import * as tf from '../../dist/tfjs.esm';
|
|
import { conv, convDown, convNoRelu } from './convLayer';
|
import { ResidualLayerParams } from './types';
|
|
export function residual(x: tf.Tensor4D, params: ResidualLayerParams): tf.Tensor4D {
|
let out = conv(x, params.conv1);
|
out = convNoRelu(out, params.conv2);
|
out = tf.add(out, x);
|
out = tf.relu(out);
|
return out;
|
}
|
|
export function residualDown(x: tf.Tensor4D, params: ResidualLayerParams): tf.Tensor4D {
|
let out = convDown(x, params.conv1);
|
out = convNoRelu(out, params.conv2);
|
|
let pooled = tf.avgPool(x, 2, 2, 'valid') as tf.Tensor4D;
|
const zeros = tf.zeros<tf.Rank.R4>(pooled.shape);
|
const isPad = pooled.shape[3] !== out.shape[3];
|
const isAdjustShape = pooled.shape[1] !== out.shape[1] || pooled.shape[2] !== out.shape[2];
|
|
if (isAdjustShape) {
|
const padShapeX = [...out.shape] as [number, number, number, number];
|
padShapeX[1] = 1;
|
const zerosW = tf.zeros<tf.Rank.R4>(padShapeX);
|
out = tf.concat([out, zerosW], 1);
|
|
const padShapeY = [...out.shape] as [number, number, number, number];
|
padShapeY[2] = 1;
|
const zerosH = tf.zeros<tf.Rank.R4>(padShapeY);
|
out = tf.concat([out, zerosH], 2);
|
}
|
|
pooled = isPad ? tf.concat([pooled, zeros], 3) : pooled;
|
out = tf.add(pooled, out) as tf.Tensor4D;
|
|
out = tf.relu(out);
|
return out;
|
}
|