import { __awaiter, __generator } from "tslib";
|
import * as tf from '@tensorflow/tfjs-core';
|
import { createCanvas, createCanvasFromMedia, getContext2dOrThrow } from '../dom';
|
import { env } from '../env';
|
import { normalize } from './normalize';
|
export function extractImagePatches(img, boxes, _a) {
|
var width = _a.width, height = _a.height;
|
return __awaiter(this, void 0, void 0, function () {
|
var imgCtx, bitmaps, imagePatchesDatas;
|
var _this = this;
|
return __generator(this, function (_b) {
|
switch (_b.label) {
|
case 0:
|
imgCtx = getContext2dOrThrow(img);
|
return [4 /*yield*/, Promise.all(boxes.map(function (box) { return __awaiter(_this, void 0, void 0, function () {
|
var _a, y, ey, x, ex, fromX, fromY, imgData;
|
return __generator(this, function (_b) {
|
_a = box.padAtBorders(img.height, img.width), y = _a.y, ey = _a.ey, x = _a.x, ex = _a.ex;
|
fromX = x - 1;
|
fromY = y - 1;
|
imgData = imgCtx.getImageData(fromX, fromY, (ex - fromX), (ey - fromY));
|
return [2 /*return*/, env.isNodejs() ? createCanvasFromMedia(imgData) : createImageBitmap(imgData)];
|
});
|
}); }))];
|
case 1:
|
bitmaps = _b.sent();
|
imagePatchesDatas = [];
|
bitmaps.forEach(function (bmp) {
|
var patch = createCanvas({ width: width, height: height });
|
var patchCtx = getContext2dOrThrow(patch);
|
patchCtx.drawImage(bmp, 0, 0, width, height);
|
var data = patchCtx.getImageData(0, 0, width, height).data;
|
var currData = [];
|
// RGBA -> BGR
|
for (var i = 0; i < data.length; i += 4) {
|
currData.push(data[i + 2]);
|
currData.push(data[i + 1]);
|
currData.push(data[i]);
|
}
|
imagePatchesDatas.push(currData);
|
});
|
return [2 /*return*/, imagePatchesDatas.map(function (data) {
|
var t = tf.tidy(function () {
|
var imagePatchTensor = tf.transpose(tf.tensor4d(data, [1, width, height, 3]), [0, 2, 1, 3]).toFloat();
|
return normalize(imagePatchTensor);
|
});
|
return t;
|
})];
|
}
|
});
|
});
|
}
|
//# sourceMappingURL=extractImagePatches.js.map
|