflow tensor for Int64Scalar value of step
|
this.binding.deleteTensor(ids[1]);
|
});
|
}
|
|
writeHistogramSummary(
|
resourceHandle: Tensor, step: number, name: string, data: Tensor,
|
bucketCount: number|undefined, description: string|undefined): void {
|
tidy(() => {
|
util.assert(
|
Number.isInteger(step),
|
() => `step is expected to be an integer, but is instead ${step}`);
|
|
// We use the WriteSummary op, and not WriteHistogramSummary. The
|
// difference is that WriteHistogramSummary takes a tensor of any shape,
|
// and places the values in 30 buckets, while WriteSummary expects a
|
// tensor which already describes the bucket widths and counts.
|
//
|
// If we were to use WriteHistogramSummary, we wouldn't have to
|
// implement the "bucketization" of the input tensor, but we also
|
// wouldn't have control over the number of buckets, or the description
|
// of the graph.
|
//
|
// Therefore, we instead use WriteSummary, which makes it possible to
|
// support these features. However, the trade-off is that we have to
|
// implement our own "bucketization", and have to write the summary as a
|
// protobuf message.
|
const content = new messages.HistogramPluginData().setVersion(0);
|
const pluginData = new messages.SummaryMetadata.PluginData()
|
.setPluginName('histograms')
|
.setContent(content.serializeBinary());
|
const summary = new messages.SummaryMetadata()
|
.setPluginData(pluginData)
|
.setDisplayName(null)
|
.setSummaryDescription(description);
|
const summaryTensor = scalar(summary.serializeBinary(), 'string');
|
const nameTensor = scalar(name, 'string');
|
const stepScalar = new Int64Scalar(step);
|
const buckets = this.buckets(data, bucketCount);
|
util.assert(
|
buckets.rank === 2 && buckets.shape[1] === 3,
|
() => `Expected buckets to have shape [k, 3], but they had shape ${
|
buckets.shape}`);
|
util.assert(
|
buckets.dtype === 'float32',
|
() => `Expected buckets to have dtype float32, but they had dtype ${
|
buckets.dtype}`);
|
const inputArgs: Array<Tensor|Int64Scalar> =
|
[resourceHandle, stepScalar, buckets, nameTensor, summaryTensor];
|
const typeAttr = this.typeAttributeFromTensor(buckets);
|
const opAttrs: TFEOpAttr[] =
|
[{name: 'T', type: this.binding.TF_ATTR_TYPE, value: typeAttr}];
|
const ids = this.getInputTensorIds(inputArgs);
|
this.binding.executeOp('WriteSummary', opAttrs, ids, 0);
|
// release the tensorflow tensor for Int64Scalar value of step
|
this.binding.deleteTensor(ids[1]);
|
});
|
}
|
|
flushSummaryWriter(resourceHandle: Tensor): void {
|
const inputArgs: Tensor[] = [resourceHandle];
|
this.executeMultipleOutputs('FlushSummaryWriter', [], inputArgs, 0);
|
}
|
|
/**
|
* Group data into histogram buckets.
|
*
|
* @param data A `Tensor` of any shape. Must be castable to `float32`
|
* @param bucketCount Optional positive `number`
|
* @returns A `Tensor` of shape `[k, 3]` and type `float32`. The `i`th row
|
* is
|
* a triple `[leftEdge, rightEdge, count]` for a single bucket. The value
|
* of `k` is either `bucketCount`, `1` or `0`.
|
*/
|
private buckets(data: Tensor, bucketCount?: number): Tensor<tf.Rank> {
|
if (data.size === 0) {
|
return tf.tensor([], [0, 3], 'float32');
|
}
|
|
// 30 is the default number of buckets in the TensorFlow Python
|
// implementation. See
|
// https://github.com/tensorflow/tensorboard/blob/master/tensorboard/plugins/histogram/summary_v2.py
|
bucketCount = bucketCount !== undefined ? bucketCount : 30;
|
util.assert(
|
Number.isInteger(bucketCount) && bucketCount > 0,
|
() =>
|
`Expected bucket count to be a strictly positive integer, but it was ` +
|
`${bucketCount}`);
|
data = data.flatten();
|
data = data.cast('float32');
|
const min: Scalar = data.min();
|
const max: Scalar = data.max();
|
const range: Scalar = max.sub(min);
|
const isSingular = range.equal(0).arraySync() !== 0;
|
|
if (isSingular) {
|
const center = min;
|
const bucketStart: Scalar = center.sub(0.5);
|
const bucketEnd: Scalar = center.add(0.5);
|
const bucketCounts = tf.scalar(data.size, 'float32');
|
return tf.concat([bucketStart, bucketEnd, bucketCounts]).reshape([1, 3]);
|
}
|
|
const bucketWidth = range.div(bucketCount);
|
const offsets = data.sub(min);
|
const bucketIndices = offsets.floorDiv(bucketWidth).cast('int32');
|
const clampedIndices =
|
tf.minimum(bucketIndices, bucketCount - 1).cast('int32');
|
const oneHots = tf.oneHot(clampedIndices, bucketCount);
|
const bucketCounts = oneHots.sum(0).cast('int32');
|
let edges = tf.linspace(min.arraySync(), max.arraySync(), bucketCount + 1);
|
// Ensure last value in edges is max (TF's linspace op doesn't do this)
|
edges = tf.concat([edges.slice(0, bucketCount), max.reshape([1])], 0) as
|
tf.Tensor1D;
|
const leftEdges = edges.slice(0, bucketCount);
|
const rightEdges = edges.slice(1, bucketCount);
|
return tf.stack([leftEdges, rightEdges, bucketCounts.cast('float32')])
|
.transpose();
|
}
|
|
// ~ TensorBoard-related (tfjs-node-specific) backend kernels.
|
// ------------------------------------------------------------
|
|
memory() {
|
// Due to automatic garbage collection, the numbers are unreliable.
|
// TODO(kreeger): Since there is finalization in C, count the true
|
// number of undisposed tensors.
|
return {unreliable: true};
|
}
|
|
async time(f: () => void): Promise<BackendTimingInfo> {
|
const start = process.hrtime();
|
f();
|
// hrtime() returns tuple of [seconds, nanoseconds], and we need to return
|
// milliseconds.
|
const elapsed = process.hrtime(start);
|
return {kernelMs: elapsed[0] * 1000 + elapsed[1] / 1000000};
|
}
|
|
getNumOfSavedModels() {
|
return this.binding.getNumOfSavedModels();
|
}
|
|
getNumOfTFTensors() {
|
return this.binding.getNumOfTensors();
|
}
|
}
|
|
/** Returns an instance of the Node.js backend. */
|
export function nodeBackend(): NodeJSKernelBackend {
|
return tf.findBackend('tensorflow') as NodeJSKernelBackend;
|
}
|
|
/** Returns the TF dtype for a given DataType. */
|
export function getTFDType(dataType: tf.DataType): number {
|
const binding = nodeBackend().binding;
|
switch (dataType) {
|
case 'float32':
|
return binding.TF_FLOAT;
|
case 'int32':
|
return binding.TF_INT32;
|
case 'bool':
|
return binding.TF_BOOL;
|
case 'complex64':
|
return binding.TF_COMPLEX64;
|
case 'string':
|
return binding.TF_STRING;
|
// tslint:disable-next-line:no-any
|
case 'int64' as any:
|
// int64 is not a generally supported dtype in TensorFlow.js
|
// (tfjs-core). However, it needs to be included here for the purpose of
|
// writing the `step` value to TensorBoard via WriteScalarSummary and
|
// other op kernels.
|
return binding.TF_INT64;
|
default:
|
const errorMessage = `Unknown dtype: ${dataType}`;
|
throw new Error(errorMessage);
|
}
|
}
|
|
/**
|
* Creates a TFEOpAttr for a 'type' OpDef attribute from a Tensor or list of
|
* Tensors.
|
*/
|
export function createTensorsTypeOpAttr(
|
attrName: string,
|
tensorsOrDtype: tf.Tensor|tf.Tensor[]|tf.DataType): TFEOpAttr {
|
if (isNullOrUndefined(tensorsOrDtype)) {
|
throw new Error('Invalid input tensors value.');
|
}
|
return {
|
name: attrName,
|
type: nodeBackend().binding.TF_ATTR_TYPE,
|
value:
|
(tensorsOrDtype instanceof tf.Tensor || Array.isArray(tensorsOrDtype)) ?
|
getTFDTypeForInputs(tensorsOrDtype) :
|
getTFDType(tensorsOrDtype)
|
};
|
}
|
|
// TODO(yassogba) remove? who uses this?
|
export function createOpAttr(
|
attrName: string, tensorsOrDtype: tf.Tensor|tf.Tensor[]|tf.DataType,
|
value: ScalarLike): TFEOpAttr {
|
if (isNullOrUndefined(tensorsOrDtype)) {
|
throw new Error('Invalid input tensors value.');
|
}
|
return {name: attrName, type: nodeBackend().binding.TF_BOOL, value};
|
}
|
|
/** Returns the dtype number for a single or list of input Tensors. */
|
function getTFDTypeForInputs(tensors: tf.Tensor|tf.Tensor[]): number {
|
if (isNullOrUndefined(tensors)) {
|
throw new Error('Invalid input tensors value.');
|
}
|
if (isArray(tensors)) {
|
for (let i = 0; i < tensors.length; i++) {
|
return getTFDType(tensors[i].dtype);
|
}
|
return -1;
|
} else {
|
return getTFDType(tensors.dtype);
|
}
|
}
|
|
export function ensureTensorflowBackend() {
|
tf.util.assert(
|
tf.getBackend() === 'tensorflow',
|
() => `Expect the current backend to be "tensorflow", but got "${
|
tf.getBackend()}"`);
|
}
|