"use strict";
|
Object.defineProperty(exports, "__esModule", { value: true });
|
var tslib_1 = require("tslib");
|
var tf = require("@tensorflow/tfjs-core");
|
var ops_1 = require("../ops");
|
var extractImagePatches_1 = require("./extractImagePatches");
|
var MtcnnBox_1 = require("./MtcnnBox");
|
var RNet_1 = require("./RNet");
|
function stage2(img, inputBoxes, scoreThreshold, params, stats) {
|
return tslib_1.__awaiter(this, void 0, void 0, function () {
|
var ts, rnetInputs, rnetOuts, scoresTensor, scores, _a, _b, indices, filteredBoxes, filteredScores, finalBoxes, finalScores, indicesNms, regions_1;
|
return tslib_1.__generator(this, function (_c) {
|
switch (_c.label) {
|
case 0:
|
ts = Date.now();
|
return [4 /*yield*/, extractImagePatches_1.extractImagePatches(img, inputBoxes, { width: 24, height: 24 })];
|
case 1:
|
rnetInputs = _c.sent();
|
stats.stage2_extractImagePatches = Date.now() - ts;
|
ts = Date.now();
|
rnetOuts = rnetInputs.map(function (rnetInput) {
|
var out = RNet_1.RNet(rnetInput, params);
|
rnetInput.dispose();
|
return out;
|
});
|
stats.stage2_rnet = Date.now() - ts;
|
scoresTensor = rnetOuts.length > 1
|
? tf.concat(rnetOuts.map(function (out) { return out.scores; }))
|
: rnetOuts[0].scores;
|
_b = (_a = Array).from;
|
return [4 /*yield*/, scoresTensor.data()];
|
case 2:
|
scores = _b.apply(_a, [_c.sent()]);
|
scoresTensor.dispose();
|
indices = scores
|
.map(function (score, idx) { return ({ score: score, idx: idx }); })
|
.filter(function (c) { return c.score > scoreThreshold; })
|
.map(function (_a) {
|
var idx = _a.idx;
|
return idx;
|
});
|
filteredBoxes = indices.map(function (idx) { return inputBoxes[idx]; });
|
filteredScores = indices.map(function (idx) { return scores[idx]; });
|
finalBoxes = [];
|
finalScores = [];
|
if (filteredBoxes.length > 0) {
|
ts = Date.now();
|
indicesNms = ops_1.nonMaxSuppression(filteredBoxes, filteredScores, 0.7);
|
stats.stage2_nms = Date.now() - ts;
|
regions_1 = indicesNms.map(function (idx) {
|
var regionsData = rnetOuts[indices[idx]].regions.arraySync();
|
return new MtcnnBox_1.MtcnnBox(regionsData[0][0], regionsData[0][1], regionsData[0][2], regionsData[0][3]);
|
});
|
finalScores = indicesNms.map(function (idx) { return filteredScores[idx]; });
|
finalBoxes = indicesNms.map(function (idx, i) { return filteredBoxes[idx].calibrate(regions_1[i]); });
|
}
|
rnetOuts.forEach(function (t) {
|
t.regions.dispose();
|
t.scores.dispose();
|
});
|
return [2 /*return*/, {
|
boxes: finalBoxes,
|
scores: finalScores
|
}];
|
}
|
});
|
});
|
}
|
exports.stage2 = stage2;
|
//# sourceMappingURL=stage2.js.map
|