gx
chenyc
2025-06-12 7b72ac13a83764a662159d4a49b7fffb90476ecb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
/**
 * @license
 * Copyright 2018 Google LLC
 *
 * Use of this source code is governed by an MIT-style
 * license that can be found in the LICENSE file or at
 * https://opensource.org/licenses/MIT.
 * =============================================================================
 */
/**
 * deeplearn.js backend.
 */
import * as tfc from '@tensorflow/tfjs-core';
import { onesLike as coreOnesLike, scalar, tensor1d, tidy, where, zerosLike as coreZerosLike } from '@tensorflow/tfjs-core';
import { checkDataFormat } from '../common';
import { NotImplementedError, ValueError } from '../errors';
import * as math_utils from '../utils/math_utils';
import { imageDataFormat } from './common';
// tslint:enable
/* Setting and getting backend from deeplearn.js. */
// Default deeplearn.js backend is WebGL (GPU).
let backend = 'webgl';
export function setBackend(requestedBackend) {
    tfc.setBackend(requestedBackend);
    backend = requestedBackend;
}
export function getBackend() {
    return backend;
}
/**
 * Indicates whether the backend is operating symbolically.
 *
 * This function will be used to determine how to interpret user code. If
 * it returns true, calls to the backend construct a symbolic graph; if
 * it returns false, calls to the backend execute immediately.
 */
export function isBackendSymbolic() {
    return false;
}
/**
 * Get the number of elements in a Tensor.
 * @param x The Tensor.
 * @return Number of elements in `x`.
 */
export function countParams(x) {
    const shape = x.shape;
    if (shape.length > 0) {
        return shape.reduce((a, b) => a * b);
    }
    else {
        // Scalar.
        return 1;
    }
}
/**
 * Casts a tensor to a different dtype and returns it.
 * @param x Input tensor.
 * @param dtype String: 'float32'|'int32'|'bool'.
 * @returns Tensor of the specified `dtype`.
 */
export function cast(x, dtype) {
    return tfc.cast(x, dtype);
}
/**
 * Adds a 1-sized dimension at index "axis".
 * @param x Input tensor.
 * @param axis Position where to add the new axis.
 * @returns Result of the dimension expansion.
 */
export function expandDims(x, axis = -1) {
    const outShape = x.shape.slice();
    if (axis < 0) {
        axis = outShape.length + axis + 1;
    }
    outShape.splice(axis, 0, 1);
    return tfc.reshape(x, outShape);
}
/**
 * Repeats a 2D tensor.
 *
 * If `x` has shape `[samples, dim]` and `n` is 2, for example, the output
 * will have shape `[samples, 2, dim]`.
 *
 * @param x Input tensor.
 * @param n Integer, number of times to repeat.
 * @returns The result of the repeat operation.
 * @throws ValueError: If input tensor is not 2D.
 */
export function repeat(x, n) {
    return tidy(() => {
        if (x.shape.length !== 2) {
            throw new ValueError(`repeat() expects a rank-2 tensor, but received a ` +
                `rank-${x.shape.length} tensor.`);
        }
        const y = expandDims(x, 1);
        return tile(y, [1, n, 1]);
    });
}
/**
 * Flatten a Tensor into 1D.
 * @param x Input tensor.
 * @return The result of the flattening `x`.
 */
export function flatten(x) {
    const newShape = [math_utils.arrayProd(x.shape)];
    return tfc.reshape(x, newShape);
}
/**
 * Turn a nD tensor into a 2D tensor with same 0th dimension.
 * In other words, it flattens each data samples of a batch.
 *
 * @param x The tensor to flatten. The rank of this tensor is required to be 2
 *   or higher.
 * @return The result of the flattening.
 */
export function batchFlatten(x) {
    if (x.rank <= 1) {
        throw new ValueError(`batchFlatten requires a minimum rank of 2. Got rank: ${x.rank}.`);
    }
    const newShape = [x.shape[0], math_utils.arrayProd(x.shape, 1)];
    return tfc.reshape(x, newShape);
}
/**
 * Do slicing along the first axis.
 * @param array input `tf.Tensor`.
 * @param start starting index, inclusive.
 * @param size size of the slice along the first axis.
 * @returns result of the slicing.
 * @throws ValueError: If `array` is of an unsupported subtype of `tf.Tensor`.
 */
export function sliceAlongFirstAxis(array, start, size) {
    return tidy(() => {
        switch (array.rank) {
            case 1:
                return tfc.slice1d(array, start, size);
            case 2:
                return tfc.slice2d(array, [start, 0], [size, array.shape[1]]);
            case 3:
                return tfc.slice3d(array, [start, 0, 0], [size, array.shape[1], array.shape[2]]);
            case 4:
                return tfc.slice4d(array, [start, 0, 0, 0], [size, array.shape[1], array.shape[2], array.shape[3]]);
            case 5:
                return tfc.slice(array, [start, 0, 0, 0, 0], [
                    size, array.shape[1], array.shape[2], array.shape[3], array.shape[4]
                ]);
            case 6:
                return tfc.slice(array, [start, 0, 0, 0, 0, 0], [
                    size, array.shape[1], array.shape[2], array.shape[3], array.shape[4],
                    array.shape[5]
                ]);
            default:
                throw new ValueError(`sliceAlongFirstAxis() received an unsupported tensor rank: ` +
                    `${array.rank}`);
        }
    });
}
/**
 * Do slicing along the last axis.
 * @param array input `tf.Tensor`.
 * @param start starting index, inclusive.
 * @param size size of the slice along the last axis.
 * @returns result of the slicing.
 * @throws ValueError: If `array` is of an unsupported subtype of `tf.Tensor`.
 */
export function sliceAlongLastAxis(array, start, size) {
    return tidy(() => {
        switch (array.rank) {
            case 1:
                return tfc.slice1d(array, start, size);
            case 2:
                return tfc.slice2d(array, [0, start], [array.shape[0], size]);
            case 3:
                return tfc.slice3d(array, [0, 0, start], [array.shape[0], array.shape[1], size]);
            case 4:
                return tfc.slice4d(array, [0, 0, 0, start], [array.shape[0], array.shape[1], array.shape[2], size]);
            default:
                throw new ValueError(`sliceAlongLastAxis() received an unsupported tensor rank: ` +
                    `${array.rank}`);
        }
    });
}
/**
 * Do slicing along the sepcified axis.
 * @param array input `tf.Tensor`.
 * @param start starting index, inclusive.
 * @param size of the slice along the chosen axis.
 * @param choose an axis.
 * @returns result of the slicing.
 * @throws ValueError: If `array` is of an unsupported subtype of `tf.Tensor`.
 */
export function sliceAlongAxis(array, start, size, axis) {
    return tidy(() => {
        switch (array.rank) {
            case 1:
                return tfc.slice1d(array, start, size);
            case 2:
                switch (axis) {
                    case 1:
                        return sliceAlongFirstAxis(array, start, size);
                    case 2:
                        return sliceAlongLastAxis(array, start, size);
                    default:
                        throw new ValueError(`The axis is not within the rank of the tensor ` +
                            `${axis}`);
                }
            case 3:
                switch (axis) {
                    case 1:
                        return sliceAlongFirstAxis(array, start, size);
                    case 2:
                        return tfc.slice3d(array, [0, start, 0], [array.shape[0], size, array.shape[2]]);
                    case 3:
                        return sliceAlongLastAxis(array, start, size);
                    default:
                        throw new ValueError(`The axis is not within the rank of the tensor ` +
                            `${axis}`);
                }
            case 4:
                switch (axis) {
                    case 1:
                        return sliceAlongFirstAxis(array, start, size);
                    case 2:
                        return tfc.slice4d(array, [0, start, 0, 0], [array.shape[0], size, array.shape[2], array.shape[3]]);
                    case 3:
                        return tfc.slice4d(array, [0, 0, start, 0], [array.shape[0], array.shape[1], size, array.shape[3]]);
                    case 4:
                        return sliceAlongLastAxis(array, start, size);
                    default:
                        throw new ValueError(`The axis is not within the rank of the tensor ` +
                            `${axis}`);
                }
            default:
                throw new ValueError(`sliceAlongLastAxis() received an unsupported tensor rank: ` +
                    `${array.rank}`);
        }
    });
}
/**
 * Concatenates a list of tensors alongside the specified axis.
 * @param tensors `Array` of tensors to concatenate.
 * @param axis Concatenation axis.
 * @returns The result of the concatenation.
 */
export function concatenate(tensors, axis = -1) {
    let rank;
    if (axis < 0) {
        rank = tensors[0].rank;
        if (rank !== 0) {
            axis = rank;
        }
        else {
            axis = 0;
        }
    }
    if (axis === tensors[0].rank) {
        // Porting Note: This is necessary because tfc.concat() requires axis to be
        //   in the interval [-rank, rank).
        axis = -1;
    }
    // Porting Note: Sparse concat is not supported yet.
    return tfc.concat(tensors, axis);
}
/**
 * Concatenate two arrays along the first dimension.
 * @param a The 1st `tf.Tensor` to concatenate.
 * @param b The 2nd `tf.Tensor` to concatenate.
 * @returns Result of the concatenation.
 * @throws ValueError: If `a` is of an unsupported subtype of `tf.Tensor`.
 */
export function concatAlongFirstAxis(a, b) {
    switch (a.rank) {
        case 1:
            return tfc.concat1d([a, b]);
        case 2:
            return tfc.concat2d([a, b], 0);
        case 3:
            return tfc.concat3d([a, b], 0);
        case 4:
            return tfc.concat4d([a, b], 0);
        default:
            throw new ValueError(`concatAlongFirstAxis() received an unsupported ` +
                `tensor rank: ${a.rank}`);
    }
}
/**
 * Creates a tensor by tiling `x` by `n`.
 * @param x A tensor.
 * @param n An Array of integers or a single integer. If an Array, the length
 *   must be the same as the number of dimensions in `x`. If a single integer,
 *   it will be treated as an Array of length 1.
 */
export function tile(x, n) {
    if (!Array.isArray(n)) {
        n = [n];
    }
    if (x.rank !== n.length) {
        throw new ValueError(`The length of input n (${n.length}) does not match ` +
            `the number of dimensions in input x (${x.rank})`);
    }
    return tfc.tile(x, n);
}
/* Creation of random tensors. */
/**
 * Get a tensor with normal distribution of values.
 *
 * @param shape Shape of the tensor.
 * @param mean mean value of the normal distribution.
 * @param stddev standard deviation of the normal distribution.
 * @param dtype
 * @param seed
 * @return The normal tensor.
 */
export function randomNormal(shape, mean = 0.0, stddev = 1.0, dtype, seed) {
    return tfc.randomNormal(shape, mean, stddev, dtype, seed);
}
/* Linear Algebra */
/**
 * Multiply two tensors and returns the result as a tensor.
 *
 * For 2D tensors, this is equivalent to matrix multiplication (matMul).
 * For tensors of higher ranks, it follows the Theano behavior,
 * (e.g. `(2, 3) * (4, 3, 5) -> (2, 4, 5)`).  From the Theano documentation:
 *
 * For N dimensions it is a sum product over the last axis of x and the
 * second-to-last of y:
 *
 * @param a A tensor of at least rank 2.
 * @param b A tensor of at least rank 2.
 * @param activation (optional) A string identifying the activation
 *   function.
 * @return Result of the dot operation.
 */
export function dot(a, b, activation, bias) {
    if ((a.rank < 2) || (b.rank < 2)) {
        throw new NotImplementedError(`dot requires both inputs to be rank >= 2` +
            ` but got x shape = ${a.shape} and y shape = ${b.shape}`);
    }
    if (b.rank >= 3) {
        const xLastDim = a.shape.slice(-1)[0];
        const ySecondLastDim = b.shape.slice(-2)[0];
        if (xLastDim !== ySecondLastDim) {
            throw new NotImplementedError(`If rank y >= 3, then the second last dim` +
                ` of y must equal the last dim of x but got x shape = ${a.shape} and ` +
                ` y shape = ${b.shape}`);
        }
    }
    // Handle basic 2D x 2D case.
    if ((a.rank === 2) && (b.rank === 2)) {
        const transposeA = false;
        const transposeB = false;
        // tfc.fused.matMul only fuses certain activation functions. Unsupported
        // activation functions are treated as 'linear' activations, which is
        // equivalent to a no-op.
        return tfc.fused.matMul({
            a,
            b: b,
            transposeA,
            transposeB,
            bias: bias ? reshapeBias(a.rank, bias, imageDataFormat()) : null,
            activation
        });
    }
    else {
        // Reshape x into the analogous 2D Tensor.
        const aFirstDims = a.shape.slice(); // Holds all but the last dim of x.
        const aLastDim = aFirstDims.pop();
        a = tfc.reshape(a, [-1, aLastDim]);
        // Reshape y into the analogous 2D Tensor, and keep track of the
        // required dimensions to reproduce the output shape.
        const bShape = b.shape.slice();
        const bLastDim = bShape.pop();
        const ySecondLastDim = bShape.pop();
        const yOtherDims = [...bShape, bLastDim];
        // permutation should be like [r-2, 0, 1, 2, ... r-4, r-3, r-1]
        // where r is the rank of y.
        const perm = Array.from({ length: b.rank }, (_, i) => {
            if (i === 0) {
                return b.rank - 2;
            }
            else if (i <= b.rank - 2) {
                return i - 1;
            }
            return i;
        });
        b = tfc.reshape(tfc.transpose(b, perm), [ySecondLastDim, -1]);
        // Multiply x and y as 2D Tensors, and then reshape back to original.
        const outputShape = [...aFirstDims, ...yOtherDims];
        const transposeA = false;
        const transposeB = false;
        return tfc.reshape(tfc.fused.matMul({
            a,
            b,
            transposeA,
            transposeB,
            bias: bias ? reshapeBias(a.rank, bias, imageDataFormat()) : null,
            activation
        }), outputShape);
    }
}
/**
 * Compute the sign Tensor of an input Tensor.
 *
 * Elements of the input `tf.Tensor` that are === 0 are mapped to 0.
 * Elements of the input `tf.Tensor` that are > 0 are mapped to 1.
 * Elements of the input `tf.Tensor` that are < 0 are mapped to -1.
 *
 * @param x Input `tf.Tensor`.
 * @return The sign `tf.Tensor`.
 */
export function sign(x) {
    // TODO(cais): Move to the core.
    return tidy(() => {
        const zerosLikeX = coreZerosLike(x);
        const onesLikeX = coreOnesLike(x);
        return where(tfc.equal(x, zerosLikeX), zerosLikeX, where(tfc.greater(x, coreZerosLike(x)), onesLikeX, tfc.mul(-1, onesLikeX)));
    });
}
/**
 * Computes the one-hot representation of an integer tensor.
 * @param indices nD integer tensor of shape
 *   `(batch_size, dim1, dim2, ... dim(n-1))`
 * @param numClasses Integer, number of classes to consider.
 * @returns (n + 1)D one hot representation of the input
 *   with shape `(batch_size, dim1, dim2, ... dim(n-1), num_classes)`
 */
export function oneHot(indices, numClasses) {
    return tidy(() => {
        if (indices.rank !== 1) {
            throw new Error('Only 1D one-hot tensors are supported in the ' +
                'deeplearn backend, at present.');
        }
        indices = tfc.cast(indices, 'int32');
        return tfc.cast(tfc.oneHot(indices, numClasses), 'float32');
    });
}
/* Elementary math functions. */
/**
 * Retrieves the elements of indices `indices` in the tensor `reference`.
 * @param reference A tensor.
 * @param indices An integer tensor of indices or an `Array` of integers.
 * @param axis Axis along which to perform the gather operation.
 * @returns The result of the gathering as a tensor.
 */
export function gather(reference, indices, axis) {
    return tidy(() => {
        if (Array.isArray(indices)) {
            indices = tensor1d(indices, 'int32');
        }
        else {
            indices = tfc.cast(indices, 'int32');
        }
        return tfc.gather(reference, indices, axis);
    });
}
/**
 * Element-wise square.
 * @param x Input tensor.
 * @return element-wise x^2
 */
export function square(x) {
    return tfc.mul(x, x);
}
/**
 * Element-wise exponentiation.
 *
 * Porting Note: In PyKeras, `a` (the exponent) is a Python integer, which
 *   takes advatnage of the backend's (e.g., TensorFlow's) automatic
 * conversion to tensor. Here we allow `a` to be either a number or a tensor.
 *
 * @param x The base tensor.
 * @param a The exponent, tensor or number. If a number, it is rounded to the
 *   nearest integer and converted to a tensor.
 * @returns A tensor of the same shape as `x`.
 */
export function pow(x, a) {
    return tidy(() => {
        if (typeof (a) === 'number') {
            a = scalar(Math.round(a), 'int32');
        }
        if (a.dtype !== 'int32') {
            throw new NotImplementedError(`Non-int32 dtype (${a.dtype}) is not supported by pow() yet`);
        }
        return tfc.pow(x, a);
    });
}
/**
 * Reshapes bias tensor according to rank of x.
 */
function reshapeBias(xRank, bias, dataFormat) {
    const biasShape = bias.shape;
    if (bias.rank !== 1 && bias.rank !== xRank) {
        throw new ValueError(`Unexpected bias dimensions: ${bias.rank}` +
            `; expected it to be 1 or ${xRank}`);
    }
    if (xRank === 5) {
        if (dataFormat === 'channelsFirst') {
            if (biasShape.length === 1) {
                return tfc.reshape(bias, [1, biasShape[0], 1, 1, 1]);
            }
            else {
                return tfc.reshape(bias, [1, biasShape[3], biasShape[0], biasShape[1], biasShape[2]]);
            }
        }
        else if (dataFormat === 'channelsLast') {
            if (biasShape.length === 1) {
                return tfc.reshape(bias, [1, 1, 1, 1, biasShape[0]]);
            }
            else {
                return tfc.reshape(bias, [1].concat(biasShape));
            }
        }
    }
    else if (xRank === 4) {
        if (dataFormat === 'channelsFirst') {
            if (biasShape.length === 1) {
                return tfc.reshape(bias, [1, biasShape[0], 1, 1]);
            }
            else {
                return tfc.reshape(bias, [1, biasShape[2], biasShape[0], biasShape[1]]);
            }
        }
        else if (dataFormat === 'channelsLast') {
            if (biasShape.length === 1) {
                return tfc.reshape(bias, [1, 1, 1, biasShape[0]]);
            }
            else {
                return tfc.reshape(bias, [1].concat(biasShape));
            }
        }
    }
    else if (xRank === 3) {
        if (dataFormat === 'channelsFirst') {
            if (biasShape.length === 1) {
                return tfc.reshape(bias, [1, biasShape[0], 1]);
            }
            else {
                return tfc.reshape(bias, [1, biasShape[1], biasShape[0]]);
            }
        }
        else if (dataFormat === 'channelsLast') {
            if (biasShape.length === 1) {
                return tfc.reshape(bias, [1, 1, biasShape[0]]);
            }
            else {
                return tfc.reshape(bias, [1].concat(biasShape));
            }
        }
    }
    else if (xRank < 3) {
        return bias;
    }
    throw new ValueError(`Unsupported input rank by biasAdd: ${bias.rank}`);
}
/* Neural-network operations. */
/**
 * Add a bias to a tensor.
 *
 * @param x The tensor to add the bias to.
 * @param bias The bias to add to `x`. Must be 1D or the same rank as `x`.
 * @return Result of the bias adding.
 * @throws ValueError: If the rank of `bias` is incorrect.
 */
export function biasAdd(x, bias, dataFormat) {
    return tidy(() => {
        if (dataFormat == null) {
            dataFormat = imageDataFormat();
        }
        checkDataFormat(dataFormat);
        return tfc.add(x, reshapeBias(x.rank, bias, dataFormat));
    });
}
/**
 * Exponential linear unit (ELU).
 * @param x A tensor or variable to compute the activation function for.
 * @param alpha: A scalar, a scaling factor for the negative section.
 * @return Output of the ELU operation.
 */
export function elu(x, alpha = 1) {
    // TODO(cais): Add support for alpha values other than 1.
    if (alpha !== 1) {
        throw new NotImplementedError(`Support for alpha values other than 1 (${alpha}) is not implemented ` +
            `yet.`);
    }
    return tfc.elu(x);
}
/**
 * Softsign of a tensor.
 *
 * Defined as x / (abs(x) + 1), element-wise.
 *
 * @param x: Input.
 * @returns Output.
 */
export function softsign(x) {
    return tidy(() => tfc.div(x, tfc.add(tfc.abs(x), 1)));
}
/**
 * Sets entries in `x` to zero at random, while scaling the entire tensor.
 *
 * @param x input tensor.
 * @param level fraction of the entries in the tensor that will be set to 0.
 * @param noiseShape shape of randomly generated keep/drop flags, must be
 *   broadcastable to the shape of `x`. Optional.
 * @param seed random seed to ensure determinism. Optional.
 * @returns Result of the dropout operation.
 */
export function dropout(x, level, noiseShape, seed) {
    return tidy(() => tfc.dropout(x, level, noiseShape, seed));
}
/**
 * Element-wise, segment-wise linear approximation of sigmoid.
 *
 * Returns `0.` if `x < -2.5`, `1.` if `x > 2.5`.
 * In `-2.5 <= x <= 2.5`, returns `0.2 * x + 0.5`.
 *
 * @param x Input tensor.
 * @returns Output tensor.
 */
export function hardSigmoid(x) {
    return tidy(() => {
        const y = tfc.add(.5, tfc.mul(.2, x));
        return tfc.clipByValue(y, 0, 1);
    });
}
/**
 * Invoke `x` in the training phase, and `alt` otherwise.
 *
 * Porting Note: We do not create placeholder tensors for the `training`
 * boolean flag here, because there is no such thing in the TF.js imperative
 * backend.
 *
 * @param x The function to invoke iff `training` is `true`.
 * @param alt The function to invoke iff `training` is `false`.
 * @param training Boolean flag for whether training phase is active.
 * @returns The return value of `x()` if `training` is `true`, or the return
 *   value of `alt()` if `training` is `false`.
 */
export function inTrainPhase(x, alt, training = false) {
    return training ? x() : alt();
}
//# sourceMappingURL=data:application/json;base64,eyJ2ZXJzaW9uIjozLCJmaWxlIjoidGZqc19iYWNrZW5kLmpzIiwic291cmNlUm9vdCI6IiIsInNvdXJjZXMiOlsiLi4vLi4vLi4vLi4vLi4vLi4vdGZqcy1sYXllcnMvc3JjL2JhY2tlbmQvdGZqc19iYWNrZW5kLnRzIl0sIm5hbWVzIjpbXSwibWFwcGluZ3MiOiJBQUFBOzs7Ozs7OztHQVFHO0FBRUg7O0dBRUc7QUFFSCxPQUFPLEtBQUssR0FBRyxNQUFNLHVCQUF1QixDQUFDO0FBQzdDLE9BQU8sRUFBQyxRQUFRLElBQUksWUFBWSxFQUFFLE1BQU0sRUFBb0IsUUFBUSxFQUEwQyxJQUFJLEVBQUUsS0FBSyxFQUFFLFNBQVMsSUFBSSxhQUFhLEVBQUMsTUFBTSx1QkFBdUIsQ0FBQztBQUNwTCxPQUFPLEVBQUMsZUFBZSxFQUFDLE1BQU0sV0FBVyxDQUFDO0FBQzFDLE9BQU8sRUFBQyxtQkFBbUIsRUFBRSxVQUFVLEVBQUMsTUFBTSxXQUFXLENBQUM7QUFHMUQsT0FBTyxLQUFLLFVBQVUsTUFBTSxxQkFBcUIsQ0FBQztBQUVsRCxPQUFPLEVBQUMsZUFBZSxFQUFDLE1BQU0sVUFBVSxDQUFDO0FBRXpDLGdCQUFnQjtBQUVoQixvREFBb0Q7QUFFcEQsK0NBQStDO0FBQy9DLElBQUksT0FBTyxHQUFrQixPQUFPLENBQUM7QUFFckMsTUFBTSxVQUFVLFVBQVUsQ0FBQyxnQkFBK0I7SUFDeEQsR0FBRyxDQUFDLFVBQVUsQ0FBQyxnQkFBZ0IsQ0FBQyxDQUFDO0lBQ2pDLE9BQU8sR0FBRyxnQkFBZ0IsQ0FBQztBQUM3QixDQUFDO0FBRUQsTUFBTSxVQUFVLFVBQVU7SUFDeEIsT0FBTyxPQUFPLENBQUM7QUFDakIsQ0FBQztBQUVEOzs7Ozs7R0FNRztBQUNILE1BQU0sVUFBVSxpQkFBaUI7SUFDL0IsT0FBTyxLQUFLLENBQUM7QUFDZixDQUFDO0FBRUQ7Ozs7R0FJRztBQUNILE1BQU0sVUFBVSxXQUFXLENBQUMsQ0FBVztJQUNyQyxNQUFNLEtBQUssR0FBRyxDQUFDLENBQUMsS0FBSyxDQUFDO0lBQ3RCLElBQUksS0FBSyxDQUFDLE1BQU0sR0FBRyxDQUFDLEVBQUU7UUFDcEIsT0FBTyxLQUFLLENBQUMsTUFBTSxDQUFDLENBQUMsQ0FBUyxFQUFFLENBQVMsRUFBRSxFQUFFLENBQUMsQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDO0tBQ3REO1NBQU07UUFDTCxVQUFVO1FBQ1YsT0FBTyxDQUFDLENBQUM7S0FDVjtBQUNILENBQUM7QUFFRDs7Ozs7R0FLRztBQUNILE1BQU0sVUFBVSxJQUFJLENBQUMsQ0FBUyxFQUFFLEtBQW1CO0lBQ2pELE9BQU8sR0FBRyxDQUFDLElBQUksQ0FBQyxDQUFDLEVBQUUsS0FBSyxDQUFDLENBQUM7QUFDNUIsQ0FBQztBQUVEOzs7OztHQUtHO0FBQ0gsTUFBTSxVQUFVLFVBQVUsQ0FBQyxDQUFTLEVBQUUsSUFBSSxHQUFHLENBQUMsQ0FBQztJQUM3QyxNQUFNLFFBQVEsR0FBRyxDQUFDLENBQUMsS0FBSyxDQUFDLEtBQUssRUFBRSxDQUFDO0lBQ2pDLElBQUksSUFBSSxHQUFHLENBQUMsRUFBRTtRQUNaLElBQUksR0FBRyxRQUFRLENBQUMsTUFBTSxHQUFHLElBQUksR0FBRyxDQUFDLENBQUM7S0FDbkM7SUFDRCxRQUFRLENBQUMsTUFBTSxDQUFDLElBQUksRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUM7SUFDNUIsT0FBTyxHQUFHLENBQUMsT0FBTyxDQUFDLENBQUMsRUFBRSxRQUFRLENBQUMsQ0FBQztBQUNsQyxDQUFDO0FBRUQ7Ozs7Ozs7Ozs7R0FVRztBQUNILE1BQU0sVUFBVSxNQUFNLENBQUMsQ0FBUyxFQUFFLENBQVM7SUFDekMsT0FBTyxJQUFJLENBQUMsR0FBRyxFQUFFO1FBQ2YsSUFBSSxDQUFDLENBQUMsS0FBSyxDQUFDLE1BQU0sS0FBSyxDQUFDLEVBQUU7WUFDeEIsTUFBTSxJQUFJLFVBQVUsQ0FDaEIsbURBQW1EO2dCQUNuRCxRQUFRLENBQUMsQ0FBQyxLQUFLLENBQUMsTUFBTSxVQUFVLENBQUMsQ0FBQztTQUN2QztRQUNELE1BQU0sQ0FBQyxHQUFHLFVBQVUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUM7UUFDM0IsT0FBTyxJQUFJLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDO0lBQzVCLENBQUMsQ0FBQyxDQUFDO0FBQ0wsQ0FBQztBQUVEOzs7O0dBSUc7QUFDSCxNQUFNLFVBQVUsT0FBTyxDQUFDLENBQVM7SUFDL0IsTUFBTSxRQUFRLEdBQUcsQ0FBQyxVQUFVLENBQUMsU0FBUyxDQUFDLENBQUMsQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDO0lBQ2pELE9BQU8sR0FBRyxDQUFDLE9BQU8sQ0FBQyxDQUFDLEVBQUUsUUFBUSxDQUFDLENBQUM7QUFDbEMsQ0FBQztBQUVEOzs7Ozs7O0dBT0c7QUFDSCxNQUFNLFVBQVUsWUFBWSxDQUFDLENBQVM7SUFDcEMsSUFBSSxDQUFDLENBQUMsSUFBSSxJQUFJLENBQUMsRUFBRTtRQUNmLE1BQU0sSUFBSSxVQUFVLENBQ2hCLHdEQUF3RCxDQUFDLENBQUMsSUFBSSxHQUFHLENBQUMsQ0FBQztLQUN4RTtJQUNELE1BQU0sUUFBUSxHQUFHLENBQUMsQ0FBQyxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsRUFBRSxVQUFVLENBQUMsU0FBUyxDQUFDLENBQUMsQ0FBQyxLQUFLLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQztJQUNoRSxPQUFPLEdBQUcsQ0FBQyxPQUFPLENBQUMsQ0FBQyxFQUFFLFFBQVEsQ0FBQyxDQUFDO0FBQ2xDLENBQUM7QUFFRDs7Ozs7OztHQU9HO0FBQ0gsTUFBTSxVQUFVLG1CQUFtQixDQUMvQixLQUFhLEVBQUUsS0FBYSxFQUFFLElBQVk7SUFDNUMsT0FBTyxJQUFJLENBQUMsR0FBRyxFQUFFO1FBQ2YsUUFBUSxLQUFLLENBQUMsSUFBSSxFQUFFO1lBQ2xCLEtBQUssQ0FBQztnQkFDSixPQUFPLEdBQUcsQ0FBQyxPQUFPLENBQUMsS0FBaUIsRUFBRSxLQUFLLEVBQUUsSUFBSSxDQUFDLENBQUM7WUFDckQsS0FBSyxDQUFDO2dCQUNKLE9BQU8sR0FBRyxDQUFDLE9BQU8sQ0FDZCxLQUFpQixFQUFFLENBQUMsS0FBSyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsSUFBSSxFQUFFLEtBQUssQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO1lBQzdELEtBQUssQ0FBQztnQkFDSixPQUFPLEdBQUcsQ0FBQyxPQUFPLENBQ2QsS0FBaUIsRUFBRSxDQUFDLEtBQUssRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQ2hDLENBQUMsSUFBSSxFQUFFLEtBQUssQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLEVBQUUsS0FBSyxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUM7WUFDOUMsS0FBSyxDQUFDO2dCQUNKLE9BQU8sR0FBRyxDQUFDLE9BQU8sQ0FDZCxLQUFpQixFQUFFLENBQUMsS0FBSyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQ25DLENBQUMsSUFBSSxFQUFFLEtBQUssQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLEVBQUUsS0FBSyxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsRUFBRSxLQUFLLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQztZQUM5RCxLQUFLLENBQUM7Z0JBQ0osT0FBTyxHQUFHLENBQUMsS0FBSyxDQUFDLEtBQWlCLEVBQUUsQ0FBQyxLQUFLLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUU7b0JBQ3ZELElBQUksRUFBRSxLQUFLLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxFQUFFLEtBQUssQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLEVBQUUsS0FBSyxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsRUFBRSxLQUFLLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQztpQkFDckUsQ0FBQyxDQUFDO1lBQ0wsS0FBSyxDQUFDO2dCQUNKLE9BQU8sR0FBRyxDQUFDLEtBQUssQ0FBQyxLQUFLLEVBQUUsQ0FBQyxLQUFLLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFO29CQUM5QyxJQUFJLEVBQUUsS0FBSyxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsRUFBRSxLQUFLLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxFQUFFLEtBQUssQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLEVBQUUsS0FBSyxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUM7b0JBQ3BFLEtBQUssQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDO2lCQUNmLENBQUMsQ0FBQztZQUNMO2dCQUNFLE1BQU0sSUFBSSxVQUFVLENBQ2hCLDZEQUE2RDtvQkFDN0QsR0FBRyxLQUFLLENBQUMsSUFBSSxFQUFFLENBQUMsQ0FBQztTQUN4QjtJQUNILENBQUMsQ0FBQyxDQUFDO0FBQ0wsQ0FBQztBQUVEOzs7Ozs7O0dBT0c7QUFDSCxNQUFNLFVBQVUsa0JBQWtCLENBQzlCLEtBQWEsRUFBRSxLQUFhLEVBQUUsSUFBWTtJQUM1QyxPQUFPLElBQUksQ0FBQyxHQUFHLEVBQUU7UUFDZixRQUFRLEtBQUssQ0FBQyxJQUFJLEVBQUU7WUFDbEIsS0FBSyxDQUFDO2dCQUNKLE9BQU8sR0FBRyxDQUFDLE9BQU8sQ0FBQyxLQUFpQixFQUFFLEtBQUssRUFBRSxJQUFJLENBQUMsQ0FBQztZQUNyRCxLQUFLLENBQUM7Z0JBQ0osT0FBTyxHQUFHLENBQUMsT0FBTyxDQUNkLEtBQWlCLEVBQUUsQ0FBQyxDQUFDLEVBQUUsS0FBSyxDQUFDLEVBQUUsQ0FBQyxLQUFLLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxFQUFFLElBQUksQ0FBQyxDQUFDLENBQUM7WUFDN0QsS0FBSyxDQUFDO2dCQUNKLE9BQU8sR0FBRyxDQUFDLE9BQU8sQ0FDZCxLQUFpQixFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxLQUFLLENBQUMsRUFDaEMsQ0FBQyxLQUFLLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxFQUFFLEtBQUssQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLEVBQUUsSUFBSSxDQUFDLENBQUMsQ0FBQztZQUM5QyxLQUFLLENBQUM7Z0JBQ0osT0FBTyxHQUFHLENBQUMsT0FBTyxDQUNkLEtBQWlCLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxLQUFLLENBQUMsRUFDbkMsQ0FBQyxLQUFLLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxFQUFFLEtBQUssQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLEVBQUUsS0FBSyxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsRUFBRSxJQUFJLENBQUMsQ0FBQyxDQUFDO1lBQzlEO2dCQUNFLE1BQU0sSUFBSSxVQUFVLENBQ2hCLDREQUE0RDtvQkFDNUQsR0FBRyxLQUFLLENBQUMsSUFBSSxFQUFFLENBQUMsQ0FBQztTQUN4QjtJQUNILENBQUMsQ0FBQyxDQUFDO0FBQ0wsQ0FBQztBQUVEOzs7Ozs7OztHQVFHO0FBQ0gsTUFBTSxVQUFVLGNBQWMsQ0FDMUIsS0FBYSxFQUFFLEtBQWEsRUFBRSxJQUFZLEVBQUUsSUFBWTtJQUMxRCxPQUFPLElBQUksQ0FBQyxHQUFHLEVBQUU7UUFDZixRQUFRLEtBQUssQ0FBQyxJQUFJLEVBQUU7WUFDbEIsS0FBSyxDQUFDO2dCQUNKLE9BQU8sR0FBRyxDQUFDLE9BQU8sQ0FBQyxLQUFpQixFQUFFLEtBQUssRUFBRSxJQUFJLENBQUMsQ0FBQztZQUNyRCxLQUFLLENBQUM7Z0JBQ0osUUFBUSxJQUFJLEVBQUU7b0JBQ1osS0FBSyxDQUFDO3dCQUNKLE9BQU8sbUJBQW1CLENBQUMsS0FBSyxFQUFFLEtBQUssRUFBRSxJQUFJLENBQUMsQ0FBQztvQkFDakQsS0FBSyxDQUFDO3dCQUNKLE9BQU8sa0JBQWtCLENBQUMsS0FBSyxFQUFFLEtBQUssRUFBRSxJQUFJLENBQUMsQ0FBQztvQkFDaEQ7d0JBQ0UsTUFBTSxJQUFJLFVBQVUsQ0FDaEIsZ0RBQWdEOzRCQUNoRCxHQUFHLElBQUksRUFBRSxDQUFDLENBQUM7aUJBQ2xCO1lBQ0gsS0FBSyxDQUFDO2dCQUNKLFFBQVEsSUFBSSxFQUFFO29CQUNaLEtBQUssQ0FBQzt3QkFDSixPQUFPLG1CQUFtQixDQUFDLEtBQUssRUFBRSxLQUFLLEVBQUUsSUFBSSxDQUFDLENBQUM7b0JBQ2pELEtBQUssQ0FBQzt3QkFDSixPQUFPLEdBQUcsQ0FBQyxPQUFPLENBQ2QsS0FBaUIsRUFBRSxDQUFDLENBQUMsRUFBRSxLQUFLLEVBQUUsQ0FBQyxDQUFDLEVBQ2hDLENBQUMsS0FBSyxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsRUFBRSxJQUFJLEVBQUUsS0FBSyxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUM7b0JBQzlDLEtBQUssQ0FBQzt3QkFDSixPQUFPLGtCQUFrQixDQUFDLEtBQUssRUFBRSxLQUFLLEVBQUUsSUFBSSxDQUFDLENBQUM7b0JBQ2hEO3dCQUNFLE1BQU0sSUFBSSxVQUFVLENBQ2hCLGdEQUFnRDs0QkFDaEQsR0FBRyxJQUFJLEVBQUUsQ0FBQyxDQUFDO2lCQUNsQjtZQUNILEtBQUssQ0FBQztnQkFDSixRQUFRLElBQUksRUFBRTtvQkFDWixLQUFLLENBQUM7d0JBQ0osT0FBTyxtQkFBbUIsQ0FBQyxLQUFLLEVBQUUsS0FBSyxFQUFFLElBQUksQ0FBQyxDQUFDO29CQUNqRCxLQUFLLENBQUM7d0JBQ0osT0FBTyxHQUFHLENBQUMsT0FBTyxDQUNkLEtBQWlCLEVBQUUsQ0FBQyxDQUFDLEVBQUUsS0FBSyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsRUFDbkMsQ0FBQyxLQUFLLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxFQUFFLElBQUksRUFBRSxLQUFLLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxFQUFFLEtBQUssQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO29CQUM5RCxLQUFLLENBQUM7d0JBQ0osT0FBTyxHQUFHLENBQUMsT0FBTyxDQUNkLEtBQWlCLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLEtBQUssRUFBRSxDQUFDLENBQUMsRUFDbkMsQ0FBQyxLQUFLLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxFQUFFLEtBQUssQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLEVBQUUsSUFBSSxFQUFFLEtBQUssQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO29CQUM5RCxLQUFLLENBQUM7d0JBQ0osT0FBTyxrQkFBa0IsQ0FBQyxLQUFLLEVBQUUsS0FBSyxFQUFFLElBQUksQ0FBQyxDQUFDO29CQUNoRDt3QkFDRSxNQUFNLElBQUksVUFBVSxDQUNoQixnREFBZ0Q7NEJBQ2hELEdBQUcsSUFBSSxFQUFFLENBQUMsQ0FBQztpQkFDbEI7WUFDSDtnQkFDRSxNQUFNLElBQUksVUFBVSxDQUNoQiw0REFBNEQ7b0JBQzVELEdBQUcsS0FBSyxDQUFDLElBQUksRUFBRSxDQUFDLENBQUM7U0FDeEI7SUFDSCxDQUFDLENBQUMsQ0FBQztBQUNMLENBQUM7QUFFRDs7Ozs7R0FLRztBQUNILE1BQU0sVUFBVSxXQUFXLENBQUMsT0FBaUIsRUFBRSxJQUFJLEdBQUcsQ0FBQyxDQUFDO0lBQ3RELElBQUksSUFBWSxDQUFDO0lBQ2pCLElBQUksSUFBSSxHQUFHLENBQUMsRUFBRTtRQUNaLElBQUksR0FBRyxPQUFPLENBQUMsQ0FBQyxDQUFDLENBQUMsSUFBSSxDQUFDO1FBQ3ZCLElBQUksSUFBSSxLQUFLLENBQUMsRUFBRTtZQUNkLElBQUksR0FBRyxJQUFJLENBQUM7U0FDYjthQUFNO1lBQ0wsSUFBSSxHQUFHLENBQUMsQ0FBQztTQUNWO0tBQ0Y7SUFDRCxJQUFJLElBQUksS0FBSyxPQUFPLENBQUMsQ0FBQyxDQUFDLENBQUMsSUFBSSxFQUFFO1FBQzVCLDJFQUEyRTtRQUMzRSxtQ0FBbUM7UUFDbkMsSUFBSSxHQUFHLENBQUMsQ0FBQyxDQUFDO0tBQ1g7SUFDRCxvREFBb0Q7SUFDcEQsT0FBTyxHQUFHLENBQUMsTUFBTSxDQUFDLE9BQU8sRUFBRSxJQUFJLENBQUMsQ0FBQztBQUNuQyxDQUFDO0FBRUQ7Ozs7OztHQU1HO0FBQ0gsTUFBTSxVQUFVLG9CQUFvQixDQUFDLENBQVMsRUFBRSxDQUFTO0lBQ3ZELFFBQVEsQ0FBQyxDQUFDLElBQUksRUFBRTtRQUNkLEtBQUssQ0FBQztZQUNKLE9BQU8sR0FBRyxDQUFDLFFBQVEsQ0FBQyxDQUFDLENBQWEsRUFBRSxDQUFhLENBQUMsQ0FBQyxDQUFDO1FBQ3RELEtBQUssQ0FBQztZQUNKLE9BQU8sR0FBRyxDQUFDLFFBQVEsQ0FBQyxDQUFDLENBQWEsRUFBRSxDQUFhLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQztRQUN6RCxLQUFLLENBQUM7WUFDSixPQUFPLEdBQUcsQ0FBQyxRQUFRLENBQUMsQ0FBQyxDQUFhLEVBQUUsQ0FBYSxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUM7UUFDekQsS0FBSyxDQUFDO1lBQ0osT0FBTyxHQUFHLENBQUMsUUFBUSxDQUFDLENBQUMsQ0FBYSxFQUFFLENBQWEsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDO1FBQ3pEO1lBQ0UsTUFBTSxJQUFJLFVBQVUsQ0FDaEIsaURBQWlEO2dCQUNqRCxnQkFBZ0IsQ0FBQyxDQUFDLElBQUksRUFBRSxDQUFDLENBQUM7S0FDakM7QUFDSCxDQUFDO0FBRUQ7Ozs7OztHQU1HO0FBQ0gsTUFBTSxVQUFVLElBQUksQ0FBQyxDQUFTLEVBQUUsQ0FBa0I7SUFDaEQsSUFBSSxDQUFDLEtBQUssQ0FBQyxPQUFPLENBQUMsQ0FBQyxDQUFDLEVBQUU7UUFDckIsQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDLENBQUM7S0FDVDtJQUNELElBQUksQ0FBQyxDQUFDLElBQUksS0FBSyxDQUFDLENBQUMsTUFBTSxFQUFFO1FBQ3ZCLE1BQU0sSUFBSSxVQUFVLENBQ2hCLDBCQUEwQixDQUFDLENBQUMsTUFBTSxtQkFBbUI7WUFDckQsd0NBQXdDLENBQUMsQ0FBQyxJQUFJLEdBQUcsQ0FBQyxDQUFDO0tBQ3hEO0lBQ0QsT0FBTyxHQUFHLENBQUMsSUFBSSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQztBQUN4QixDQUFDO0FBRUQsaUNBQWlDO0FBRWpDOzs7Ozs7Ozs7R0FTRztBQUNILE1BQU0sVUFBVSxZQUFZLENBQ3hCLEtBQVksRUFBRSxJQUFJLEdBQUcsR0FBRyxFQUFFLE1BQU0sR0FBRyxHQUFHLEVBQUUsS0FBeUIsRUFDakUsSUFBYTtJQUNmLE9BQU8sR0FBRyxDQUFDLFlBQVksQ0FBQyxLQUFLLEVBQUUsSUFBSSxFQUFFLE1BQU0sRUFBRSxLQUFLLEVBQUUsSUFBSSxDQUFDLENBQUM7QUFDNUQsQ0FBQztBQUVELG9CQUFvQjtBQUVwQjs7Ozs7Ozs7Ozs7Ozs7O0dBZUc7QUFDSCxNQUFNLFVBQVUsR0FBRyxDQUNmLENBQVMsRUFBRSxDQUFTLEVBQUUsVUFBaUMsRUFDdkQsSUFBYTtJQUNmLElBQUksQ0FBQyxDQUFDLENBQUMsSUFBSSxHQUFHLENBQUMsQ0FBQyxJQUFJLENBQUMsQ0FBQyxDQUFDLElBQUksR0FBRyxDQUFDLENBQUMsRUFBRTtRQUNoQyxNQUFNLElBQUksbUJBQW1CLENBQ3pCLDBDQUEwQztZQUMxQyxzQkFBc0IsQ0FBQyxDQUFDLEtBQUssa0JBQWtCLENBQUMsQ0FBQyxLQUFLLEVBQUUsQ0FBQyxDQUFDO0tBQy9EO0lBQ0QsSUFBSSxDQUFDLENBQUMsSUFBSSxJQUFJLENBQUMsRUFBRTtRQUNmLE1BQU0sUUFBUSxHQUFHLENBQUMsQ0FBQyxLQUFLLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDdEMsTUFBTSxjQUFjLEdBQUcsQ0FBQyxDQUFDLEtBQUssQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUM1QyxJQUFJLFFBQVEsS0FBSyxjQUFjLEVBQUU7WUFDL0IsTUFBTSxJQUFJLG1CQUFtQixDQUN6QiwwQ0FBMEM7Z0JBQzFDLHdEQUNJLENBQUMsQ0FBQyxLQUFLLE9BQU87Z0JBQ2xCLGNBQWMsQ0FBQyxDQUFDLEtBQUssRUFBRSxDQUFDLENBQUM7U0FDOUI7S0FDRjtJQUNELDZCQUE2QjtJQUM3QixJQUFJLENBQUMsQ0FBQyxDQUFDLElBQUksS0FBSyxDQUFDLENBQUMsSUFBSSxDQUFDLENBQUMsQ0FBQyxJQUFJLEtBQUssQ0FBQyxDQUFDLEVBQUU7UUFDcEMsTUFBTSxVQUFVLEdBQUcsS0FBSyxDQUFDO1FBQ3pCLE1BQU0sVUFBVSxHQUFHLEtBQUssQ0FBQztRQUN6Qix3RUFBd0U7UUFDeEUscUVBQXFFO1FBQ3JFLHlCQUF5QjtRQUN6QixPQUFPLEdBQUcsQ0FBQyxLQUFLLENBQUMsTUFBTSxDQUFDO1lBQ3RCLENBQUM7WUFDRCxDQUFDLEVBQUUsQ0FBYTtZQUNoQixVQUFVO1lBQ1YsVUFBVTtZQUNWLElBQUksRUFBRSxJQUFJLENBQUMsQ0FBQyxDQUFDLFdBQVcsQ0FBQyxDQUFDLENBQUMsSUFBSSxFQUFFLElBQUksRUFBRSxlQUFlLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQyxJQUFJO1lBQ2hFLFVBQVU7U0FDWCxDQUFDLENBQUM7S0FDSjtTQUFNO1FBQ0wsMENBQTBDO1FBQzFDLE1BQU0sVUFBVSxHQUFHLENBQUMsQ0FBQyxLQUFLLENBQUMsS0FBSyxFQUFFLENBQUMsQ0FBRSxtQ0FBbUM7UUFDeEUsTUFBTSxRQUFRLEdBQUcsVUFBVSxDQUFDLEdBQUcsRUFBRSxDQUFDO1FBQ2xDLENBQUMsR0FBRyxHQUFHLENBQUMsT0FBTyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxFQUFFLFFBQVEsQ0FBQyxDQUFDLENBQUM7UUFFbkMsZ0VBQWdFO1FBQ2hFLHFEQUFxRDtRQUNyRCxNQUFNLE1BQU0sR0FBRyxDQUFDLENBQUMsS0FBSyxDQUFDLEtBQUssRUFBRSxDQUFDO1FBQy9CLE1BQU0sUUFBUSxHQUFHLE1BQU0sQ0FBQyxHQUFHLEVBQUUsQ0FBQztRQUM5QixNQUFNLGNBQWMsR0FBRyxNQUFNLENBQUMsR0FBRyxFQUFFLENBQUM7UUFDcEMsTUFBTSxVQUFVLEdBQUcsQ0FBQyxHQUFHLE1BQU0sRUFBRSxRQUFRLENBQUMsQ0FBQztRQUN6QywrREFBK0Q7UUFDL0QsNEJBQTRCO1FBQzVCLE1BQU0sSUFBSSxHQUFHLEtBQUssQ0FBQyxJQUFJLENBQUMsRUFBQyxNQUFNLEVBQUUsQ0FBQyxDQUFDLElBQUksRUFBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxFQUFFO1lBQ2pELElBQUksQ0FBQyxLQUFLLENBQUMsRUFBRTtnQkFDWCxPQUFPLENBQUMsQ0FBQyxJQUFJLEdBQUcsQ0FBQyxDQUFDO2FBQ25CO2lCQUFNLElBQUksQ0FBQyxJQUFJLENBQUMsQ0FBQyxJQUFJLEdBQUcsQ0FBQyxFQUFFO2dCQUMxQixPQUFPLENBQUMsR0FBRyxDQUFDLENBQUM7YUFDZDtZQUNELE9BQU8sQ0FBQyxDQUFDO1FBQ1gsQ0FBQyxDQUFDLENBQUM7UUFDSCxDQUFDLEdBQUcsR0FBRyxDQUFDLE9BQU8sQ0FBQyxHQUFHLENBQUMsU0FBUyxDQUFDLENBQUMsRUFBRSxJQUFJLENBQUMsRUFBRSxDQUFDLGNBQWMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFFOUQscUVBQXFFO1FBQ3JFLE1BQU0sV0FBVyxHQUFHLENBQUMsR0FBRyxVQUFVLEVBQUUsR0FBRyxVQUFVLENBQUMsQ0FBQztRQUNuRCxNQUFNLFVBQVUsR0FBRyxLQUFLLENBQUM7UUFDekIsTUFBTSxVQUFVLEdBQUcsS0FBSyxDQUFDO1FBQ3pCLE9BQU8sR0FBRyxDQUFDLE9BQU8sQ0FDZCxHQUFHLENBQUMsS0FBSyxDQUFDLE1BQU0sQ0FBQztZQUNmLENBQUM7WUFDRCxDQUFDO1lBQ0QsVUFBVTtZQUNWLFVBQVU7WUFDVixJQUFJLEVBQUUsSUFBSSxDQUFDLENBQUMsQ0FBQyxXQUFXLENBQUMsQ0FBQyxDQUFDLElBQUksRUFBRSxJQUFJLEVBQUUsZUFBZSxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUMsSUFBSTtZQUNoRSxVQUFVO1NBQ1gsQ0FBQyxFQUNGLFdBQVcsQ0FBQyxDQUFDO0tBQ2xCO0FBQ0gsQ0FBQztBQUVEOzs7Ozs7Ozs7R0FTRztBQUNILE1BQU0sVUFBVSxJQUFJLENBQUMsQ0FBUztJQUM1QixnQ0FBZ0M7SUFDaEMsT0FBTyxJQUFJLENBQUMsR0FBRyxFQUFFO1FBQ2YsTUFBTSxVQUFVLEdBQUcsYUFBYSxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQ3BDLE1BQU0sU0FBUyxHQUFHLFlBQVksQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUNsQyxPQUFPLEtBQUssQ0FDUixHQUFHLENBQUMsS0FBSyxDQUFDLENBQUMsRUFBRSxVQUFVLENBQUMsRUFBRSxVQUFVLEVBQ3BDLEtBQUssQ0FDRCxHQUFHLENBQUMsT0FBTyxDQUFDLENBQUMsRUFBRSxhQUFhLENBQUMsQ0FBQyxDQUFDLENBQUMsRUFBRSxTQUFTLEVBQzNDLEdBQUcsQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDLEVBQUUsU0FBUyxDQUFDLENBQUMsQ0FBQyxDQUFDO0lBQ25DLENBQUMsQ0FBQyxDQUFDO0FBQ0wsQ0FBQztBQUVEOzs7Ozs7O0dBT0c7QUFDSCxNQUFNLFVBQVUsTUFBTSxDQUFDLE9BQWUsRUFBRSxVQUFrQjtJQUN4RCxPQUFPLElBQUksQ0FBQyxHQUFHLEVBQUU7UUFDZixJQUFJLE9BQU8sQ0FBQyxJQUFJLEtBQUssQ0FBQyxFQUFFO1lBQ3RCLE1BQU0sSUFBSSxLQUFLLENBQ1gsK0NBQStDO2dCQUMvQyxnQ0FBZ0MsQ0FBQyxDQUFDO1NBQ3ZDO1FBQ0QsT0FBTyxHQUFHLEdBQUcsQ0FBQyxJQUFJLENBQUMsT0FBTyxFQUFFLE9BQU8sQ0FBQyxDQUFDO1FBQ3JDLE9BQU8sR0FBRyxDQUFDLElBQUksQ0FBQyxHQUFHLENBQUMsTUFBTSxDQUFDLE9BQW1CLEVBQUUsVUFBVSxDQUFDLEVBQUUsU0FBUyxDQUFDLENBQUM7SUFDMUUsQ0FBQyxDQUFDLENBQUM7QUFDTCxDQUFDO0FBRUQsZ0NBQWdDO0FBRWhDOzs7Ozs7R0FNRztBQUNILE1BQU0sVUFBVSxNQUFNLENBQ2xCLFNBQWlCLEVBQUUsT0FBMEIsRUFBRSxJQUFhO0lBQzlELE9BQU8sSUFBSSxDQUFDLEdBQUcsRUFBRTtRQUNmLElBQUksS0FBSyxDQUFDLE9BQU8sQ0FBQyxPQUFPLENBQUMsRUFBRTtZQUMxQixPQUFPLEdBQUcsUUFBUSxDQUFDLE9BQU8sRUFBRSxPQUFPLENBQUMsQ0FBQztTQUN0QzthQUFNO1lBQ0wsT0FBTyxHQUFHLEdBQUcsQ0FBQyxJQUFJLENBQUMsT0FBTyxFQUFFLE9BQU8sQ0FBQyxDQUFDO1NBQ3RDO1FBQ0QsT0FBTyxHQUFHLENBQUMsTUFBTSxDQUFDLFNBQVMsRUFBRSxPQUFPLEVBQUUsSUFBSSxDQUFDLENBQUM7SUFDOUMsQ0FBQyxDQUFDLENBQUM7QUFDTCxDQUFDO0FBRUQ7Ozs7R0FJRztBQUNILE1BQU0sVUFBVSxNQUFNLENBQUMsQ0FBUztJQUM5QixPQUFPLEdBQUcsQ0FBQyxHQUFHLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDO0FBQ3ZCLENBQUM7QUFFRDs7Ozs7Ozs7Ozs7R0FXRztBQUNILE1BQU0sVUFBVSxHQUFHLENBQUMsQ0FBUyxFQUFFLENBQWdCO0lBQzdDLE9BQU8sSUFBSSxDQUFDLEdBQUcsRUFBRTtRQUNmLElBQUksT0FBTyxDQUFDLENBQUMsQ0FBQyxLQUFLLFFBQVEsRUFBRTtZQUMzQixDQUFDLEdBQUcsTUFBTSxDQUFDLElBQUksQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLEVBQUUsT0FBTyxDQUFDLENBQUM7U0FDcEM7UUFDRCxJQUFJLENBQUMsQ0FBQyxLQUFLLEtBQUssT0FBTyxFQUFFO1lBQ3ZCLE1BQU0sSUFBSSxtQkFBbUIsQ0FDekIsb0JBQW9CLENBQUMsQ0FBQyxLQUFLLGlDQUFpQyxDQUFDLENBQUM7U0FDbkU7UUFDRCxPQUFPLEdBQUcsQ0FBQyxHQUFHLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDO0lBQ3ZCLENBQUMsQ0FBQyxDQUFDO0FBQ0wsQ0FBQztBQUVEOztHQUVHO0FBQ0gsU0FBUyxXQUFXLENBQUMsS0FBYSxFQUFFLElBQVksRUFBRSxVQUFrQjtJQUNsRSxNQUFNLFNBQVMsR0FBRyxJQUFJLENBQUMsS0FBSyxDQUFDO0lBRTdCLElBQUksSUFBSSxDQUFDLElBQUksS0FBSyxDQUFDLElBQUksSUFBSSxDQUFDLElBQUksS0FBSyxLQUFLLEVBQUU7UUFDMUMsTUFBTSxJQUFJLFVBQVUsQ0FDaEIsK0JBQStCLElBQUksQ0FBQyxJQUFJLEVBQUU7WUFDMUMsNEJBQTRCLEtBQUssRUFBRSxDQUFDLENBQUM7S0FDMUM7SUFFRCxJQUFJLEtBQUssS0FBSyxDQUFDLEVBQUU7UUFDZixJQUFJLFVBQVUsS0FBSyxlQUFlLEVBQUU7WUFDbEMsSUFBSSxTQUFTLENBQUMsTUFBTSxLQUFLLENBQUMsRUFBRTtnQkFDMUIsT0FBTyxHQUFHLENBQUMsT0FBTyxDQUFDLElBQUksRUFBRSxDQUFDLENBQUMsRUFBRSxTQUFTLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDO2FBQ3REO2lCQUFNO2dCQUNMLE9BQU8sR0FBRyxDQUFDLE9BQU8sQ0FDZCxJQUFJLEVBQUUsQ0FBQyxDQUFDLEVBQUUsU0FBUyxDQUFDLENBQUMsQ0FBQyxFQUFFLFNBQVMsQ0FBQyxDQUFDLENBQUMsRUFBRSxTQUFTLENBQUMsQ0FBQyxDQUFDLEVBQUUsU0FBUyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQzthQUN4RTtTQUNGO2FBQU0sSUFBSSxVQUFVLEtBQUssY0FBYyxFQUFFO1lBQ3hDLElBQUksU0FBUyxDQUFDLE1BQU0sS0FBSyxDQUFDLEVBQUU7Z0JBQzFCLE9BQU8sR0FBRyxDQUFDLE9BQU8sQ0FBQyxJQUFJLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLEVBQUUsU0FBUyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQzthQUN0RDtpQkFBTTtnQkFDTCxPQUFPLEdBQUcsQ0FBQyxPQUFPLENBQUMsSUFBSSxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUMsTUFBTSxDQUFDLFNBQVMsQ0FBQyxDQUFDLENBQUM7YUFDakQ7U0FDRjtLQUNGO1NBQU0sSUFBSSxLQUFLLEtBQUssQ0FBQyxFQUFFO1FBQ3RCLElBQUksVUFBVSxLQUFLLGVBQWUsRUFBRTtZQUNsQyxJQUFJLFNBQVMsQ0FBQyxNQUFNLEtBQUssQ0FBQyxFQUFFO2dCQUMxQixPQUFPLEdBQUcsQ0FBQyxPQUFPLENBQUMsSUFBSSxFQUFFLENBQUMsQ0FBQyxFQUFFLFNBQVMsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQzthQUNuRDtpQkFBTTtnQkFDTCxPQUFPLEdBQUcsQ0FBQyxPQUFPLENBQUMsSUFBSSxFQUFFLENBQUMsQ0FBQyxFQUFFLFNBQVMsQ0FBQyxDQUFDLENBQUMsRUFBRSxTQUFTLENBQUMsQ0FBQyxDQUFDLEVBQUUsU0FBUyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQzthQUN6RTtTQUNGO2FBQU0sSUFBSSxVQUFVLEtBQUssY0FBYyxFQUFFO1lBQ3hDLElBQUksU0FBUyxDQUFDLE1BQU0sS0FBSyxDQUFDLEVBQUU7Z0JBQzFCLE9BQU8sR0FBRyxDQUFDLE9BQU8sQ0FBQyxJQUFJLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsRUFBRSxTQUFTLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO2FBQ25EO2lCQUFNO2dCQUNMLE9BQU8sR0FBRyxDQUFDLE9BQU8sQ0FBQyxJQUFJLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQyxNQUFNLENBQUMsU0FBUyxDQUFDLENBQUMsQ0FBQzthQUNqRDtTQUNGO0tBQ0Y7U0FBTSxJQUFJLEtBQUssS0FBSyxDQUFDLEVBQUU7UUFDdEIsSUFBSSxVQUFVLEtBQUssZUFBZSxFQUFFO1lBQ2xDLElBQUksU0FBUyxDQUFDLE1BQU0sS0FBSyxDQUFDLEVBQUU7Z0JBQzFCLE9BQU8sR0FBRyxDQUFDLE9BQU8sQ0FBQyxJQUFJLEVBQUUsQ0FBQyxDQUFDLEVBQUUsU0FBUyxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUM7YUFDaEQ7aUJBQU07Z0JBQ0wsT0FBTyxHQUFHLENBQUMsT0FBTyxDQUFDLElBQUksRUFBRSxDQUFDLENBQUMsRUFBRSxTQUFTLENBQUMsQ0FBQyxDQUFDLEVBQUUsU0FBUyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQzthQUMzRDtTQUNGO2FBQU0sSUFBSSxVQUFVLEtBQUssY0FBYyxFQUFFO1lBQ3hDLElBQUksU0FBUyxDQUFDLE1BQU0sS0FBSyxDQUFDLEVBQUU7Z0JBQzFCLE9BQU8sR0FBRyxDQUFDLE9BQU8sQ0FBQyxJQUFJLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLFNBQVMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUM7YUFDaEQ7aUJBQU07Z0JBQ0wsT0FBTyxHQUFHLENBQUMsT0FBTyxDQUFDLElBQUksRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDLE1BQU0sQ0FBQyxTQUFTLENBQUMsQ0FBQyxDQUFDO2FBQ2pEO1NBQ0Y7S0FDRjtTQUFNLElBQUksS0FBSyxHQUFHLENBQUMsRUFBRTtRQUNwQixPQUFPLElBQUksQ0FBQztLQUNiO0lBQ0QsTUFBTSxJQUFJLFVBQVUsQ0FBQyxzQ0FBc0MsSUFBSSxDQUFDLElBQUksRUFBRSxDQUFDLENBQUM7QUFDMUUsQ0FBQztBQUVELGdDQUFnQztBQUVoQzs7Ozs7OztHQU9HO0FBQ0gsTUFBTSxVQUFVLE9BQU8sQ0FDbkIsQ0FBUyxFQUFFLElBQVksRUFBRSxVQUF1QjtJQUNsRCxPQUFPLElBQUksQ0FBQyxHQUFHLEVBQUU7UUFDZixJQUFJLFVBQVUsSUFBSSxJQUFJLEVBQUU7WUFDdEIsVUFBVSxHQUFHLGVBQWUsRUFBRSxDQUFDO1NBQ2hDO1FBQ0QsZUFBZSxDQUFDLFVBQVUsQ0FBQyxDQUFDO1FBRTVCLE9BQU8sR0FBRyxDQUFDLEdBQUcsQ0FBQyxDQUFDLEVBQUUsV0FBVyxDQUFDLENBQUMsQ0FBQyxJQUFJLEVBQUUsSUFBSSxFQUFFLFVBQVUsQ0FBQyxDQUFDLENBQUM7SUFDM0QsQ0FBQyxDQUFDLENBQUM7QUFDTCxDQUFDO0FBRUQ7Ozs7O0dBS0c7QUFDSCxNQUFNLFVBQVUsR0FBRyxDQUFDLENBQVMsRUFBRSxLQUFLLEdBQUcsQ0FBQztJQUN0Qyx5REFBeUQ7SUFDekQsSUFBSSxLQUFLLEtBQUssQ0FBQyxFQUFFO1FBQ2YsTUFBTSxJQUFJLG1CQUFtQixDQUN6QiwwQ0FBMEMsS0FBSyx1QkFBdUI7WUFDdEUsTUFBTSxDQUFDLENBQUM7S0FDYjtJQUNELE9BQU8sR0FBRyxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUMsQ0FBQztBQUNwQixDQUFDO0FBRUQ7Ozs7Ozs7R0FPRztBQUNILE1BQU0sVUFBVSxRQUFRLENBQUMsQ0FBUztJQUNoQyxPQUFPLElBQUksQ0FBQyxHQUFHLEVBQUUsQ0FBQyxHQUFHLENBQUMsR0FBRyxDQUFDLENBQUMsRUFBRSxHQUFHLENBQUMsR0FBRyxDQUFDLEdBQUcsQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO0FBQ3hELENBQUM7QUFFRDs7Ozs7Ozs7O0dBU0c7QUFDSCxNQUFNLFVBQVUsT0FBTyxDQUNuQixDQUFTLEVBQUUsS0FBYSxFQUFFLFVBQXFCLEVBQUUsSUFBYTtJQUNoRSxPQUFPLElBQUksQ0FBQyxHQUFHLEVBQUUsQ0FBQyxHQUFHLENBQUMsT0FBTyxDQUFDLENBQUMsRUFBRSxLQUFLLEVBQUUsVUFBVSxFQUFFLElBQUksQ0FBQyxDQUFDLENBQUM7QUFDN0QsQ0FBQztBQUVEOzs7Ozs7OztHQVFHO0FBQ0gsTUFBTSxVQUFVLFdBQVcsQ0FBQyxDQUFTO0lBQ25DLE9BQU8sSUFBSSxDQUFDLEdBQUcsRUFBRTtRQUNmLE1BQU0sQ0FBQyxHQUFHLEdBQUcsQ0FBQyxHQUFHLENBQUMsRUFBRSxFQUFFLEdBQUcsQ0FBQyxHQUFHLENBQUMsRUFBRSxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDdEMsT0FBTyxHQUFHLENBQUMsV0FBVyxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUM7SUFDbEMsQ0FBQyxDQUFDLENBQUM7QUFDTCxDQUFDO0FBRUQ7Ozs7Ozs7Ozs7OztHQVlHO0FBQ0gsTUFBTSxVQUFVLFlBQVksQ0FBSSxDQUFVLEVBQUUsR0FBWSxFQUFFLFFBQVEsR0FBRyxLQUFLO0lBQ3hFLE9BQU8sUUFBUSxDQUFDLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsR0FBRyxFQUFFLENBQUM7QUFDaEMsQ0FBQyIsInNvdXJjZXNDb250ZW50IjpbIi8qKlxuICogQGxpY2Vuc2VcbiAqIENvcHlyaWdodCAyMDE4IEdvb2dsZSBMTENcbiAqXG4gKiBVc2Ugb2YgdGhpcyBzb3VyY2UgY29kZSBpcyBnb3Zlcm5lZCBieSBhbiBNSVQtc3R5bGVcbiAqIGxpY2Vuc2UgdGhhdCBjYW4gYmUgZm91bmQgaW4gdGhlIExJQ0VOU0UgZmlsZSBvciBhdFxuICogaHR0cHM6Ly9vcGVuc291cmNlLm9yZy9saWNlbnNlcy9NSVQuXG4gKiA9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PVxuICovXG5cbi8qKlxuICogZGVlcGxlYXJuLmpzIGJhY2tlbmQuXG4gKi9cblxuaW1wb3J0ICogYXMgdGZjIGZyb20gJ0B0ZW5zb3JmbG93L3RmanMtY29yZSc7XG5pbXBvcnQge29uZXNMaWtlIGFzIGNvcmVPbmVzTGlrZSwgc2NhbGFyLCBUZW5zb3IsIFRlbnNvcjFELCB0ZW5zb3IxZCwgVGVuc29yMkQsIFRlbnNvcjNELCBUZW5zb3I0RCwgVGVuc29yNUQsIHRpZHksIHdoZXJlLCB6ZXJvc0xpa2UgYXMgY29yZVplcm9zTGlrZX0gZnJvbSAnQHRlbnNvcmZsb3cvdGZqcy1jb3JlJztcbmltcG9ydCB7Y2hlY2tEYXRhRm9ybWF0fSBmcm9tICcuLi9jb21tb24nO1xuaW1wb3J0IHtOb3RJbXBsZW1lbnRlZEVycm9yLCBWYWx1ZUVycm9yfSBmcm9tICcuLi9lcnJvcnMnO1xuaW1wb3J0IHtEYXRhRm9ybWF0LCBTaGFwZX0gZnJvbSAnLi4va2VyYXNfZm9ybWF0L2NvbW1vbic7XG5pbXBvcnQge0hhc1NoYXBlfSBmcm9tICcuLi90eXBlcyc7XG5pbXBvcnQgKiBhcyBtYXRoX3V0aWxzIGZyb20gJy4uL3V0aWxzL21hdGhfdXRpbHMnO1xuXG5pbXBvcnQge2ltYWdlRGF0YUZvcm1hdH0gZnJvbSAnLi9jb21tb24nO1xuXG4vLyB0c2xpbnQ6ZW5hYmxlXG5cbi8qIFNldHRpbmcgYW5kIGdldHRpbmcgYmFja2VuZCBmcm9tIGRlZXBsZWFybi5qcy4gKi9cblxuLy8gRGVmYXVsdCBkZWVwbGVhcm4uanMgYmFja2VuZCBpcyBXZWJHTCAoR1BVKS5cbmxldCBiYWNrZW5kOiAnY3B1J3wnd2ViZ2wnID0gJ3dlYmdsJztcblxuZXhwb3J0IGZ1bmN0aW9uIHNldEJhY2tlbmQocmVxdWVzdGVkQmFja2VuZDogJ2NwdSd8J3dlYmdsJykge1xuICB0ZmMuc2V0QmFja2VuZChyZXF1ZXN0ZWRCYWNrZW5kKTtcbiAgYmFja2VuZCA9IHJlcXVlc3RlZEJhY2tlbmQ7XG59XG5cbmV4cG9ydCBmdW5jdGlvbiBnZXRCYWNrZW5kKCk6ICdjcHUnfCd3ZWJnbCcge1xuICByZXR1cm4gYmFja2VuZDtcbn1cblxuLyoqXG4gKiBJbmRpY2F0ZXMgd2hldGhlciB0aGUgYmFja2VuZCBpcyBvcGVyYXRpbmcgc3ltYm9saWNhbGx5LlxuICpcbiAqIFRoaXMgZnVuY3Rpb24gd2lsbCBiZSB1c2VkIHRvIGRldGVybWluZSBob3cgdG8gaW50ZXJwcmV0IHVzZXIgY29kZS4gSWZcbiAqIGl0IHJldHVybnMgdHJ1ZSwgY2FsbHMgdG8gdGhlIGJhY2tlbmQgY29uc3RydWN0IGEgc3ltYm9saWMgZ3JhcGg7IGlmXG4gKiBpdCByZXR1cm5zIGZhbHNlLCBjYWxscyB0byB0aGUgYmFja2VuZCBleGVjdXRlIGltbWVkaWF0ZWx5LlxuICovXG5leHBvcnQgZnVuY3Rpb24gaXNCYWNrZW5kU3ltYm9saWMoKTogYm9vbGVhbiB7XG4gIHJldHVybiBmYWxzZTtcbn1cblxuLyoqXG4gKiBHZXQgdGhlIG51bWJlciBvZiBlbGVtZW50cyBpbiBhIFRlbnNvci5cbiAqIEBwYXJhbSB4IFRoZSBUZW5zb3IuXG4gKiBAcmV0dXJuIE51bWJlciBvZiBlbGVtZW50cyBpbiBgeGAuXG4gKi9cbmV4cG9ydCBmdW5jdGlvbiBjb3VudFBhcmFtcyh4OiBIYXNTaGFwZSk6IG51bWJlciB7XG4gIGNvbnN0IHNoYXBlID0geC5zaGFwZTtcbiAgaWYgKHNoYXBlLmxlbmd0aCA+IDApIHtcbiAgICByZXR1cm4gc2hhcGUucmVkdWNlKChhOiBudW1iZXIsIGI6IG51bWJlcikgPT4gYSAqIGIpO1xuICB9IGVsc2Uge1xuICAgIC8vIFNjYWxhci5cbiAgICByZXR1cm4gMTtcbiAgfVxufVxuXG4vKipcbiAqIENhc3RzIGEgdGVuc29yIHRvIGEgZGlmZmVyZW50IGR0eXBlIGFuZCByZXR1cm5zIGl0LlxuICogQHBhcmFtIHggSW5wdXQgdGVuc29yLlxuICogQHBhcmFtIGR0eXBlIFN0cmluZzogJ2Zsb2F0MzInfCdpbnQzMid8J2Jvb2wnLlxuICogQHJldHVybnMgVGVuc29yIG9mIHRoZSBzcGVjaWZpZWQgYGR0eXBlYC5cbiAqL1xuZXhwb3J0IGZ1bmN0aW9uIGNhc3QoeDogVGVuc29yLCBkdHlwZTogdGZjLkRhdGFUeXBlKTogVGVuc29yIHtcbiAgcmV0dXJuIHRmYy5jYXN0KHgsIGR0eXBlKTtcbn1cblxuLyoqXG4gKiBBZGRzIGEgMS1zaXplZCBkaW1lbnNpb24gYXQgaW5kZXggXCJheGlzXCIuXG4gKiBAcGFyYW0geCBJbnB1dCB0ZW5zb3IuXG4gKiBAcGFyYW0gYXhpcyBQb3NpdGlvbiB3aGVyZSB0byBhZGQgdGhlIG5ldyBheGlzLlxuICogQHJldHVybnMgUmVzdWx0IG9mIHRoZSBkaW1lbnNpb24gZXhwYW5zaW9uLlxuICovXG5leHBvcnQgZnVuY3Rpb24gZXhwYW5kRGltcyh4OiBUZW5zb3IsIGF4aXMgPSAtMSk6IFRlbnNvciB7XG4gIGNvbnN0IG91dFNoYXBlID0geC5zaGFwZS5zbGljZSgpO1xuICBpZiAoYXhpcyA8IDApIHtcbiAgICBheGlzID0gb3V0U2hhcGUubGVuZ3RoICsgYXhpcyArIDE7XG4gIH1cbiAgb3V0U2hhcGUuc3BsaWNlKGF4aXMsIDAsIDEpO1xuICByZXR1cm4gdGZjLnJlc2hhcGUoeCwgb3V0U2hhcGUpO1xufVxuXG4vKipcbiAqIFJlcGVhdHMgYSAyRCB0ZW5zb3IuXG4gKlxuICogSWYgYHhgIGhhcyBzaGFwZSBgW3NhbXBsZXMsIGRpbV1gIGFuZCBgbmAgaXMgMiwgZm9yIGV4YW1wbGUsIHRoZSBvdXRwdXRcbiAqIHdpbGwgaGF2ZSBzaGFwZSBgW3NhbXBsZXMsIDIsIGRpbV1gLlxuICpcbiAqIEBwYXJhbSB4IElucHV0IHRlbnNvci5cbiAqIEBwYXJhbSBuIEludGVnZXIsIG51bWJlciBvZiB0aW1lcyB0byByZXBlYXQuXG4gKiBAcmV0dXJucyBUaGUgcmVzdWx0IG9mIHRoZSByZXBlYXQgb3BlcmF0aW9uLlxuICogQHRocm93cyBWYWx1ZUVycm9yOiBJZiBpbnB1dCB0ZW5zb3IgaXMgbm90IDJELlxuICovXG5leHBvcnQgZnVuY3Rpb24gcmVwZWF0KHg6IFRlbnNvciwgbjogbnVtYmVyKTogVGVuc29yIHtcbiAgcmV0dXJuIHRpZHkoKCkgPT4ge1xuICAgIGlmICh4LnNoYXBlLmxlbmd0aCAhPT0gMikge1xuICAgICAgdGhyb3cgbmV3IFZhbHVlRXJyb3IoXG4gICAgICAgICAgYHJlcGVhdCgpIGV4cGVjdHMgYSByYW5rLTIgdGVuc29yLCBidXQgcmVjZWl2ZWQgYSBgICtcbiAgICAgICAgICBgcmFuay0ke3guc2hhcGUubGVuZ3RofSB0ZW5zb3IuYCk7XG4gICAgfVxuICAgIGNvbnN0IHkgPSBleHBhbmREaW1zKHgsIDEpO1xuICAgIHJldHVybiB0aWxlKHksIFsxLCBuLCAxXSk7XG4gIH0pO1xufVxuXG4vKipcbiAqIEZsYXR0ZW4gYSBUZW5zb3IgaW50byAxRC5cbiAqIEBwYXJhbSB4IElucHV0IHRlbnNvci5cbiAqIEByZXR1cm4gVGhlIHJlc3VsdCBvZiB0aGUgZmxhdHRlbmluZyBgeGAuXG4gKi9cbmV4cG9ydCBmdW5jdGlvbiBmbGF0dGVuKHg6IFRlbnNvcik6IFRlbnNvciB7XG4gIGNvbnN0IG5ld1NoYXBlID0gW21hdGhfdXRpbHMuYXJyYXlQcm9kKHguc2hhcGUpXTtcbiAgcmV0dXJuIHRmYy5yZXNoYXBlKHgsIG5ld1NoYXBlKTtcbn1cblxuLyoqXG4gKiBUdXJuIGEgbkQgdGVuc29yIGludG8gYSAyRCB0ZW5zb3Igd2l0aCBzYW1lIDB0aCBkaW1lbnNpb24uXG4gKiBJbiBvdGhlciB3b3JkcywgaXQgZmxhdHRlbnMgZWFjaCBkYXRhIHNhbXBsZXMgb2YgYSBiYXRjaC5cbiAqXG4gKiBAcGFyYW0geCBUaGUgdGVuc29yIHRvIGZsYXR0ZW4uIFRoZSByYW5rIG9mIHRoaXMgdGVuc29yIGlzIHJlcXVpcmVkIHRvIGJlIDJcbiAqICAgb3IgaGlnaGVyLlxuICogQHJldHVybiBUaGUgcmVzdWx0IG9mIHRoZSBmbGF0dGVuaW5nLlxuICovXG5leHBvcnQgZnVuY3Rpb24gYmF0Y2hGbGF0dGVuKHg6IFRlbnNvcik6IFRlbnNvciB7XG4gIGlmICh4LnJhbmsgPD0gMSkge1xuICAgIHRocm93IG5ldyBWYWx1ZUVycm9yKFxuICAgICAgICBgYmF0Y2hGbGF0dGVuIHJlcXVpcmVzIGEgbWluaW11bSByYW5rIG9mIDIuIEdvdCByYW5rOiAke3gucmFua30uYCk7XG4gIH1cbiAgY29uc3QgbmV3U2hhcGUgPSBbeC5zaGFwZVswXSwgbWF0aF91dGlscy5hcnJheVByb2QoeC5zaGFwZSwgMSldO1xuICByZXR1cm4gdGZjLnJlc2hhcGUoeCwgbmV3U2hhcGUpO1xufVxuXG4vKipcbiAqIERvIHNsaWNpbmcgYWxvbmcgdGhlIGZpcnN0IGF4aXMuXG4gKiBAcGFyYW0gYXJyYXkgaW5wdXQgYHRmLlRlbnNvcmAuXG4gKiBAcGFyYW0gc3RhcnQgc3RhcnRpbmcgaW5kZXgsIGluY2x1c2l2ZS5cbiAqIEBwYXJhbSBzaXplIHNpemUgb2YgdGhlIHNsaWNlIGFsb25nIHRoZSBmaXJzdCBheGlzLlxuICogQHJldHVybnMgcmVzdWx0IG9mIHRoZSBzbGljaW5nLlxuICogQHRocm93cyBWYWx1ZUVycm9yOiBJZiBgYXJyYXlgIGlzIG9mIGFuIHVuc3VwcG9ydGVkIHN1YnR5cGUgb2YgYHRmLlRlbnNvcmAuXG4gKi9cbmV4cG9ydCBmdW5jdGlvbiBzbGljZUFsb25nRmlyc3RBeGlzKFxuICAgIGFycmF5OiBUZW5zb3IsIHN0YXJ0OiBudW1iZXIsIHNpemU6IG51bWJlcik6IFRlbnNvciB7XG4gIHJldHVybiB0aWR5KCgpID0+IHtcbiAgICBzd2l0Y2ggKGFycmF5LnJhbmspIHtcbiAgICAgIGNhc2UgMTpcbiAgICAgICAgcmV0dXJuIHRmYy5zbGljZTFkKGFycmF5IGFzIFRlbnNvcjFELCBzdGFydCwgc2l6ZSk7XG4gICAgICBjYXNlIDI6XG4gICAgICAgIHJldHVybiB0ZmMuc2xpY2UyZChcbiAgICAgICAgICAgIGFycmF5IGFzIFRlbnNvcjJELCBbc3RhcnQsIDBdLCBbc2l6ZSwgYXJyYXkuc2hhcGVbMV1dKTtcbiAgICAgIGNhc2UgMzpcbiAgICAgICAgcmV0dXJuIHRmYy5zbGljZTNkKFxuICAgICAgICAgICAgYXJyYXkgYXMgVGVuc29yM0QsIFtzdGFydCwgMCwgMF0sXG4gICAgICAgICAgICBbc2l6ZSwgYXJyYXkuc2hhcGVbMV0sIGFycmF5LnNoYXBlWzJdXSk7XG4gICAgICBjYXNlIDQ6XG4gICAgICAgIHJldHVybiB0ZmMuc2xpY2U0ZChcbiAgICAgICAgICAgIGFycmF5IGFzIFRlbnNvcjRELCBbc3RhcnQsIDAsIDAsIDBdLFxuICAgICAgICAgICAgW3NpemUsIGFycmF5LnNoYXBlWzFdLCBhcnJheS5zaGFwZVsyXSwgYXJyYXkuc2hhcGVbM11dKTtcbiAgICAgIGNhc2UgNTpcbiAgICAgICAgcmV0dXJuIHRmYy5zbGljZShhcnJheSBhcyBUZW5zb3I1RCwgW3N0YXJ0LCAwLCAwLCAwLCAwXSwgW1xuICAgICAgICAgIHNpemUsIGFycmF5LnNoYXBlWzFdLCBhcnJheS5zaGFwZVsyXSwgYXJyYXkuc2hhcGVbM10sIGFycmF5LnNoYXBlWzRdXG4gICAgICAgIF0pO1xuICAgICAgY2FzZSA2OlxuICAgICAgICByZXR1cm4gdGZjLnNsaWNlKGFycmF5LCBbc3RhcnQsIDAsIDAsIDAsIDAsIDBdLCBbXG4gICAgICAgICAgc2l6ZSwgYXJyYXkuc2hhcGVbMV0sIGFycmF5LnNoYXBlWzJdLCBhcnJheS5zaGFwZVszXSwgYXJyYXkuc2hhcGVbNF0sXG4gICAgICAgICAgYXJyYXkuc2hhcGVbNV1cbiAgICAgICAgXSk7XG4gICAgICBkZWZhdWx0OlxuICAgICAgICB0aHJvdyBuZXcgVmFsdWVFcnJvcihcbiAgICAgICAgICAgIGBzbGljZUFsb25nRmlyc3RBeGlzKCkgcmVjZWl2ZWQgYW4gdW5zdXBwb3J0ZWQgdGVuc29yIHJhbms6IGAgK1xuICAgICAgICAgICAgYCR7YXJyYXkucmFua31gKTtcbiAgICB9XG4gIH0pO1xufVxuXG4vKipcbiAqIERvIHNsaWNpbmcgYWxvbmcgdGhlIGxhc3QgYXhpcy5cbiAqIEBwYXJhbSBhcnJheSBpbnB1dCBgdGYuVGVuc29yYC5cbiAqIEBwYXJhbSBzdGFydCBzdGFydGluZyBpbmRleCwgaW5jbHVzaXZlLlxuICogQHBhcmFtIHNpemUgc2l6ZSBvZiB0aGUgc2xpY2UgYWxvbmcgdGhlIGxhc3QgYXhpcy5cbiAqIEByZXR1cm5zIHJlc3VsdCBvZiB0aGUgc2xpY2luZy5cbiAqIEB0aHJvd3MgVmFsdWVFcnJvcjogSWYgYGFycmF5YCBpcyBvZiBhbiB1bnN1cHBvcnRlZCBzdWJ0eXBlIG9mIGB0Zi5UZW5zb3JgLlxuICovXG5leHBvcnQgZnVuY3Rpb24gc2xpY2VBbG9uZ0xhc3RBeGlzKFxuICAgIGFycmF5OiBUZW5zb3IsIHN0YXJ0OiBudW1iZXIsIHNpemU6IG51bWJlcik6IFRlbnNvciB7XG4gIHJldHVybiB0aWR5KCgpID0+IHtcbiAgICBzd2l0Y2ggKGFycmF5LnJhbmspIHtcbiAgICAgIGNhc2UgMTpcbiAgICAgICAgcmV0dXJuIHRmYy5zbGljZTFkKGFycmF5IGFzIFRlbnNvcjFELCBzdGFydCwgc2l6ZSk7XG4gICAgICBjYXNlIDI6XG4gICAgICAgIHJldHVybiB0ZmMuc2xpY2UyZChcbiAgICAgICAgICAgIGFycmF5IGFzIFRlbnNvcjJELCBbMCwgc3RhcnRdLCBbYXJyYXkuc2hhcGVbMF0sIHNpemVdKTtcbiAgICAgIGNhc2UgMzpcbiAgICAgICAgcmV0dXJuIHRmYy5zbGljZTNkKFxuICAgICAgICAgICAgYXJyYXkgYXMgVGVuc29yM0QsIFswLCAwLCBzdGFydF0sXG4gICAgICAgICAgICBbYXJyYXkuc2hhcGVbMF0sIGFycmF5LnNoYXBlWzFdLCBzaXplXSk7XG4gICAgICBjYXNlIDQ6XG4gICAgICAgIHJldHVybiB0ZmMuc2xpY2U0ZChcbiAgICAgICAgICAgIGFycmF5IGFzIFRlbnNvcjRELCBbMCwgMCwgMCwgc3RhcnRdLFxuICAgICAgICAgICAgW2FycmF5LnNoYXBlWzBdLCBhcnJheS5zaGFwZVsxXSwgYXJyYXkuc2hhcGVbMl0sIHNpemVdKTtcbiAgICAgIGRlZmF1bHQ6XG4gICAgICAgIHRocm93IG5ldyBWYWx1ZUVycm9yKFxuICAgICAgICAgICAgYHNsaWNlQWxvbmdMYXN0QXhpcygpIHJlY2VpdmVkIGFuIHVuc3VwcG9ydGVkIHRlbnNvciByYW5rOiBgICtcbiAgICAgICAgICAgIGAke2FycmF5LnJhbmt9YCk7XG4gICAgfVxuICB9KTtcbn1cblxuLyoqXG4gKiBEbyBzbGljaW5nIGFsb25nIHRoZSBzZXBjaWZpZWQgYXhpcy5cbiAqIEBwYXJhbSBhcnJheSBpbnB1dCBgdGYuVGVuc29yYC5cbiAqIEBwYXJhbSBzdGFydCBzdGFydGluZyBpbmRleCwgaW5jbHVzaXZlLlxuICogQHBhcmFtIHNpemUgb2YgdGhlIHNsaWNlIGFsb25nIHRoZSBjaG9zZW4gYXhpcy5cbiAqIEBwYXJhbSBjaG9vc2UgYW4gYXhpcy5cbiAqIEByZXR1cm5zIHJlc3VsdCBvZiB0aGUgc2xpY2luZy5cbiAqIEB0aHJvd3MgVmFsdWVFcnJvcjogSWYgYGFycmF5YCBpcyBvZiBhbiB1bnN1cHBvcnRlZCBzdWJ0eXBlIG9mIGB0Zi5UZW5zb3JgLlxuICovXG5leHBvcnQgZnVuY3Rpb24gc2xpY2VBbG9uZ0F4aXMoXG4gICAgYXJyYXk6IFRlbnNvciwgc3RhcnQ6IG51bWJlciwgc2l6ZTogbnVtYmVyLCBheGlzOiBudW1iZXIpOiBUZW5zb3Ige1xuICByZXR1cm4gdGlkeSgoKSA9PiB7XG4gICAgc3dpdGNoIChhcnJheS5yYW5rKSB7XG4gICAgICBjYXNlIDE6XG4gICAgICAgIHJldHVybiB0ZmMuc2xpY2UxZChhcnJheSBhcyBUZW5zb3IxRCwgc3RhcnQsIHNpemUpO1xuICAgICAgY2FzZSAyOlxuICAgICAgICBzd2l0Y2ggKGF4aXMpIHtcbiAgICAgICAgICBjYXNlIDE6XG4gICAgICAgICAgICByZXR1cm4gc2xpY2VBbG9uZ0ZpcnN0QXhpcyhhcnJheSwgc3RhcnQsIHNpemUpO1xuICAgICAgICAgIGNhc2UgMjpcbiAgICAgICAgICAgIHJldHVybiBzbGljZUFsb25nTGFzdEF4aXMoYXJyYXksIHN0YXJ0LCBzaXplKTtcbiAgICAgICAgICBkZWZhdWx0OlxuICAgICAgICAgICAgdGhyb3cgbmV3IFZhbHVlRXJyb3IoXG4gICAgICAgICAgICAgICAgYFRoZSBheGlzIGlzIG5vdCB3aXRoaW4gdGhlIHJhbmsgb2YgdGhlIHRlbnNvciBgICtcbiAgICAgICAgICAgICAgICBgJHtheGlzfWApO1xuICAgICAgICB9XG4gICAgICBjYXNlIDM6XG4gICAgICAgIHN3aXRjaCAoYXhpcykge1xuICAgICAgICAgIGNhc2UgMTpcbiAgICAgICAgICAgIHJldHVybiBzbGljZUFsb25nRmlyc3RBeGlzKGFycmF5LCBzdGFydCwgc2l6ZSk7XG4gICAgICAgICAgY2FzZSAyOlxuICAgICAgICAgICAgcmV0dXJuIHRmYy5zbGljZTNkKFxuICAgICAgICAgICAgICAgIGFycmF5IGFzIFRlbnNvcjNELCBbMCwgc3RhcnQsIDBdLFxuICAgICAgICAgICAgICAgIFthcnJheS5zaGFwZVswXSwgc2l6ZSwgYXJyYXkuc2hhcGVbMl1dKTtcbiAgICAgICAgICBjYXNlIDM6XG4gICAgICAgICAgICByZXR1cm4gc2xpY2VBbG9uZ0xhc3RBeGlzKGFycmF5LCBzdGFydCwgc2l6ZSk7XG4gICAgICAgICAgZGVmYXVsdDpcbiAgICAgICAgICAgIHRocm93IG5ldyBWYWx1ZUVycm9yKFxuICAgICAgICAgICAgICAgIGBUaGUgYXhpcyBpcyBub3Qgd2l0aGluIHRoZSByYW5rIG9mIHRoZSB0ZW5zb3IgYCArXG4gICAgICAgICAgICAgICAgYCR7YXhpc31gKTtcbiAgICAgICAgfVxuICAgICAgY2FzZSA0OlxuICAgICAgICBzd2l0Y2ggKGF4aXMpIHtcbiAgICAgICAgICBjYXNlIDE6XG4gICAgICAgICAgICByZXR1cm4gc2xpY2VBbG9uZ0ZpcnN0QXhpcyhhcnJheSwgc3RhcnQsIHNpemUpO1xuICAgICAgICAgIGNhc2UgMjpcbiAgICAgICAgICAgIHJldHVybiB0ZmMuc2xpY2U0ZChcbiAgICAgICAgICAgICAgICBhcnJheSBhcyBUZW5zb3I0RCwgWzAsIHN0YXJ0LCAwLCAwXSxcbiAgICAgICAgICAgICAgICBbYXJyYXkuc2hhcGVbMF0sIHNpemUsIGFycmF5LnNoYXBlWzJdLCBhcnJheS5zaGFwZVszXV0pO1xuICAgICAgICAgIGNhc2UgMzpcbiAgICAgICAgICAgIHJldHVybiB0ZmMuc2xpY2U0ZChcbiAgICAgICAgICAgICAgICBhcnJheSBhcyBUZW5zb3I0RCwgWzAsIDAsIHN0YXJ0LCAwXSxcbiAgICAgICAgICAgICAgICBbYXJyYXkuc2hhcGVbMF0sIGFycmF5LnNoYXBlWzFdLCBzaXplLCBhcnJheS5zaGFwZVszXV0pO1xuICAgICAgICAgIGNhc2UgNDpcbiAgICAgICAgICAgIHJldHVybiBzbGljZUFsb25nTGFzdEF4aXMoYXJyYXksIHN0YXJ0LCBzaXplKTtcbiAgICAgICAgICBkZWZhdWx0OlxuICAgICAgICAgICAgdGhyb3cgbmV3IFZhbHVlRXJyb3IoXG4gICAgICAgICAgICAgICAgYFRoZSBheGlzIGlzIG5vdCB3aXRoaW4gdGhlIHJhbmsgb2YgdGhlIHRlbnNvciBgICtcbiAgICAgICAgICAgICAgICBgJHtheGlzfWApO1xuICAgICAgICB9XG4gICAgICBkZWZhdWx0OlxuICAgICAgICB0aHJvdyBuZXcgVmFsdWVFcnJvcihcbiAgICAgICAgICAgIGBzbGljZUFsb25nTGFzdEF4aXMoKSByZWNlaXZlZCBhbiB1bnN1cHBvcnRlZCB0ZW5zb3IgcmFuazogYCArXG4gICAgICAgICAgICBgJHthcnJheS5yYW5rfWApO1xuICAgIH1cbiAgfSk7XG59XG5cbi8qKlxuICogQ29uY2F0ZW5hdGVzIGEgbGlzdCBvZiB0ZW5zb3JzIGFsb25nc2lkZSB0aGUgc3BlY2lmaWVkIGF4aXMuXG4gKiBAcGFyYW0gdGVuc29ycyBgQXJyYXlgIG9mIHRlbnNvcnMgdG8gY29uY2F0ZW5hdGUuXG4gKiBAcGFyYW0gYXhpcyBDb25jYXRlbmF0aW9uIGF4aXMuXG4gKiBAcmV0dXJucyBUaGUgcmVzdWx0IG9mIHRoZSBjb25jYXRlbmF0aW9uLlxuICovXG5leHBvcnQgZnVuY3Rpb24gY29uY2F0ZW5hdGUodGVuc29yczogVGVuc29yW10sIGF4aXMgPSAtMSk6IFRlbnNvciB7XG4gIGxldCByYW5rOiBudW1iZXI7XG4gIGlmIChheGlzIDwgMCkge1xuICAgIHJhbmsgPSB0ZW5zb3JzWzBdLnJhbms7XG4gICAgaWYgKHJhbmsgIT09IDApIHtcbiAgICAgIGF4aXMgPSByYW5rO1xuICAgIH0gZWxzZSB7XG4gICAgICBheGlzID0gMDtcbiAgICB9XG4gIH1cbiAgaWYgKGF4aXMgPT09IHRlbnNvcnNbMF0ucmFuaykge1xuICAgIC8vIFBvcnRpbmcgTm90ZTogVGhpcyBpcyBuZWNlc3NhcnkgYmVjYXVzZSB0ZmMuY29uY2F0KCkgcmVxdWlyZXMgYXhpcyB0byBiZVxuICAgIC8vICAgaW4gdGhlIGludGVydmFsIFstcmFuaywgcmFuaykuXG4gICAgYXhpcyA9IC0xO1xuICB9XG4gIC8vIFBvcnRpbmcgTm90ZTogU3BhcnNlIGNvbmNhdCBpcyBub3Qgc3VwcG9ydGVkIHlldC5cbiAgcmV0dXJuIHRmYy5jb25jYXQodGVuc29ycywgYXhpcyk7XG59XG5cbi8qKlxuICogQ29uY2F0ZW5hdGUgdHdvIGFycmF5cyBhbG9uZyB0aGUgZmlyc3QgZGltZW5zaW9uLlxuICogQHBhcmFtIGEgVGhlIDFzdCBgdGYuVGVuc29yYCB0byBjb25jYXRlbmF0ZS5cbiAqIEBwYXJhbSBiIFRoZSAybmQgYHRmLlRlbnNvcmAgdG8gY29uY2F0ZW5hdGUuXG4gKiBAcmV0dXJucyBSZXN1bHQgb2YgdGhlIGNvbmNhdGVuYXRpb24uXG4gKiBAdGhyb3dzIFZhbHVlRXJyb3I6IElmIGBhYCBpcyBvZiBhbiB1bnN1cHBvcnRlZCBzdWJ0eXBlIG9mIGB0Zi5UZW5zb3JgLlxuICovXG5leHBvcnQgZnVuY3Rpb24gY29uY2F0QWxvbmdGaXJzdEF4aXMoYTogVGVuc29yLCBiOiBUZW5zb3IpOiBUZW5zb3Ige1xuICBzd2l0Y2ggKGEucmFuaykge1xuICAgIGNhc2UgMTpcbiAgICAgIHJldHVybiB0ZmMuY29uY2F0MWQoW2EgYXMgVGVuc29yMUQsIGIgYXMgVGVuc29yMURdKTtcbiAgICBjYXNlIDI6XG4gICAgICByZXR1cm4gdGZjLmNvbmNhdDJkKFthIGFzIFRlbnNvcjJELCBiIGFzIFRlbnNvcjJEXSwgMCk7XG4gICAgY2FzZSAzOlxuICAgICAgcmV0dXJuIHRmYy5jb25jYXQzZChbYSBhcyBUZW5zb3IzRCwgYiBhcyBUZW5zb3IzRF0sIDApO1xuICAgIGNhc2UgNDpcbiAgICAgIHJldHVybiB0ZmMuY29uY2F0NGQoW2EgYXMgVGVuc29yNEQsIGIgYXMgVGVuc29yNERdLCAwKTtcbiAgICBkZWZhdWx0OlxuICAgICAgdGhyb3cgbmV3IFZhbHVlRXJyb3IoXG4gICAgICAgICAgYGNvbmNhdEFsb25nRmlyc3RBeGlzKCkgcmVjZWl2ZWQgYW4gdW5zdXBwb3J0ZWQgYCArXG4gICAgICAgICAgYHRlbnNvciByYW5rOiAke2EucmFua31gKTtcbiAgfVxufVxuXG4vKipcbiAqIENyZWF0ZXMgYSB0ZW5zb3IgYnkgdGlsaW5nIGB4YCBieSBgbmAuXG4gKiBAcGFyYW0geCBBIHRlbnNvci5cbiAqIEBwYXJhbSBuIEFuIEFycmF5IG9mIGludGVnZXJzIG9yIGEgc2luZ2xlIGludGVnZXIuIElmIGFuIEFycmF5LCB0aGUgbGVuZ3RoXG4gKiAgIG11c3QgYmUgdGhlIHNhbWUgYXMgdGhlIG51bWJlciBvZiBkaW1lbnNpb25zIGluIGB4YC4gSWYgYSBzaW5nbGUgaW50ZWdlcixcbiAqICAgaXQgd2lsbCBiZSB0cmVhdGVkIGFzIGFuIEFycmF5IG9mIGxlbmd0aCAxLlxuICovXG5leHBvcnQgZnVuY3Rpb24gdGlsZSh4OiBUZW5zb3IsIG46IG51bWJlcnxudW1iZXJbXSk6IFRlbnNvciB7XG4gIGlmICghQXJyYXkuaXNBcnJheShuKSkge1xuICAgIG4gPSBbbl07XG4gIH1cbiAgaWYgKHgucmFuayAhPT0gbi5sZW5ndGgpIHtcbiAgICB0aHJvdyBuZXcgVmFsdWVFcnJvcihcbiAgICAgICAgYFRoZSBsZW5ndGggb2YgaW5wdXQgbiAoJHtuLmxlbmd0aH0pIGRvZXMgbm90IG1hdGNoIGAgK1xuICAgICAgICBgdGhlIG51bWJlciBvZiBkaW1lbnNpb25zIGluIGlucHV0IHggKCR7eC5yYW5rfSlgKTtcbiAgfVxuICByZXR1cm4gdGZjLnRpbGUoeCwgbik7XG59XG5cbi8qIENyZWF0aW9uIG9mIHJhbmRvbSB0ZW5zb3JzLiAqL1xuXG4vKipcbiAqIEdldCBhIHRlbnNvciB3aXRoIG5vcm1hbCBkaXN0cmlidXRpb24gb2YgdmFsdWVzLlxuICpcbiAqIEBwYXJhbSBzaGFwZSBTaGFwZSBvZiB0aGUgdGVuc29yLlxuICogQHBhcmFtIG1lYW4gbWVhbiB2YWx1ZSBvZiB0aGUgbm9ybWFsIGRpc3RyaWJ1dGlvbi5cbiAqIEBwYXJhbSBzdGRkZXYgc3RhbmRhcmQgZGV2aWF0aW9uIG9mIHRoZSBub3JtYWwgZGlzdHJpYnV0aW9uLlxuICogQHBhcmFtIGR0eXBlXG4gKiBAcGFyYW0gc2VlZFxuICogQHJldHVybiBUaGUgbm9ybWFsIHRlbnNvci5cbiAqL1xuZXhwb3J0IGZ1bmN0aW9uIHJhbmRvbU5vcm1hbChcbiAgICBzaGFwZTogU2hhcGUsIG1lYW4gPSAwLjAsIHN0ZGRldiA9IDEuMCwgZHR5cGU/OiAnZmxvYXQzMid8J2ludDMyJyxcbiAgICBzZWVkPzogbnVtYmVyKTogVGVuc29yIHtcbiAgcmV0dXJuIHRmYy5yYW5kb21Ob3JtYWwoc2hhcGUsIG1lYW4sIHN0ZGRldiwgZHR5cGUsIHNlZWQpO1xufVxuXG4vKiBMaW5lYXIgQWxnZWJyYSAqL1xuXG4vKipcbiAqIE11bHRpcGx5IHR3byB0ZW5zb3JzIGFuZCByZXR1cm5zIHRoZSByZXN1bHQgYXMgYSB0ZW5zb3IuXG4gKlxuICogRm9yIDJEIHRlbnNvcnMsIHRoaXMgaXMgZXF1aXZhbGVudCB0byBtYXRyaXggbXVsdGlwbGljYXRpb24gKG1hdE11bCkuXG4gKiBGb3IgdGVuc29ycyBvZiBoaWdoZXIgcmFua3MsIGl0IGZvbGxvd3MgdGhlIFRoZWFubyBiZWhhdmlvcixcbiAqIChlLmcuIGAoMiwgMykgKiAoNCwgMywgNSkgLT4gKDIsIDQsIDUpYCkuICBGcm9tIHRoZSBUaGVhbm8gZG9jdW1lbnRhdGlvbjpcbiAqXG4gKiBGb3IgTiBkaW1lbnNpb25zIGl0IGlzIGEgc3VtIHByb2R1Y3Qgb3ZlciB0aGUgbGFzdCBheGlzIG9mIHggYW5kIHRoZVxuICogc2Vjb25kLXRvLWxhc3Qgb2YgeTpcbiAqXG4gKiBAcGFyYW0gYSBBIHRlbnNvciBvZiBhdCBsZWFzdCByYW5rIDIuXG4gKiBAcGFyYW0gYiBBIHRlbnNvciBvZiBhdCBsZWFzdCByYW5rIDIuXG4gKiBAcGFyYW0gYWN0aXZhdGlvbiAob3B0aW9uYWwpIEEgc3RyaW5nIGlkZW50aWZ5aW5nIHRoZSBhY3RpdmF0aW9uXG4gKiAgIGZ1bmN0aW9uLlxuICogQHJldHVybiBSZXN1bHQgb2YgdGhlIGRvdCBvcGVyYXRpb24uXG4gKi9cbmV4cG9ydCBmdW5jdGlvbiBkb3QoXG4gICAgYTogVGVuc29yLCBiOiBUZW5zb3IsIGFjdGl2YXRpb24/OiB0ZmMuZnVzZWQuQWN0aXZhdGlvbixcbiAgICBiaWFzPzogVGVuc29yKTogVGVuc29yIHtcbiAgaWYgKChhLnJhbmsgPCAyKSB8fCAoYi5yYW5rIDwgMikpIHtcbiAgICB0aHJvdyBuZXcgTm90SW1wbGVtZW50ZWRFcnJvcihcbiAgICAgICAgYGRvdCByZXF1aXJlcyBib3RoIGlucHV0cyB0byBiZSByYW5rID49IDJgICtcbiAgICAgICAgYCBidXQgZ290IHggc2hhcGUgPSAke2Euc2hhcGV9IGFuZCB5IHNoYXBlID0gJHtiLnNoYXBlfWApO1xuICB9XG4gIGlmIChiLnJhbmsgPj0gMykge1xuICAgIGNvbnN0IHhMYXN0RGltID0gYS5zaGFwZS5zbGljZSgtMSlbMF07XG4gICAgY29uc3QgeVNlY29uZExhc3REaW0gPSBiLnNoYXBlLnNsaWNlKC0yKVswXTtcbiAgICBpZiAoeExhc3REaW0gIT09IHlTZWNvbmRMYXN0RGltKSB7XG4gICAgICB0aHJvdyBuZXcgTm90SW1wbGVtZW50ZWRFcnJvcihcbiAgICAgICAgICBgSWYgcmFuayB5ID49IDMsIHRoZW4gdGhlIHNlY29uZCBsYXN0IGRpbWAgK1xuICAgICAgICAgIGAgb2YgeSBtdXN0IGVxdWFsIHRoZSBsYXN0IGRpbSBvZiB4IGJ1dCBnb3QgeCBzaGFwZSA9ICR7XG4gICAgICAgICAgICAgIGEuc2hhcGV9IGFuZCBgICtcbiAgICAgICAgICBgIHkgc2hhcGUgPSAke2Iuc2hhcGV9YCk7XG4gICAgfVxuICB9XG4gIC8vIEhhbmRsZSBiYXNpYyAyRCB4IDJEIGNhc2UuXG4gIGlmICgoYS5yYW5rID09PSAyKSAmJiAoYi5yYW5rID09PSAyKSkge1xuICAgIGNvbnN0IHRyYW5zcG9zZUEgPSBmYWxzZTtcbiAgICBjb25zdCB0cmFuc3Bvc2VCID0gZmFsc2U7XG4gICAgLy8gdGZjLmZ1c2VkLm1hdE11bCBvbmx5IGZ1c2VzIGNlcnRhaW4gYWN0aXZhdGlvbiBmdW5jdGlvbnMuIFVuc3VwcG9ydGVkXG4gICAgLy8gYWN0aXZhdGlvbiBmdW5jdGlvbnMgYXJlIHRyZWF0ZWQgYXMgJ2xpbmVhcicgYWN0aXZhdGlvbnMsIHdoaWNoIGlzXG4gICAgLy8gZXF1aXZhbGVudCB0byBhIG5vLW9wLlxuICAgIHJldHVybiB0ZmMuZnVzZWQubWF0TXVsKHtcbiAgICAgIGEsXG4gICAgICBiOiBiIGFzIFRlbnNvcjJELFxuICAgICAgdHJhbnNwb3NlQSxcbiAgICAgIHRyYW5zcG9zZUIsXG4gICAgICBiaWFzOiBiaWFzID8gcmVzaGFwZUJpYXMoYS5yYW5rLCBiaWFzLCBpbWFnZURhdGFGb3JtYXQoKSkgOiBudWxsLFxuICAgICAgYWN0aXZhdGlvblxuICAgIH0pO1xuICB9IGVsc2Uge1xuICAgIC8vIFJlc2hhcGUgeCBpbnRvIHRoZSBhbmFsb2dvdXMgMkQgVGVuc29yLlxuICAgIGNvbnN0IGFGaXJzdERpbXMgPSBhLnNoYXBlLnNsaWNlKCk7ICAvLyBIb2xkcyBhbGwgYnV0IHRoZSBsYXN0IGRpbSBvZiB4LlxuICAgIGNvbnN0IGFMYXN0RGltID0gYUZpcnN0RGltcy5wb3AoKTtcbiAgICBhID0gdGZjLnJlc2hhcGUoYSwgWy0xLCBhTGFzdERpbV0pO1xuXG4gICAgLy8gUmVzaGFwZSB5IGludG8gdGhlIGFuYWxvZ291cyAyRCBUZW5zb3IsIGFuZCBrZWVwIHRyYWNrIG9mIHRoZVxuICAgIC8vIHJlcXVpcmVkIGRpbWVuc2lvbnMgdG8gcmVwcm9kdWNlIHRoZSBvdXRwdXQgc2hhcGUuXG4gICAgY29uc3QgYlNoYXBlID0gYi5zaGFwZS5zbGljZSgpO1xuICAgIGNvbnN0IGJMYXN0RGltID0gYlNoYXBlLnBvcCgpO1xuICAgIGNvbnN0IHlTZWNvbmRMYXN0RGltID0gYlNoYXBlLnBvcCgpO1xuICAgIGNvbnN0IHlPdGhlckRpbXMgPSBbLi4uYlNoYXBlLCBiTGFzdERpbV07XG4gICAgLy8gcGVybXV0YXRpb24gc2hvdWxkIGJlIGxpa2UgW3ItMiwgMCwgMSwgMiwgLi4uIHItNCwgci0zLCByLTFdXG4gICAgLy8gd2hlcmUgciBpcyB0aGUgcmFuayBvZiB5LlxuICAgIGNvbnN0IHBlcm0gPSBBcnJheS5mcm9tKHtsZW5ndGg6IGIucmFua30sIChfLCBpKSA9PiB7XG4gICAgICBpZiAoaSA9PT0gMCkge1xuICAgICAgICByZXR1cm4gYi5yYW5rIC0gMjtcbiAgICAgIH0gZWxzZSBpZiAoaSA8PSBiLnJhbmsgLSAyKSB7XG4gICAgICAgIHJldHVybiBpIC0gMTtcbiAgICAgIH1cbiAgICAgIHJldHVybiBpO1xuICAgIH0pO1xuICAgIGIgPSB0ZmMucmVzaGFwZSh0ZmMudHJhbnNwb3NlKGIsIHBlcm0pLCBbeVNlY29uZExhc3REaW0sIC0xXSk7XG5cbiAgICAvLyBNdWx0aXBseSB4IGFuZCB5IGFzIDJEIFRlbnNvcnMsIGFuZCB0aGVuIHJlc2hhcGUgYmFjayB0byBvcmlnaW5hbC5cbiAgICBjb25zdCBvdXRwdXRTaGFwZSA9IFsuLi5hRmlyc3REaW1zLCAuLi55T3RoZXJEaW1zXTtcbiAgICBjb25zdCB0cmFuc3Bvc2VBID0gZmFsc2U7XG4gICAgY29uc3QgdHJhbnNwb3NlQiA9IGZhbHNlO1xuICAgIHJldHVybiB0ZmMucmVzaGFwZShcbiAgICAgICAgdGZjLmZ1c2VkLm1hdE11bCh7XG4gICAgICAgICAgYSxcbiAgICAgICAgICBiLFxuICAgICAgICAgIHRyYW5zcG9zZUEsXG4gICAgICAgICAgdHJhbnNwb3NlQixcbiAgICAgICAgICBiaWFzOiBiaWFzID8gcmVzaGFwZUJpYXMoYS5yYW5rLCBiaWFzLCBpbWFnZURhdGFGb3JtYXQoKSkgOiBudWxsLFxuICAgICAgICAgIGFjdGl2YXRpb25cbiAgICAgICAgfSksXG4gICAgICAgIG91dHB1dFNoYXBlKTtcbiAgfVxufVxuXG4vKipcbiAqIENvbXB1dGUgdGhlIHNpZ24gVGVuc29yIG9mIGFuIGlucHV0IFRlbnNvci5cbiAqXG4gKiBFbGVtZW50cyBvZiB0aGUgaW5wdXQgYHRmLlRlbnNvcmAgdGhhdCBhcmUgPT09IDAgYXJlIG1hcHBlZCB0byAwLlxuICogRWxlbWVudHMgb2YgdGhlIGlucHV0IGB0Zi5UZW5zb3JgIHRoYXQgYXJlID4gMCBhcmUgbWFwcGVkIHRvIDEuXG4gKiBFbGVtZW50cyBvZiB0aGUgaW5wdXQgYHRmLlRlbnNvcmAgdGhhdCBhcmUgPCAwIGFyZSBtYXBwZWQgdG8gLTEuXG4gKlxuICogQHBhcmFtIHggSW5wdXQgYHRmLlRlbnNvcmAuXG4gKiBAcmV0dXJuIFRoZSBzaWduIGB0Zi5UZW5zb3JgLlxuICovXG5leHBvcnQgZnVuY3Rpb24gc2lnbih4OiBUZW5zb3IpOiBUZW5zb3Ige1xuICAvLyBUT0RPKGNhaXMpOiBNb3ZlIHRvIHRoZSBjb3JlLlxuICByZXR1cm4gdGlkeSgoKSA9PiB7XG4gICAgY29uc3QgemVyb3NMaWtlWCA9IGNvcmVaZXJvc0xpa2UoeCk7XG4gICAgY29uc3Qgb25lc0xpa2VYID0gY29yZU9uZXNMaWtlKHgpO1xuICAgIHJldHVybiB3aGVyZShcbiAgICAgICAgdGZjLmVxdWFsKHgsIHplcm9zTGlrZVgpLCB6ZXJvc0xpa2VYLFxuICAgICAgICB3aGVyZShcbiAgICAgICAgICAgIHRmYy5ncmVhdGVyKHgsIGNvcmVaZXJvc0xpa2UoeCkpLCBvbmVzTGlrZVgsXG4gICAgICAgICAgICB0ZmMubXVsKC0xLCBvbmVzTGlrZVgpKSk7XG4gIH0pO1xufVxuXG4vKipcbiAqIENvbXB1dGVzIHRoZSBvbmUtaG90IHJlcHJlc2VudGF0aW9uIG9mIGFuIGludGVnZXIgdGVuc29yLlxuICogQHBhcmFtIGluZGljZXMgbkQgaW50ZWdlciB0ZW5zb3Igb2Ygc2hhcGVcbiAqICAgYChiYXRjaF9zaXplLCBkaW0xLCBkaW0yLCAuLi4gZGltKG4tMSkpYFxuICogQHBhcmFtIG51bUNsYXNzZXMgSW50ZWdlciwgbnVtYmVyIG9mIGNsYXNzZXMgdG8gY29uc2lkZXIuXG4gKiBAcmV0dXJucyAobiArIDEpRCBvbmUgaG90IHJlcHJlc2VudGF0aW9uIG9mIHRoZSBpbnB1dFxuICogICB3aXRoIHNoYXBlIGAoYmF0Y2hfc2l6ZSwgZGltMSwgZGltMiwgLi4uIGRpbShuLTEpLCBudW1fY2xhc3NlcylgXG4gKi9cbmV4cG9ydCBmdW5jdGlvbiBvbmVIb3QoaW5kaWNlczogVGVuc29yLCBudW1DbGFzc2VzOiBudW1iZXIpOiBUZW5zb3Ige1xuICByZXR1cm4gdGlkeSgoKSA9PiB7XG4gICAgaWYgKGluZGljZXMucmFuayAhPT0gMSkge1xuICAgICAgdGhyb3cgbmV3IEVycm9yKFxuICAgICAgICAgICdPbmx5IDFEIG9uZS1ob3QgdGVuc29ycyBhcmUgc3VwcG9ydGVkIGluIHRoZSAnICtcbiAgICAgICAgICAnZGVlcGxlYXJuIGJhY2tlbmQsIGF0IHByZXNlbnQuJyk7XG4gICAgfVxuICAgIGluZGljZXMgPSB0ZmMuY2FzdChpbmRpY2VzLCAnaW50MzInKTtcbiAgICByZXR1cm4gdGZjLmNhc3QodGZjLm9uZUhvdChpbmRpY2VzIGFzIFRlbnNvcjFELCBudW1DbGFzc2VzKSwgJ2Zsb2F0MzInKTtcbiAgfSk7XG59XG5cbi8qIEVsZW1lbnRhcnkgbWF0aCBmdW5jdGlvbnMuICovXG5cbi8qKlxuICogUmV0cmlldmVzIHRoZSBlbGVtZW50cyBvZiBpbmRpY2VzIGBpbmRpY2VzYCBpbiB0aGUgdGVuc29yIGByZWZlcmVuY2VgLlxuICogQHBhcmFtIHJlZmVyZW5jZSBBIHRlbnNvci5cbiAqIEBwYXJhbSBpbmRpY2VzIEFuIGludGVnZXIgdGVuc29yIG9mIGluZGljZXMgb3IgYW4gYEFycmF5YCBvZiBpbnRlZ2Vycy5cbiAqIEBwYXJhbSBheGlzIEF4aXMgYWxvbmcgd2hpY2ggdG8gcGVyZm9ybSB0aGUgZ2F0aGVyIG9wZXJhdGlvbi5cbiAqIEByZXR1cm5zIFRoZSByZXN1bHQgb2YgdGhlIGdhdGhlcmluZyBhcyBhIHRlbnNvci5cbiAqL1xuZXhwb3J0IGZ1bmN0aW9uIGdhdGhlcihcbiAgICByZWZlcmVuY2U6IFRlbnNvciwgaW5kaWNlczogbnVtYmVyW118VGVuc29yMUQsIGF4aXM/OiBudW1iZXIpOiBUZW5zb3Ige1xuICByZXR1cm4gdGlkeSgoKSA9PiB7XG4gICAgaWYgKEFycmF5LmlzQXJyYXkoaW5kaWNlcykpIHtcbiAgICAgIGluZGljZXMgPSB0ZW5zb3IxZChpbmRpY2VzLCAnaW50MzInKTtcbiAgICB9IGVsc2Uge1xuICAgICAgaW5kaWNlcyA9IHRmYy5jYXN0KGluZGljZXMsICdpbnQzMicpO1xuICAgIH1cbiAgICByZXR1cm4gdGZjLmdhdGhlcihyZWZlcmVuY2UsIGluZGljZXMsIGF4aXMpO1xuICB9KTtcbn1cblxuLyoqXG4gKiBFbGVtZW50LXdpc2Ugc3F1YXJlLlxuICogQHBhcmFtIHggSW5wdXQgdGVuc29yLlxuICogQHJldHVybiBlbGVtZW50LXdpc2UgeF4yXG4gKi9cbmV4cG9ydCBmdW5jdGlvbiBzcXVhcmUoeDogVGVuc29yKTogVGVuc29yIHtcbiAgcmV0dXJuIHRmYy5tdWwoeCwgeCk7XG59XG5cbi8qKlxuICogRWxlbWVudC13aXNlIGV4cG9uZW50aWF0aW9uLlxuICpcbiAqIFBvcnRpbmcgTm90ZTogSW4gUHlLZXJhcywgYGFgICh0aGUgZXhwb25lbnQpIGlzIGEgUHl0aG9uIGludGVnZXIsIHdoaWNoXG4gKiAgIHRha2VzIGFkdmF0bmFnZSBvZiB0aGUgYmFja2VuZCdzIChlLmcuLCBUZW5zb3JGbG93J3MpIGF1dG9tYXRpY1xuICogY29udmVyc2lvbiB0byB0ZW5zb3IuIEhlcmUgd2UgYWxsb3cgYGFgIHRvIGJlIGVpdGhlciBhIG51bWJlciBvciBhIHRlbnNvci5cbiAqXG4gKiBAcGFyYW0geCBUaGUgYmFzZSB0ZW5zb3IuXG4gKiBAcGFyYW0gYSBUaGUgZXhwb25lbnQsIHRlbnNvciBvciBudW1iZXIuIElmIGEgbnVtYmVyLCBpdCBpcyByb3VuZGVkIHRvIHRoZVxuICogICBuZWFyZXN0IGludGVnZXIgYW5kIGNvbnZlcnRlZCB0byBhIHRlbnNvci5cbiAqIEByZXR1cm5zIEEgdGVuc29yIG9mIHRoZSBzYW1lIHNoYXBlIGFzIGB4YC5cbiAqL1xuZXhwb3J0IGZ1bmN0aW9uIHBvdyh4OiBUZW5zb3IsIGE6IFRlbnNvcnxudW1iZXIpOiBUZW5zb3Ige1xuICByZXR1cm4gdGlkeSgoKSA9PiB7XG4gICAgaWYgKHR5cGVvZiAoYSkgPT09ICdudW1iZXInKSB7XG4gICAgICBhID0gc2NhbGFyKE1hdGgucm91bmQoYSksICdpbnQzMicpO1xuICAgIH1cbiAgICBpZiAoYS5kdHlwZSAhPT0gJ2ludDMyJykge1xuICAgICAgdGhyb3cgbmV3IE5vdEltcGxlbWVudGVkRXJyb3IoXG4gICAgICAgICAgYE5vbi1pbnQzMiBkdHlwZSAoJHthLmR0eXBlfSkgaXMgbm90IHN1cHBvcnRlZCBieSBwb3coKSB5ZXRgKTtcbiAgICB9XG4gICAgcmV0dXJuIHRmYy5wb3coeCwgYSk7XG4gIH0pO1xufVxuXG4vKipcbiAqIFJlc2hhcGVzIGJpYXMgdGVuc29yIGFjY29yZGluZyB0byByYW5rIG9mIHguXG4gKi9cbmZ1bmN0aW9uIHJlc2hhcGVCaWFzKHhSYW5rOiBudW1iZXIsIGJpYXM6IFRlbnNvciwgZGF0YUZvcm1hdDogc3RyaW5nKSB7XG4gIGNvbnN0IGJpYXNTaGFwZSA9IGJpYXMuc2hhcGU7XG5cbiAgaWYgKGJpYXMucmFuayAhPT0gMSAmJiBiaWFzLnJhbmsgIT09IHhSYW5rKSB7XG4gICAgdGhyb3cgbmV3IFZhbHVlRXJyb3IoXG4gICAgICAgIGBVbmV4cGVjdGVkIGJpYXMgZGltZW5zaW9uczogJHtiaWFzLnJhbmt9YCArXG4gICAgICAgIGA7IGV4cGVjdGVkIGl0IHRvIGJlIDEgb3IgJHt4UmFua31gKTtcbiAgfVxuXG4gIGlmICh4UmFuayA9PT0gNSkge1xuICAgIGlmIChkYXRhRm9ybWF0ID09PSAnY2hhbm5lbHNGaXJzdCcpIHtcbiAgICAgIGlmIChiaWFzU2hhcGUubGVuZ3RoID09PSAxKSB7XG4gICAgICAgIHJldHVybiB0ZmMucmVzaGFwZShiaWFzLCBbMSwgYmlhc1NoYXBlWzBdLCAxLCAxLCAxXSk7XG4gICAgICB9IGVsc2Uge1xuICAgICAgICByZXR1cm4gdGZjLnJlc2hhcGUoXG4gICAgICAgICAgICBiaWFzLCBbMSwgYmlhc1NoYXBlWzNdLCBiaWFzU2hhcGVbMF0sIGJpYXNTaGFwZVsxXSwgYmlhc1NoYXBlWzJdXSk7XG4gICAgICB9XG4gICAgfSBlbHNlIGlmIChkYXRhRm9ybWF0ID09PSAnY2hhbm5lbHNMYXN0Jykge1xuICAgICAgaWYgKGJpYXNTaGFwZS5sZW5ndGggPT09IDEpIHtcbiAgICAgICAgcmV0dXJuIHRmYy5yZXNoYXBlKGJpYXMsIFsxLCAxLCAxLCAxLCBiaWFzU2hhcGVbMF1dKTtcbiAgICAgIH0gZWxzZSB7XG4gICAgICAgIHJldHVybiB0ZmMucmVzaGFwZShiaWFzLCBbMV0uY29uY2F0KGJpYXNTaGFwZSkpO1xuICAgICAgfVxuICAgIH1cbiAgfSBlbHNlIGlmICh4UmFuayA9PT0gNCkge1xuICAgIGlmIChkYXRhRm9ybWF0ID09PSAnY2hhbm5lbHNGaXJzdCcpIHtcbiAgICAgIGlmIChiaWFzU2hhcGUubGVuZ3RoID09PSAxKSB7XG4gICAgICAgIHJldHVybiB0ZmMucmVzaGFwZShiaWFzLCBbMSwgYmlhc1NoYXBlWzBdLCAxLCAxXSk7XG4gICAgICB9IGVsc2Uge1xuICAgICAgICByZXR1cm4gdGZjLnJlc2hhcGUoYmlhcywgWzEsIGJpYXNTaGFwZVsyXSwgYmlhc1NoYXBlWzBdLCBiaWFzU2hhcGVbMV1dKTtcbiAgICAgIH1cbiAgICB9IGVsc2UgaWYgKGRhdGFGb3JtYXQgPT09ICdjaGFubmVsc0xhc3QnKSB7XG4gICAgICBpZiAoYmlhc1NoYXBlLmxlbmd0aCA9PT0gMSkge1xuICAgICAgICByZXR1cm4gdGZjLnJlc2hhcGUoYmlhcywgWzEsIDEsIDEsIGJpYXNTaGFwZVswXV0pO1xuICAgICAgfSBlbHNlIHtcbiAgICAgICAgcmV0dXJuIHRmYy5yZXNoYXBlKGJpYXMsIFsxXS5jb25jYXQoYmlhc1NoYXBlKSk7XG4gICAgICB9XG4gICAgfVxuICB9IGVsc2UgaWYgKHhSYW5rID09PSAzKSB7XG4gICAgaWYgKGRhdGFGb3JtYXQgPT09ICdjaGFubmVsc0ZpcnN0Jykge1xuICAgICAgaWYgKGJpYXNTaGFwZS5sZW5ndGggPT09IDEpIHtcbiAgICAgICAgcmV0dXJuIHRmYy5yZXNoYXBlKGJpYXMsIFsxLCBiaWFzU2hhcGVbMF0sIDFdKTtcbiAgICAgIH0gZWxzZSB7XG4gICAgICAgIHJldHVybiB0ZmMucmVzaGFwZShiaWFzLCBbMSwgYmlhc1NoYXBlWzFdLCBiaWFzU2hhcGVbMF1dKTtcbiAgICAgIH1cbiAgICB9IGVsc2UgaWYgKGRhdGFGb3JtYXQgPT09ICdjaGFubmVsc0xhc3QnKSB7XG4gICAgICBpZiAoYmlhc1NoYXBlLmxlbmd0aCA9PT0gMSkge1xuICAgICAgICByZXR1cm4gdGZjLnJlc2hhcGUoYmlhcywgWzEsIDEsIGJpYXNTaGFwZVswXV0pO1xuICAgICAgfSBlbHNlIHtcbiAgICAgICAgcmV0dXJuIHRmYy5yZXNoYXBlKGJpYXMsIFsxXS5jb25jYXQoYmlhc1NoYXBlKSk7XG4gICAgICB9XG4gICAgfVxuICB9IGVsc2UgaWYgKHhSYW5rIDwgMykge1xuICAgIHJldHVybiBiaWFzO1xuICB9XG4gIHRocm93IG5ldyBWYWx1ZUVycm9yKGBVbnN1cHBvcnRlZCBpbnB1dCByYW5rIGJ5IGJpYXNBZGQ6ICR7Ymlhcy5yYW5rfWApO1xufVxuXG4vKiBOZXVyYWwtbmV0d29yayBvcGVyYXRpb25zLiAqL1xuXG4vKipcbiAqIEFkZCBhIGJpYXMgdG8gYSB0ZW5zb3IuXG4gKlxuICogQHBhcmFtIHggVGhlIHRlbnNvciB0byBhZGQgdGhlIGJpYXMgdG8uXG4gKiBAcGFyYW0gYmlhcyBUaGUgYmlhcyB0byBhZGQgdG8gYHhgLiBNdXN0IGJlIDFEIG9yIHRoZSBzYW1lIHJhbmsgYXMgYHhgLlxuICogQHJldHVybiBSZXN1bHQgb2YgdGhlIGJpYXMgYWRkaW5nLlxuICogQHRocm93cyBWYWx1ZUVycm9yOiBJZiB0aGUgcmFuayBvZiBgYmlhc2AgaXMgaW5jb3JyZWN0LlxuICovXG5leHBvcnQgZnVuY3Rpb24gYmlhc0FkZChcbiAgICB4OiBUZW5zb3IsIGJpYXM6IFRlbnNvciwgZGF0YUZvcm1hdD86IERhdGFGb3JtYXQpOiBUZW5zb3Ige1xuICByZXR1cm4gdGlkeSgoKSA9PiB7XG4gICAgaWYgKGRhdGFGb3JtYXQgPT0gbnVsbCkge1xuICAgICAgZGF0YUZvcm1hdCA9IGltYWdlRGF0YUZvcm1hdCgpO1xuICAgIH1cbiAgICBjaGVja0RhdGFGb3JtYXQoZGF0YUZvcm1hdCk7XG5cbiAgICByZXR1cm4gdGZjLmFkZCh4LCByZXNoYXBlQmlhcyh4LnJhbmssIGJpYXMsIGRhdGFGb3JtYXQpKTtcbiAgfSk7XG59XG5cbi8qKlxuICogRXhwb25lbnRpYWwgbGluZWFyIHVuaXQgKEVMVSkuXG4gKiBAcGFyYW0geCBBIHRlbnNvciBvciB2YXJpYWJsZSB0byBjb21wdXRlIHRoZSBhY3RpdmF0aW9uIGZ1bmN0aW9uIGZvci5cbiAqIEBwYXJhbSBhbHBoYTogQSBzY2FsYXIsIGEgc2NhbGluZyBmYWN0b3IgZm9yIHRoZSBuZWdhdGl2ZSBzZWN0aW9uLlxuICogQHJldHVybiBPdXRwdXQgb2YgdGhlIEVMVSBvcGVyYXRpb24uXG4gKi9cbmV4cG9ydCBmdW5jdGlvbiBlbHUoeDogVGVuc29yLCBhbHBoYSA9IDEpOiBUZW5zb3Ige1xuICAvLyBUT0RPKGNhaXMpOiBBZGQgc3VwcG9ydCBmb3IgYWxwaGEgdmFsdWVzIG90aGVyIHRoYW4gMS5cbiAgaWYgKGFscGhhICE9PSAxKSB7XG4gICAgdGhyb3cgbmV3IE5vdEltcGxlbWVudGVkRXJyb3IoXG4gICAgICAgIGBTdXBwb3J0IGZvciBhbHBoYSB2YWx1ZXMgb3RoZXIgdGhhbiAxICgke2FscGhhfSkgaXMgbm90IGltcGxlbWVudGVkIGAgK1xuICAgICAgICBgeWV0LmApO1xuICB9XG4gIHJldHVybiB0ZmMuZWx1KHgpO1xufVxuXG4vKipcbiAqIFNvZnRzaWduIG9mIGEgdGVuc29yLlxuICpcbiAqIERlZmluZWQgYXMgeCAvIChhYnMoeCkgKyAxKSwgZWxlbWVudC13aXNlLlxuICpcbiAqIEBwYXJhbSB4OiBJbnB1dC5cbiAqIEByZXR1cm5zIE91dHB1dC5cbiAqL1xuZXhwb3J0IGZ1bmN0aW9uIHNvZnRzaWduKHg6IFRlbnNvcik6IFRlbnNvciB7XG4gIHJldHVybiB0aWR5KCgpID0+IHRmYy5kaXYoeCwgdGZjLmFkZCh0ZmMuYWJzKHgpLCAxKSkpO1xufVxuXG4vKipcbiAqIFNldHMgZW50cmllcyBpbiBgeGAgdG8gemVybyBhdCByYW5kb20sIHdoaWxlIHNjYWxpbmcgdGhlIGVudGlyZSB0ZW5zb3IuXG4gKlxuICogQHBhcmFtIHggaW5wdXQgdGVuc29yLlxuICogQHBhcmFtIGxldmVsIGZyYWN0aW9uIG9mIHRoZSBlbnRyaWVzIGluIHRoZSB0ZW5zb3IgdGhhdCB3aWxsIGJlIHNldCB0byAwLlxuICogQHBhcmFtIG5vaXNlU2hhcGUgc2hhcGUgb2YgcmFuZG9tbHkgZ2VuZXJhdGVkIGtlZXAvZHJvcCBmbGFncywgbXVzdCBiZVxuICogICBicm9hZGNhc3RhYmxlIHRvIHRoZSBzaGFwZSBvZiBgeGAuIE9wdGlvbmFsLlxuICogQHBhcmFtIHNlZWQgcmFuZG9tIHNlZWQgdG8gZW5zdXJlIGRldGVybWluaXNtLiBPcHRpb25hbC5cbiAqIEByZXR1cm5zIFJlc3VsdCBvZiB0aGUgZHJvcG91dCBvcGVyYXRpb24uXG4gKi9cbmV4cG9ydCBmdW5jdGlvbiBkcm9wb3V0KFxuICAgIHg6IFRlbnNvciwgbGV2ZWw6IG51bWJlciwgbm9pc2VTaGFwZT86IG51bWJlcltdLCBzZWVkPzogbnVtYmVyKTogVGVuc29yIHtcbiAgcmV0dXJuIHRpZHkoKCkgPT4gdGZjLmRyb3BvdXQoeCwgbGV2ZWwsIG5vaXNlU2hhcGUsIHNlZWQpKTtcbn1cblxuLyoqXG4gKiBFbGVtZW50LXdpc2UsIHNlZ21lbnQtd2lzZSBsaW5lYXIgYXBwcm94aW1hdGlvbiBvZiBzaWdtb2lkLlxuICpcbiAqIFJldHVybnMgYDAuYCBpZiBgeCA8IC0yLjVgLCBgMS5gIGlmIGB4ID4gMi41YC5cbiAqIEluIGAtMi41IDw9IHggPD0gMi41YCwgcmV0dXJucyBgMC4yICogeCArIDAuNWAuXG4gKlxuICogQHBhcmFtIHggSW5wdXQgdGVuc29yLlxuICogQHJldHVybnMgT3V0cHV0IHRlbnNvci5cbiAqL1xuZXhwb3J0IGZ1bmN0aW9uIGhhcmRTaWdtb2lkKHg6IFRlbnNvcik6IFRlbnNvciB7XG4gIHJldHVybiB0aWR5KCgpID0+IHtcbiAgICBjb25zdCB5ID0gdGZjLmFkZCguNSwgdGZjLm11bCguMiwgeCkpO1xuICAgIHJldHVybiB0ZmMuY2xpcEJ5VmFsdWUoeSwgMCwgMSk7XG4gIH0pO1xufVxuXG4vKipcbiAqIEludm9rZSBgeGAgaW4gdGhlIHRyYWluaW5nIHBoYXNlLCBhbmQgYGFsdGAgb3RoZXJ3aXNlLlxuICpcbiAqIFBvcnRpbmcgTm90ZTogV2UgZG8gbm90IGNyZWF0ZSBwbGFjZWhvbGRlciB0ZW5zb3JzIGZvciB0aGUgYHRyYWluaW5nYFxuICogYm9vbGVhbiBmbGFnIGhlcmUsIGJlY2F1c2UgdGhlcmUgaXMgbm8gc3VjaCB0aGluZyBpbiB0aGUgVEYuanMgaW1wZXJhdGl2ZVxuICogYmFja2VuZC5cbiAqXG4gKiBAcGFyYW0geCBUaGUgZnVuY3Rpb24gdG8gaW52b2tlIGlmZiBgdHJhaW5pbmdgIGlzIGB0cnVlYC5cbiAqIEBwYXJhbSBhbHQgVGhlIGZ1bmN0aW9uIHRvIGludm9rZSBpZmYgYHRyYWluaW5nYCBpcyBgZmFsc2VgLlxuICogQHBhcmFtIHRyYWluaW5nIEJvb2xlYW4gZmxhZyBmb3Igd2hldGhlciB0cmFpbmluZyBwaGFzZSBpcyBhY3RpdmUuXG4gKiBAcmV0dXJucyBUaGUgcmV0dXJuIHZhbHVlIG9mIGB4KClgIGlmIGB0cmFpbmluZ2AgaXMgYHRydWVgLCBvciB0aGUgcmV0dXJuXG4gKiAgIHZhbHVlIG9mIGBhbHQoKWAgaWYgYHRyYWluaW5nYCBpcyBgZmFsc2VgLlxuICovXG5leHBvcnQgZnVuY3Rpb24gaW5UcmFpblBoYXNlPFQ+KHg6ICgpID0+IFQsIGFsdDogKCkgPT4gVCwgdHJhaW5pbmcgPSBmYWxzZSk6IFQge1xuICByZXR1cm4gdHJhaW5pbmcgPyB4KCkgOiBhbHQoKTtcbn1cbiJdfQ==