gx
chenyc
2025-06-12 7b72ac13a83764a662159d4a49b7fffb90476ecb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
/**
 * @license
 * Copyright 2018 Google LLC
 *
 * Use of this source code is governed by an MIT-style
 * license that can be found in the LICENSE file or at
 * https://opensource.org/licenses/MIT.
 * =============================================================================
 */
/* Original Source: engine/training.py */
import * as tfc from '@tensorflow/tfjs-core';
import { io, Optimizer, scalar, serialization, Tensor, tensor1d, util } from '@tensorflow/tfjs-core';
import * as K from '../backend/tfjs_backend';
import { configureCallbacks, standardizeCallbacks } from '../base_callbacks';
import { nameScope } from '../common';
import { NotImplementedError, RuntimeError, ValueError } from '../errors';
import { deserialize } from '../layers/serialization';
import { disposeTensorsInLogs } from '../logs';
import * as losses from '../losses';
import * as Metrics from '../metrics';
import * as optimizers from '../optimizers';
import { checkUserDefinedMetadata } from '../user_defined_metadata';
import { count, pyListRepeat, singletonOrArray, toCamelCase, toSnakeCase, unique } from '../utils/generic_utils';
import { printSummary } from '../utils/layer_utils';
import { range } from '../utils/math_utils';
import { convertPythonicToTs } from '../utils/serialization_utils';
import { version } from '../version';
import { Container } from './container';
import { execute, FeedDict } from './executor';
import { evaluateDataset, fitDataset } from './training_dataset';
import { checkBatchSize, disposeNewTensors, ensureTensorsRank2OrHigher, makeBatches, sliceArrays, sliceArraysByIndices } from './training_tensors';
import { computeWeightedLoss, standardizeClassWeights, standardizeWeights } from './training_utils';
/**
 * Helper function for polymorphic input data: 1. singleton Tensor.
 */
export function isDataTensor(x) {
    return x instanceof Tensor;
}
/**
 * Helper function for polymorphic input data: 2. Array of Tensor.
 */
export function isDataArray(x) {
    return Array.isArray(x);
}
/**
 * Helper function for polymorphic input data: 3. "dict" of Tensor.
 */
export function isDataDict(x) {
    return !isDataTensor(x) && !isDataArray(x);
}
/**
 * Normalizes inputs and targets provided by users.
 * @param data User-provided input data (polymorphic).
 * @param names An Array of expected Tensor names.
 * @param shapes Optional Array of expected Tensor shapes.
 * @param checkBatchAxis Whether to check that the batch axis of the arrays
 *   match  the expected value found in `shapes`.
 * @param exceptionPrefix String prefix used for exception formatting.
 * @returns List of standardized input Tensors (one Tensor per model input).
 * @throws ValueError: in case of improperly formatted user data.
 */
export function standardizeInputData(data, names, shapes, checkBatchAxis = true, exceptionPrefix = '') {
    if (names == null || names.length === 0) {
        // Check for the case where the model expected no data, but some data got
        // sent.
        if (data != null) {
            let gotUnexpectedData = false;
            if (isDataArray(data) && data.length > 0) {
                gotUnexpectedData = true;
            }
            else if (isDataDict(data)) {
                for (const key in data) {
                    if (data.hasOwnProperty(key)) {
                        gotUnexpectedData = true;
                        break;
                    }
                }
            }
            else {
                // `data` is a singleton Tensor in this case.
                gotUnexpectedData = true;
            }
            if (gotUnexpectedData) {
                throw new ValueError(`Error when checking model ${exceptionPrefix} expected no data, ` +
                    `but got ${data}`);
            }
        }
        return [];
    }
    if (data == null) {
        return names.map(name => null);
    }
    let arrays;
    if (isDataDict(data)) {
        data = data;
        arrays = [];
        for (const name of names) {
            if (data[name] == null) {
                throw new ValueError(`No data provided for "${name}". Need data for each key in: ` +
                    `${names}`);
            }
            arrays.push(data[name]);
        }
    }
    else if (isDataArray(data)) {
        data = data;
        if (data.length !== names.length) {
            throw new ValueError(`Error when checking model ${exceptionPrefix}: the Array of ` +
                `Tensors that you are passing to your model is not the size the ` +
                `model expected. Expected to see ${names.length} Tensor(s), but ` +
                `instead got the following list of Tensor(s): ${data}`);
        }
        arrays = data;
    }
    else {
        data = data;
        if (names.length > 1) {
            throw new ValueError(`The model ${exceptionPrefix} expects ${names.length} Tensor(s), ` +
                `but only received one Tensor. Found: Tensor with shape ${data.shape}`);
        }
        arrays = [data];
    }
    arrays = ensureTensorsRank2OrHigher(arrays);
    // Check shape compatibility.
    if (shapes != null) {
        for (let i = 0; i < names.length; ++i) {
            if (shapes[i] == null) {
                continue;
            }
            const array = arrays[i];
            if (array.shape.length !== shapes[i].length) {
                throw new ValueError(`Error when checking ${exceptionPrefix}: expected ${names[i]} ` +
                    `to have ${shapes[i].length} dimension(s). but got array with ` +
                    `shape ${array.shape}`);
            }
            for (let j = 0; j < shapes[i].length; ++j) {
                if (j === 0 && !checkBatchAxis) {
                    // Skip the first (batch) axis.
                    continue;
                }
                const dim = array.shape[j];
                const refDim = shapes[i][j];
                if (refDim != null && refDim >= 0 && dim !== refDim) {
                    throw new ValueError(`${exceptionPrefix} expected a batch of elements where each ` +
                        `example has shape [${shapes[i].slice(1, shapes[i].length)}] ` +
                        `(i.e.,tensor shape [*,${shapes[i].slice(1, shapes[i].length)}])` +
                        ` but the ${exceptionPrefix} received an input with ${array.shape[0]}` +
                        ` examples, each with shape [${array.shape.slice(1, array.shape.length)}]` +
                        ` (tensor shape [${array.shape}])`);
                }
            }
        }
    }
    return arrays;
}
/**
 * User input validation for Tensors.
 * @param inputs `Array` of `tf.Tensor`s for inputs.
 * @param targets `Array` of `tf.Tensor`s for targets.
 * @param weights Optional `Array` of `tf.Tensor`s for sample weights.
 * @throws ValueError: in case of incorrectly formatted data.
 */
export function checkArrayLengths(inputs, targets, weights) {
    const setX = unique(inputs.map(input => input.shape[0]));
    setX.sort();
    const setY = unique(targets.map(target => target.shape[0]));
    setY.sort();
    // TODO(cais): Check `weights` as well.
    if (setX.length > 1) {
        throw new ValueError(`All input Tensors (x) should have the same number of samples. ` +
            `Got array shapes: ` +
            `${JSON.stringify(inputs.map(input => input.shape))}`);
    }
    if (setY.length > 1) {
        throw new ValueError(`All target Tensors (y) should have the same number of samples. ` +
            `Got array shapes: ` +
            `${JSON.stringify(targets.map(target => target.shape))}`);
    }
    if (setX.length > 0 && setY.length > 0 && !util.arraysEqual(setX, setY)) {
        throw new ValueError(`Input Tensors should have the same number of samples as target ` +
            `Tensors. Found ${setX[0]} input sample(s) and ${setY[0]} target ` +
            `sample(s).`);
    }
}
/**
 * Validation on the compatibility of targes and loss functions.
 *
 * This helps prevent users from using loss functions incorrectly.
 *
 * @param targets `Array` of `tf.Tensor`s of targets.
 * @param lossFns `Array` of loss functions.
 * @param outputShapes `Array` of shapes of model outputs.
 */
function checkLossAndTargetCompatibility(targets, lossFns, outputShapes) {
    // TODO(cais): Dedicated test coverage?
    const keyLosses = [
        losses.meanSquaredError, losses.binaryCrossentropy,
        losses.categoricalCrossentropy
    ];
    for (let i = 0; i < targets.length; ++i) {
        const y = targets[i];
        const loss = lossFns[i];
        const shape = outputShapes[i];
        if (loss == null) {
            continue;
        }
        if (loss === losses.categoricalCrossentropy) {
            if (y.shape[y.shape.length - 1] === 1) {
                throw new ValueError(`You are passing a target array of shape ${y.shape} while using ` +
                    `a loss 'categorical_crossentropy'. 'categorical_crossentropy'` +
                    `expects targets to be binary matrices (1s and 0s) of shape ` +
                    `[samples, classes].`);
                // TODO(cais): Example code in error message.
            }
        }
        if (keyLosses.indexOf(loss) !== -1) {
            const slicedYShape = y.shape.slice(1);
            const slicedShape = shape.slice(1);
            for (let j = 0; j < slicedYShape.length; ++j) {
                const targetDim = slicedYShape[j];
                const outDim = slicedShape[j];
                if (outDim != null && targetDim !== outDim) {
                    throw new ValueError(`A target Tensor with shape ${y.shape} was passed for an ` +
                        `output of shape ${shape}, while using a loss function that ` +
                        `expects targets to have the same shape as the output.`);
                }
            }
        }
    }
}
/**
 * Check inputs provided by the user.
 *
 * Porting Note: This corresponds to _standardize_input_data() in Python
 *   Keras. Because of the strong typing in TF.js, we do not need to convert
 *   the data. Specifically:
 *   1) in PyKeras, `data` can be `DataFrame` instances from pandas, for
 *      example. We don't need to worry about that here because there is no
 *      widely popular javascript/typesdcript equivalent of pandas (so far).
 *      If one becomes available in the future, we can add support.
 *   2) in PyKeras, inputs can be Python dict. But here we are stipulating
 * that the data is either a single `tf.Tensor` or an Array of `tf.Tensor`s. We
 * may add support for `Object` data inputs in the future when the need
 * arises.
 *
 * Instead, we perform basic checks for number of parameters and shapes.
 *
 * @param data: The input data.
 * @param names: Name for the inputs, from the model.
 * @param shapes: Expected shapes for the input data, from the model.
 * @param checkBatchAxis: Whether the size along the batch axis (i.e., the
 *   first dimension) will be checked for matching.
 * @param exceptionPrefix: Execption prefix message, used in generating error
 *   messages.
 * @throws ValueError: on incorrect number of inputs or mismatches in shapes.
 */
function checkInputData(data, names, shapes, checkBatchAxis = true, exceptionPrefix = '') {
    let arrays;
    if (Array.isArray(data)) {
        if (data.length !== names.length) {
            throw new ValueError(`Error when checking model ${exceptionPrefix}: the Array of ` +
                `Tensors that you are passing to your model is not the size the ` +
                `the model expected. Expected to see ${names.length} Tensor(s),` +
                ` but instead got ${data.length} Tensors(s).`);
        }
        arrays = data;
    }
    else {
        if (names.length > 1) {
            throw new ValueError(`The model expects ${names.length} ${exceptionPrefix} Tensors, ` +
                `but only received one Tensor. Found: array with shape ` +
                `${JSON.stringify(data.shape)}.`);
        }
        arrays = [data];
    }
    if (shapes != null) {
        for (let i = 0; i < names.length; ++i) {
            if (shapes[i] == null) {
                continue;
            }
            const array = arrays[i];
            if (array.shape.length !== shapes[i].length) {
                throw new ValueError(`Error when checking ${exceptionPrefix}: expected ${names[i]} ` +
                    `to have ${shapes[i].length} dimension(s), but got array with ` +
                    `shape ${JSON.stringify(array.shape)}`);
            }
            for (let j = 0; j < shapes[i].length; ++j) {
                if (j === 0 && !checkBatchAxis) {
                    continue;
                }
                const dim = array.shape[j];
                const refDim = shapes[i][j];
                if (refDim != null) {
                    if (refDim !== dim) {
                        throw new ValueError(`Error when checking ${exceptionPrefix}: expected ` +
                            `${names[i]} to have shape ${JSON.stringify(shapes[i])} but ` +
                            `got array with shape ${JSON.stringify(array.shape)}.`);
                    }
                }
            }
        }
    }
}
/**
 * Maps metric functions to model outputs.
 * @param metrics An shortcut strings name, metric function, `Array` or dict
 *   (`Object`) of metric functions.
 * @param outputNames An `Array` of the names of model outputs.
 * @returns An `Array` (one entry per model output) of `Array` of metric
 *   functions. For instance, if the model has 2 outputs, and for the first
 *   output we want to compute `binaryAccuracy` and `binaryCrossentropy`,
 *   and just `binaryAccuracy` for the second output, the `Array` would look
 *   like:
 *     `[[binaryAccuracy, binaryCrossentropy],  [binaryAccuracy]]`
 * @throws TypeError: incompatible metrics format.
 */
export function collectMetrics(metrics, outputNames) {
    if (metrics == null || Array.isArray(metrics) && metrics.length === 0) {
        return outputNames.map(name => []);
    }
    let wrappedMetrics;
    if (typeof metrics === 'string' || typeof metrics === 'function') {
        wrappedMetrics = [metrics];
    }
    else if (Array.isArray(metrics) || typeof metrics === 'object') {
        wrappedMetrics = metrics;
    }
    else {
        throw new TypeError('Type of metrics argument not understood. Expected an string,' +
            `function, Array, or Object, found: ${metrics}`);
    }
    if (Array.isArray(wrappedMetrics)) {
        // We then apply all metrics to all outputs.
        return outputNames.map(name => wrappedMetrics);
    }
    else {
        // In this case, metrics is a dict.
        const nestedMetrics = [];
        for (const name of outputNames) {
            let outputMetrics = wrappedMetrics.hasOwnProperty(name) ? wrappedMetrics[name] : [];
            if (!Array.isArray(outputMetrics)) {
                outputMetrics = [outputMetrics];
            }
            nestedMetrics.push(outputMetrics);
        }
        return nestedMetrics;
    }
}
const LAYERS_MODEL_FORMAT_NAME = 'layers-model';
/**
 * A `tf.LayersModel` is a directed, acyclic graph of `tf.Layer`s plus methods
 * for training, evaluation, prediction and saving.
 *
 * `tf.LayersModel` is the basic unit of training, inference and evaluation in
 * TensorFlow.js. To create a `tf.LayersModel`, use `tf.LayersModel`.
 *
 * See also:
 *   `tf.Sequential`, `tf.loadLayersModel`.
 *
 * @doc {heading: 'Models', subheading: 'Classes'}
 */
class LayersModel extends Container {
    constructor(args) {
        super(args);
        this.isTraining = false;
    }
    /**
     * Print a text summary of the model's layers.
     *
     * The summary includes
     * - Name and type of all layers that comprise the model.
     * - Output shape(s) of the layers
     * - Number of weight parameters of each layer
     * - If the model has non-sequential-like topology, the inputs each layer
     *   receives
     * - The total number of trainable and non-trainable parameters of the model.
     *
     * ```js
     * const input1 = tf.input({shape: [10]});
     * const input2 = tf.input({shape: [20]});
     * const dense1 = tf.layers.dense({units: 4}).apply(input1);
     * const dense2 = tf.layers.dense({units: 8}).apply(input2);
     * const concat = tf.layers.concatenate().apply([dense1, dense2]);
     * const output =
     *     tf.layers.dense({units: 3, activation: 'softmax'}).apply(concat);
     *
     * const model = tf.model({inputs: [input1, input2], outputs: output});
     * model.summary();
     * ```
     *
     * @param lineLength Custom line length, in number of characters.
     * @param positions Custom widths of each of the columns, as either
     *   fractions of `lineLength` (e.g., `[0.5, 0.75, 1]`) or absolute number
     *   of characters (e.g., `[30, 50, 65]`). Each number corresponds to
     *   right-most (i.e., ending) position of a column.
     * @param printFn Custom print function. Can be used to replace the default
     *   `console.log`. For example, you can use `x => {}` to mute the printed
     *   messages in the console.
     *
     * @doc {heading: 'Models', subheading: 'Classes'}
     */
    summary(lineLength, positions, printFn = console.log) {
        if (!this.built) {
            throw new ValueError(`This model has never been called, thus its weights have not been ` +
                `created yet. So no summary can be displayed. Build the model ` +
                `first (e.g., by calling it on some test data).`);
        }
        printSummary(this, lineLength, positions, printFn);
    }
    /**
     * Configures and prepares the model for training and evaluation.  Compiling
     * outfits the model with an optimizer, loss, and/or metrics.  Calling `fit`
     * or `evaluate` on an un-compiled model will throw an error.
     *
     * @param args a `ModelCompileArgs` specifying the loss, optimizer, and
     * metrics to be used for fitting and evaluating this model.
     *
     * @doc {heading: 'Models', subheading: 'Classes'}
     */
    compile(args) {
        if (args.loss == null) {
            args.loss = [];
        }
        this.loss = args.loss;
        if (typeof args.optimizer === 'string') {
            this.optimizer_ = optimizers.getOptimizer(args.optimizer);
            this.isOptimizerOwned = true;
        }
        else {
            if (!(args.optimizer instanceof Optimizer)) {
                throw new ValueError(`User-defined optimizer must be an instance of tf.Optimizer.`);
            }
            this.optimizer_ = args.optimizer;
            this.isOptimizerOwned = false;
        }
        // TODO(cais): Add lossWeights.
        // TODO(cais): Add sampleWeightMode.
        // Prepare loss functions.
        let lossFunctions = [];
        if (!Array.isArray(args.loss) && typeof args.loss !== 'string' &&
            typeof args.loss !== 'function') {
            args.loss = args.loss;
            for (const name in args.loss) {
                if (this.outputNames.indexOf(name) === -1) {
                    throw new ValueError(`Unknown entry in loss dictionary: "${name}". ` +
                        `Only expected the following keys: ${this.outputNames}`);
                }
            }
            for (const name of this.outputNames) {
                if (args.loss[name] == null) {
                    console.warn(`Output "${name}" is missing from loss dictionary. We assume ` +
                        `this was done on purpose, and we will not be expecting data ` +
                        `to be passed to ${name} during training`);
                }
                lossFunctions.push(losses.get(args.loss[name]));
            }
        }
        else if (Array.isArray(args.loss)) {
            if (args.loss.length !== this.outputs.length) {
                throw new ValueError(`When passing an Array as loss, it should have one entry per ` +
                    `model output. The model has ${this.outputs.length} output(s), ` +
                    `but you passed loss=${args.loss}.`);
            }
            const theLosses = args.loss;
            lossFunctions = theLosses.map(l => losses.get(l));
        }
        else {
            const lossFunction = losses.get(args.loss);
            this.outputs.forEach(_ => {
                lossFunctions.push(lossFunction);
            });
        }
        this.lossFunctions = lossFunctions;
        this.feedOutputNames = [];
        this.feedOutputShapes = [];
        this.feedLossFns = [];
        for (let i = 0; i < this.outputs.length; ++i) {
            // TODO(cais): Logic for skipping target(s).
            const shape = this.internalOutputShapes[i];
            const name = this.outputNames[i];
            this.feedOutputNames.push(name);
            this.feedOutputShapes.push(shape);
            this.feedLossFns.push(this.lossFunctions[i]);
        }
        // TODO(cais): Add logic for output masks.
        // TODO(cais): Add logic for sample weights.
        const skipTargetIndices = [];
        // Prepare metrics.
        this.metrics = args.metrics;
        // TODO(cais): Add weightedMetrics.
        this.metricsNames = ['loss'];
        this.metricsTensors = [];
        // Compute total loss.
        // Porting Note: In PyKeras, metrics_tensors are symbolic tensor objects.
        //   Here, metricsTensors are TypeScript functions. This difference is due
        //   to the difference in symbolic/imperative property of the backends.
        nameScope('loss', () => {
            for (let i = 0; i < this.outputs.length; ++i) {
                if (skipTargetIndices.indexOf(i) !== -1) {
                    continue;
                }
                // TODO(cais): Add weightedLoss, sampleWeight and mask.
                //   The following line should be weightedLoss
                const weightedLoss = this.lossFunctions[i];
                if (this.outputs.length > 1) {
                    this.metricsTensors.push([weightedLoss, i]);
                    this.metricsNames.push(this.outputNames[i] + '_loss');
                }
            }
            // Porting Note: Due to the imperative nature of the backend, we calculate
            //   the regularizer penalties in the totalLossFunction, instead of here.
        });
        const nestedMetrics = collectMetrics(args.metrics, this.outputNames);
        // TODO(cais): Add nestedWeightedMetrics.
        /**
         * Helper function used in loop below.
         */
        const appendMetric = (outputIndex, metricName, metricTensor) => {
            if (this.outputNames.length > 1) {
                metricName = this.outputNames[outputIndex] + '_' + metricName;
            }
            this.metricsNames.push(metricName);
            this.metricsTensors.push([metricTensor, outputIndex]);
        };
        nameScope('metric', () => {
            for (let i = 0; i < this.outputs.length; ++i) {
                if (skipTargetIndices.indexOf(i) !== -1) {
                    continue;
                }
                const outputMetrics = nestedMetrics[i];
                // TODO(cais): Add weights and outputWeightedMetrics.
                // TODO(cais): Add optional arg `weights` to the following function.
                const handleMetrics = (metrics) => {
                    const metricNamePrefix = '';
                    let metricName;
                    let accFn;
                    let weightedMetricFn;
                    //  TODO(cais): Use 'weights_' for weighted metrics.
                    for (const metric of metrics) {
                        if (typeof metric === 'string' &&
                            ['accuracy', 'acc', 'crossentropy', 'ce'].indexOf(metric) !==
                                -1) {
                            const outputShape = this.internalOutputShapes[i];
                            if (outputShape[outputShape.length - 1] === 1 ||
                                this.lossFunctions[i] === losses.binaryCrossentropy) {
                                // case: binary accuracy/crossentropy.
                                if (['accuracy', 'acc'].indexOf(metric) !== -1) {
                                    accFn = Metrics.binaryAccuracy;
                                }
                                else if (['crossentropy', 'ce'].indexOf(metric) !== -1) {
                                    accFn = Metrics.binaryCrossentropy;
                                }
                            }
                            else if (this.lossFunctions[i] ===
                                losses.sparseCategoricalCrossentropy) {
                                // case: categorical accuracy / crossentropy with sparse
                                // targets.
                                if (['accuracy', 'acc'].indexOf(metric) !== -1) {
                                    accFn = Metrics.sparseCategoricalAccuracy;
                                }
                                else if (['crossentropy', 'ce'].indexOf(metric) !== -1) {
                                    accFn = Metrics.sparseCategoricalCrossentropy;
                                }
                            }
                            else {
                                // case: categorical accuracy / crossentropy.
                                if (['accuracy', 'acc'].indexOf(metric) !== -1) {
                                    accFn = Metrics.categoricalAccuracy;
                                }
                                else if (['crossentropy', 'ce'].indexOf(metric) !== -1) {
                                    accFn = Metrics.categoricalCrossentropy;
                                }
                            }
                            let suffix;
                            if (['accuracy', 'acc'].indexOf(metric) !== -1) {
                                suffix = 'acc';
                            }
                            else if (['crossentropy', 'ce'].indexOf(metric) !== -1) {
                                suffix = 'ce';
                            }
                            // TODO(cais): Add weighting actually.
                            weightedMetricFn = accFn;
                            metricName = metricNamePrefix + suffix;
                        }
                        else {
                            const metricFn = Metrics.get(metric);
                            // TODO(cais): Add weighting actually.
                            weightedMetricFn = metricFn;
                            metricName =
                                metricNamePrefix + Metrics.getLossOrMetricName(metric);
                        }
                        // TODO(cais): Add weighting and masking to metricResult.
                        let metricResult;
                        nameScope(metricName, () => {
                            metricResult = weightedMetricFn;
                        });
                        appendMetric(i, metricName, metricResult);
                    }
                };
                handleMetrics(outputMetrics);
                // TODO(cais): Call handleMetrics with weights.
            }
        });
        // Porting Notes: Given the imperative backend of tfjs-core,
        //   there is no need for constructing the symbolic graph and placeholders.
        this.collectedTrainableWeights = this.trainableWeights;
    }
    /**
     * Check trainable weights count consistency.
     *
     * This will raise a warning if `this.trainableWeights` and
     * `this.collectedTrainableWeights` are inconsistent (i.e., have different
     * numbers of parameters).
     * Inconsistency will typically arise when one modifies `model.trainable`
     * without calling `model.compile()` again.
     */
    checkTrainableWeightsConsistency() {
        if (this.collectedTrainableWeights == null) {
            return;
        }
        if (this.trainableWeights.length !==
            this.collectedTrainableWeights.length) {
            console.warn('Discrepancy between trainableweights and collected trainable ' +
                'weights. Did you set `model.trainable` without calling ' +
                '`model.compile()` afterwards?');
        }
    }
    /**
     * Returns the loss value & metrics values for the model in test mode.
     *
     * Loss and metrics are specified during `compile()`, which needs to happen
     * before calls to `evaluate()`.
     *
     * Computation is done in batches.
     *
     * ```js
     * const model = tf.sequential({
     *   layers: [tf.layers.dense({units: 1, inputShape: [10]})]
     * });
     * model.compile({optimizer: 'sgd', loss: 'meanSquaredError'});
     * const result = model.evaluate(
     *     tf.ones([8, 10]), tf.ones([8, 1]), {batchSize: 4});
     * result.print();
     * ```
     *
     * @param x `tf.Tensor` of test data, or an `Array` of `tf.Tensor`s if the
     * model has multiple inputs.
     * @param y `tf.Tensor` of target data, or an `Array` of `tf.Tensor`s if the
     * model has multiple outputs.
     * @param args A `ModelEvaluateArgs`, containing optional fields.
     *
     * @return `Scalar` test loss (if the model has a single output and no
     *   metrics) or `Array` of `Scalar`s (if the model has multiple outputs
     *   and/or metrics). The attribute `model.metricsNames`
     *   will give you the display labels for the scalar outputs.
     *
     * @doc {heading: 'Models', subheading: 'Classes'}
     */
    evaluate(x, y, args = {}) {
        const batchSize = args.batchSize == null ? 32 : args.batchSize;
        checkBatchSize(batchSize);
        // TODO(cais): Standardize `config.sampleWeights` as well.
        // Validate user data.
        const checkBatchAxis = true;
        const standardizedOuts = this.standardizeUserDataXY(x, y, checkBatchAxis, batchSize);
        try {
            // TODO(cais): If uses `useLearningPhase`, set the corresponding element
            // of the input to 0.
            const ins = standardizedOuts[0].concat(standardizedOuts[1]);
            this.makeTestFunction();
            const f = this.testFunction;
            const testOuts = this.testLoop(f, ins, batchSize, args.verbose, args.steps);
            return singletonOrArray(testOuts);
        }
        finally {
            disposeNewTensors(standardizedOuts[0], x);
            disposeNewTensors(standardizedOuts[1], y);
        }
    }
    // TODO(cais): Add code snippet below once real dataset objects are
    //   available.
    /**
     * Evaluate model using a dataset object.
     *
     * Note: Unlike `evaluate()`, this method is asynchronous (`async`).
     *
     * @param dataset A dataset object. Its `iterator()` method is expected
     *   to generate a dataset iterator object, the `next()` method of which
     *   is expected to produce data batches for evaluation. The return value
     *   of the `next()` call ought to contain a boolean `done` field and a
     *   `value` field. The `value` field is expected to be an array of two
     *   `tf.Tensor`s or an array of two nested `tf.Tensor` structures. The former
     *   case is for models with exactly one input and one output (e.g.
     *   a sequential model). The latter case is for models with multiple
     *   inputs and/or multiple outputs. Of the two items in the array, the
     *   first is the input feature(s) and the second is the output target(s).
     * @param args A configuration object for the dataset-based evaluation.
     * @returns Loss and metric values as an Array of `Scalar` objects.
     *
     * @doc {heading: 'Models', subheading: 'Classes'}
     */
    async evaluateDataset(dataset, args) {
        this.makeTestFunction();
        return evaluateDataset(this, dataset, args);
    }
    /**
     * Get number of samples provided for training, evaluation or prediction.
     *
     * @param ins Input `tf.Tensor`.
     * @param batchSize Integer batch size, optional.
     * @param steps Total number of steps (batches of samples) before
     * declaring loop finished. Optional.
     * @param stepsName The public API's parameter name for `steps`.
     * @returns Number of samples provided.
     */
    checkNumSamples(ins, batchSize, steps, stepsName = 'steps') {
        let numSamples;
        if (steps != null) {
            numSamples = null;
            if (batchSize != null) {
                throw new ValueError(`If ${stepsName} is set, batchSize must be null or undefined.` +
                    `Got batchSize = ${batchSize}`);
            }
        }
        else if (ins != null) {
            if (Array.isArray(ins)) {
                numSamples = ins[0].shape[0];
            }
            else {
                numSamples = ins.shape[0];
            }
        }
        else {
            throw new ValueError(`Either the input data should have a defined shape, or ` +
                `${stepsName} shoud be specified.`);
        }
        return numSamples;
    }
    /**
     * Execute internal tensors of the model with input data feed.
     * @param inputs Input data feed. Must match the inputs of the model.
     * @param outputs Names of the output tensors to be fetched. Must match
     *   names of the SymbolicTensors that belong to the graph.
     * @returns Fetched values for `outputs`.
     */
    execute(inputs, outputs) {
        if (Array.isArray(outputs) && outputs.length === 0) {
            throw new ValueError('`outputs` is an empty Array, which is not allowed.');
        }
        const outputsIsArray = Array.isArray(outputs);
        const outputNames = (outputsIsArray ? outputs : [outputs]);
        const outputSymbolicTensors = this.retrieveSymbolicTensors(outputNames);
        // Format the input into a FeedDict.
        const feedDict = new FeedDict();
        if (inputs instanceof Tensor) {
            inputs = [inputs];
        }
        if (Array.isArray(inputs)) {
            if (inputs.length !== this.inputs.length) {
                throw new ValueError(`The number of inputs provided (${inputs.length}) ` +
                    `does not match the number of inputs of this model ` +
                    `(${this.inputs.length}).`);
            }
            for (let i = 0; i < this.inputs.length; ++i) {
                feedDict.add(this.inputs[i], inputs[i]);
            }
        }
        else {
            for (const input of this.inputs) {
                const tensorValue = inputs[input.name];
                if (tensorValue == null) {
                    throw new ValueError(`No value is provided for the model's input ${input.name}`);
                }
                feedDict.add(input, tensorValue);
            }
        }
        // Run execution.
        const executeOutputs = execute(outputSymbolicTensors, feedDict);
        return outputsIsArray ? executeOutputs : executeOutputs[0];
    }
    /**
     * Retrieve the model's internal symbolic tensors from symbolic-tensor names.
     */
    retrieveSymbolicTensors(symbolicTensorNames) {
        const outputSymbolicTensors = pyListRepeat(null, symbolicTensorNames.length);
        let outputsRemaining = symbolicTensorNames.length;
        for (const layer of this.layers) {
            const layerOutputs = Array.isArray(layer.output) ? layer.output : [layer.output];
            const layerOutputNames = layerOutputs.map(output => output.name);
            for (let i = 0; i < symbolicTensorNames.length; ++i) {
                const index = layerOutputNames.indexOf(symbolicTensorNames[i]);
                if (index !== -1) {
                    outputSymbolicTensors[i] = layerOutputs[index];
                    outputsRemaining--;
                }
                if (outputsRemaining === 0) {
                    break;
                }
            }
            if (outputsRemaining === 0) {
                break;
            }
        }
        if (outputsRemaining > 0) {
            const remainingNames = [];
            outputSymbolicTensors.forEach((tensor, i) => {
                if (tensor == null) {
                    remainingNames.push(symbolicTensorNames[i]);
                }
            });
            throw new ValueError(`Cannot find SymbolicTensors for output name(s): ` +
                `${JSON.stringify(remainingNames)}`);
        }
        return outputSymbolicTensors;
    }
    /**
     * Helper method to loop over some data in batches.
     *
     * Porting Note: Not using the functional approach in the Python equivalent
     *   due to the imperative backend.
     * Porting Note: Does not support step mode currently.
     *
     * @param ins: input data
     * @param batchSize: integer batch size.
     * @param verbose: verbosity model
     * @returns: Predictions as `tf.Tensor` (if a single output) or an `Array` of
     *   `tf.Tensor` (if multipe outputs).
     */
    predictLoop(ins, batchSize = 32, verbose = false) {
        return tfc.tidy(() => {
            const numSamples = this.checkNumSamples(ins);
            if (verbose) {
                throw new NotImplementedError('Verbose predictLoop() is not implemented yet.');
            }
            // Sample-based predictions.
            // Porting Note: Tensor currently does not support sliced assignments as
            //   in numpy, e.g., x[1:3] = y. Therefore we use concatenation while
            //   iterating over the batches.
            const batches = makeBatches(numSamples, batchSize);
            const outsBatches = this.outputs.map(output => []);
            // TODO(cais): Can the scope() be pushed down inside the for loop?
            for (let batchIndex = 0; batchIndex < batches.length; ++batchIndex) {
                const batchOuts = tfc.tidy(() => {
                    const batchStart = batches[batchIndex][0];
                    const batchEnd = batches[batchIndex][1];
                    // TODO(cais): Take care of the case of the last element is a flag for
                    //   training/test.
                    const insBatch = sliceArrays(ins, batchStart, batchEnd);
                    // Construct the feeds for execute();
                    const feeds = [];
                    if (Array.isArray(insBatch)) {
                        for (let i = 0; i < insBatch.length; ++i) {
                            feeds.push({ key: this.inputs[i], value: insBatch[i] });
                        }
                    }
                    else {
                        feeds.push({ key: this.inputs[0], value: insBatch });
                    }
                    const feedDict = new FeedDict(feeds);
                    return execute(this.outputs, feedDict);
                });
                batchOuts.forEach((batchOut, i) => outsBatches[i].push(batchOut));
            }
            return singletonOrArray(outsBatches.map(batches => tfc.concat(batches, 0)));
        });
    }
    /**
     * Generates output predictions for the input samples.
     *
     * Computation is done in batches.
     *
     * Note: the "step" mode of predict() is currently not supported.
     *   This is because the TensorFlow.js core backend is imperative only.
     *
     * ```js
     * const model = tf.sequential({
     *   layers: [tf.layers.dense({units: 1, inputShape: [10]})]
     * });
     * model.predict(tf.ones([8, 10]), {batchSize: 4}).print();
     * ```
     *
     * @param x The input data, as a Tensor, or an `Array` of `tf.Tensor`s if
     *   the model has multiple inputs.
     * @param args A `ModelPredictArgs` object containing optional fields.
     *
     * @return Prediction results as a `tf.Tensor`(s).
     *
     * @exception ValueError In case of mismatch between the provided input data
     *   and the model's expectations, or in case a stateful model receives a
     *   number of samples that is not a multiple of the batch size.
     *
     * @doc {heading: 'Models', subheading: 'Classes'}
     */
    predict(x, args = {}) {
        const xsRank2OrHigher = ensureTensorsRank2OrHigher(x);
        checkInputData(xsRank2OrHigher, this.inputNames, this.feedInputShapes, false);
        try {
            // TODO(cais): Take care of stateful models.
            //   if (this.stateful) ...
            // TODO(cais): Take care of the learning_phase boolean flag.
            //   if (this.useLearningPhase) ...
            const batchSize = args.batchSize == null ? 32 : args.batchSize;
            checkBatchSize(batchSize);
            return this.predictLoop(xsRank2OrHigher, batchSize);
        }
        finally {
            disposeNewTensors(xsRank2OrHigher, x);
        }
    }
    /**
     * Returns predictions for a single batch of samples.
     *
     * ```js
     * const model = tf.sequential({
     *   layers: [tf.layers.dense({units: 1, inputShape: [10]})]
     * });
     * model.predictOnBatch(tf.ones([8, 10])).print();
     * ```
     * @param x: Input samples, as a Tensor (for models with exactly one
     *   input) or an array of Tensors (for models with more than one input).
     * @return Tensor(s) of predictions
     *
     * @doc {heading: 'Models', subheading: 'Classes'}
     */
    predictOnBatch(x) {
        checkInputData(x, this.inputNames, this.feedInputShapes, true);
        // TODO(cais): Take care of the learning_phase boolean flag.
        //   if (this.useLearningPhase) ...
        const batchSize = (Array.isArray(x) ? x[0] : x).shape[0];
        return this.predictLoop(x, batchSize);
    }
    standardizeUserDataXY(x, y, checkBatchAxis = true, batchSize) {
        // TODO(cais): Add sampleWeight, classWeight
        if (this.optimizer_ == null) {
            throw new RuntimeError('You must compile a model before training/testing. Use ' +
                'LayersModel.compile(modelCompileArgs).');
        }
        const outputShapes = [];
        for (let i = 0; i < this.feedOutputShapes.length; ++i) {
            const outputShape = this.feedOutputShapes[i];
            const lossFn = this.feedLossFns[i];
            if (lossFn === losses.sparseCategoricalCrossentropy) {
                outputShapes.push(outputShape.slice(0, outputShape.length - 1).concat([1]));
            }
            else {
                // Porting Note: Because of strong typing `lossFn` must be a function.
                outputShapes.push(outputShape);
            }
        }
        x = standardizeInputData(x, this.feedInputNames, this.feedInputShapes, false, 'input');
        y = standardizeInputData(y, this.feedOutputNames, outputShapes, false, 'target');
        // TODO(cais): Standardize sampleWeights & classWeights.
        checkArrayLengths(x, y, null);
        // TODO(cais): Check sampleWeights as well.
        checkLossAndTargetCompatibility(y, this.feedLossFns, this.feedOutputShapes);
        if (this.stateful && batchSize != null && batchSize > 0) {
            if (x[0].shape[0] % batchSize !== 0) {
                throw new ValueError(`In a stateful network, you should only pass inputs with a ` +
                    `number of samples that is divisible by the batch size ` +
                    `${batchSize}. Found: ${x[0].shape[0]} sample(s).`);
            }
        }
        return [x, y];
    }
    async standardizeUserData(x, y, sampleWeight, classWeight, checkBatchAxis = true, batchSize) {
        const [standardXs, standardYs] = this.standardizeUserDataXY(x, y, checkBatchAxis, batchSize);
        // TODO(cais): Handle sampleWeights.
        if (sampleWeight != null) {
            throw new Error('sample weight is not supported yet.');
        }
        let standardSampleWeights = null;
        if (classWeight != null) {
            const classWeights = standardizeClassWeights(classWeight, this.outputNames);
            standardSampleWeights = [];
            for (let i = 0; i < classWeights.length; ++i) {
                standardSampleWeights.push(await standardizeWeights(standardYs[i], null, classWeights[i]));
            }
        }
        // TODO(cais): Deal with the case of model.stateful == true.
        return [standardXs, standardYs, standardSampleWeights];
    }
    /**
     * Loop over some test data in batches.
     * @param f A Function returning a list of tensors.
     * @param ins Array of tensors to be fed to `f`.
     * @param batchSize Integer batch size or `null` / `undefined`.
     * @param verbose verbosity mode.
     * @param steps Total number of steps (batches of samples) before
     * declaring test finished. Ignored with the default value of `null` /
     * `undefined`.
     * @returns Array of Scalars.
     */
    testLoop(f, ins, batchSize, verbose = 0, steps) {
        return tfc.tidy(() => {
            const numSamples = this.checkNumSamples(ins, batchSize, steps, 'steps');
            const outs = [];
            if (verbose > 0) {
                throw new NotImplementedError('Verbose mode is not implemented yet.');
            }
            // TODO(cais): Use `indicesForConversionToDense' to prevent slow down.
            if (steps != null) {
                throw new NotImplementedError('steps mode in testLoop() is not implemented yet');
            }
            else {
                const batches = makeBatches(numSamples, batchSize);
                const indexArray = tensor1d(range(0, numSamples));
                for (let batchIndex = 0; batchIndex < batches.length; ++batchIndex) {
                    const batchStart = batches[batchIndex][0];
                    const batchEnd = batches[batchIndex][1];
                    const batchIds = K.sliceAlongFirstAxis(indexArray, batchStart, batchEnd - batchStart);
                    // TODO(cais): In ins, train flag can be a number, instead of an
                    //   Tensor? Do we need to handle this in tfjs-layers?
                    const insBatch = sliceArraysByIndices(ins, batchIds);
                    const batchOuts = f(insBatch);
                    if (batchIndex === 0) {
                        for (let i = 0; i < batchOuts.length; ++i) {
                            outs.push(scalar(0));
                        }
                    }
                    for (let i = 0; i < batchOuts.length; ++i) {
                        const batchOut = batchOuts[i];
                        outs[i] =
                            tfc.add(outs[i], tfc.mul(batchEnd - batchStart, batchOut));
                    }
                }
                for (let i = 0; i < outs.length; ++i) {
                    outs[i] = tfc.div(outs[i], numSamples);
                }
            }
            return outs;
        });
    }
    getDedupedMetricsNames() {
        const outLabels = this.metricsNames;
        // Rename duplicated metrics names (can happen with an output layer
        // shared among multiple dataflows).
        const dedupedOutLabels = [];
        for (let i = 0; i < outLabels.length; ++i) {
            const label = outLabels[i];
            let newLabel = label;
            if (count(outLabels, label) > 1) {
                const dupIndex = count(outLabels.slice(0, i), label);
                newLabel += `_${dupIndex}`;
            }
            dedupedOutLabels.push(newLabel);
        }
        return dedupedOutLabels;
    }
    /**
     * Creates a function that performs the following actions:
     *
     * 1. computes the losses
     * 2. sums them to get the total loss
     * 3. call the optimizer computes the gradients of the LayersModel's
     *    trainable weights w.r.t. the total loss and update the variables
     * 4. calculates the metrics
     * 5. returns the values of the losses and metrics.
     */
    makeTrainFunction() {
        return (data) => {
            const lossValues = [];
            const inputs = data.slice(0, this.inputs.length);
            const targets = data.slice(this.inputs.length, this.inputs.length + this.outputs.length);
            const sampleWeights = data.slice(this.inputs.length + this.outputs.length, this.inputs.length + this.outputs.length * 2);
            const metricsValues = [];
            // Create a function that computes the total loss based on the
            // inputs. This function is used for obtaining gradients through
            // backprop.
            const totalLossFunction = () => {
                const feeds = [];
                for (let i = 0; i < this.inputs.length; ++i) {
                    feeds.push({ key: this.inputs[i], value: inputs[i] });
                }
                const feedDict = new FeedDict(feeds);
                const outputs = execute(this.outputs, feedDict, { 'training': true });
                // TODO(cais): Take care of the case of multiple outputs from a
                //   single layer?
                let totalLoss;
                for (let i = 0; i < this.lossFunctions.length; ++i) {
                    const lossFunction = this.lossFunctions[i];
                    let loss = lossFunction(targets[i], outputs[i]);
                    if (sampleWeights[i] != null) {
                        loss = computeWeightedLoss(loss, sampleWeights[i]);
                    }
                    // TODO(cais): push Scalar instead.
                    const meanLoss = tfc.mean(loss);
                    // TODO(cais): Use a scope() instead, to avoid ownership.
                    lossValues.push(meanLoss);
                    if (i === 0) {
                        totalLoss = loss;
                    }
                    else {
                        totalLoss = tfc.add(totalLoss, loss);
                    }
                }
                // Compute the metrics.
                // TODO(cais): These should probably be calculated outside
                //   totalLossFunction to benefit speed?
                for (let i = 0; i < this.metricsTensors.length; ++i) {
                    let weightedMetric;
                    if (this.outputs.length > 1 && i < this.outputs.length) {
                        weightedMetric = lossValues[i];
                    }
                    else {
                        const metric = this.metricsTensors[i][0];
                        const outputIndex = this.metricsTensors[i][1];
                        weightedMetric =
                            tfc.mean(metric(targets[outputIndex], outputs[outputIndex]));
                    }
                    tfc.keep(weightedMetric);
                    // TODO(cais): Use a scope() instead, to avoid ownership.
                    metricsValues.push(weightedMetric);
                }
                totalLoss = tfc.mean(totalLoss);
                // Add regularizer penalties.
                this.calculateLosses().forEach(regularizerLoss => {
                    totalLoss = tfc.add(totalLoss, regularizerLoss);
                });
                return totalLoss;
            };
            const variables = this.collectedTrainableWeights.map(param => param.read());
            const returnCost = true;
            const totalLossValue = this.optimizer_.minimize(totalLossFunction, returnCost, variables);
            return [totalLossValue].concat(metricsValues);
        };
    }
    /**
     * Create a function which, when invoked with an array of `tf.Tensor`s as a
     * batch of inputs, returns the prespecified loss and metrics of the model
     * under the batch of input data.
     */
    makeTestFunction() {
        this.testFunction = (data) => {
            return tfc.tidy(() => {
                const valOutputs = [];
                let totalLoss;
                const inputs = data.slice(0, this.inputs.length);
                const targets = data.slice(this.inputs.length, this.inputs.length + this.outputs.length);
                const feeds = [];
                for (let i = 0; i < this.inputs.length; ++i) {
                    feeds.push({ key: this.inputs[i], value: inputs[i] });
                }
                const feedDict = new FeedDict(feeds);
                const outputs = execute(this.outputs, feedDict);
                // Compute total loss.
                for (let i = 0; i < this.lossFunctions.length; ++i) {
                    const lossFunction = this.lossFunctions[i];
                    // TODO(cais): Add sample weighting and replace the simple
                    // averaging.
                    const loss = tfc.mean(lossFunction(targets[i], outputs[i]));
                    if (i === 0) {
                        totalLoss = loss;
                    }
                    else {
                        totalLoss = tfc.add(totalLoss, loss);
                    }
                    valOutputs.push(totalLoss);
                }
                // Compute the metrics.
                for (let i = 0; i < this.metricsTensors.length; ++i) {
                    const metric = this.metricsTensors[i][0];
                    const outputIndex = this.metricsTensors[i][1];
                    // TODO(cais): Replace K.mean() with a proper weighting function.
                    const meanMetric = tfc.mean(metric(targets[outputIndex], outputs[outputIndex]));
                    valOutputs.push(meanMetric);
                }
                return valOutputs;
            });
        };
    }
    /**
     * Trains the model for a fixed number of epochs (iterations on a
     * dataset).
     *
     * ```js
     * const model = tf.sequential({
     *     layers: [tf.layers.dense({units: 1, inputShape: [10]})]
     * });
     * model.compile({optimizer: 'sgd', loss: 'meanSquaredError'});
     * for (let i = 1; i < 5 ; ++i) {
     *   const h = await model.fit(tf.ones([8, 10]), tf.ones([8, 1]), {
     *       batchSize: 4,
     *       epochs: 3
     *   });
     *   console.log("Loss after Epoch " + i + " : " + h.history.loss[0]);
     * }
     * ```
     *
     * @param x `tf.Tensor` of training data, or an array of `tf.Tensor`s if the
     * model has multiple inputs. If all inputs in the model are named, you
     * can also pass a dictionary mapping input names to `tf.Tensor`s.
     * @param y `tf.Tensor` of target (label) data, or an array of `tf.Tensor`s if
     * the model has multiple outputs. If all outputs in the model are named,
     * you can also pass a dictionary mapping output names to `tf.Tensor`s.
     * @param args A `ModelFitArgs`, containing optional fields.
     *
     * @return A `History` instance. Its `history` attribute contains all
     *   information collected during training.
     *
     * @exception ValueError In case of mismatch between the provided input
     * data and what the model expects.
     *
     * @doc {heading: 'Models', subheading: 'Classes'}
     */
    async fit(x, y, args = {}) {
        if (this.isTraining) {
            throw new Error('Cannot start training because another fit() call is ongoing.');
        }
        this.isTraining = true;
        let inputs;
        let targets;
        let originalInputs;
        let originalTargets;
        let inputValX;
        let inputValY;
        let valX;
        let valY;
        let sampleWeights;
        try {
            const batchSize = args.batchSize == null ? 32 : args.batchSize;
            checkBatchSize(batchSize);
            // Validate user data.
            // TODO(cais): Support sampleWeight.
            const checkBatchAxis = false;
            const standardizedOuts = await this.standardizeUserData(x, y, args.sampleWeight, args.classWeight, checkBatchAxis, batchSize);
            inputs = standardizedOuts[0];
            targets = standardizedOuts[1];
            sampleWeights = standardizedOuts[2];
            // Prepare validation data.
            let doValidation = false;
            let valIns;
            if (args.validationData != null && args.validationData.length > 0) {
                doValidation = true;
                if (args.validationData.length === 2) {
                    // config.validationData consists of valX and valY.
                    inputValX = args.validationData[0];
                    inputValY = args.validationData[1];
                }
                else if (args.validationData.length === 3) {
                    throw new NotImplementedError('validationData including sample weights is not supported yet.');
                }
                else {
                    throw new ValueError(`When passing validation data, it must contain 2 (valX, valY) ` +
                        `or 3 (valX, valY, valSampleWeight) items; ` +
                        `${args.validationData} is invalid.`);
                }
                const checkBatchAxis = true;
                const valStandardized = await this.standardizeUserData(inputValX, inputValY, null, /** Unused sample weights. */ null, /** Unused class weights. */ checkBatchAxis, batchSize);
                valX = valStandardized[0];
                valY = valStandardized[1];
                valIns = valX.concat(valY);
                // TODO(cais): Add useLearningPhase data properly.
            }
            else if (args.validationSplit != null && args.validationSplit > 0 &&
                args.validationSplit < 1) {
                doValidation = true;
                // Porting Note: In tfjs-layers, inputs[0] is always a Tensor.
                const splitAt = Math.floor(inputs[0].shape[0] * (1 - args.validationSplit));
                const originalBatchSize = inputs[0].shape[0];
                valX = sliceArrays(inputs, splitAt, originalBatchSize);
                originalInputs = inputs;
                inputs = sliceArrays(inputs, 0, splitAt);
                valY = sliceArrays(targets, splitAt, originalBatchSize);
                originalTargets = targets;
                targets = sliceArrays(targets, 0, splitAt);
                // TODO(cais): Once sampleWeights becomes available, slice it to get
                //   valSampleWeights.
                valIns = valX.concat(valY);
                // TODO(cais): Add useLearningPhase data properly.
            }
            else if (args.validationSteps != null) {
                doValidation = true;
                // TODO(cais): Add useLearningPhase.
            }
            const ins = inputs.concat(targets).concat(sampleWeights);
            this.checkTrainableWeightsConsistency();
            // TODO(cais): Handle use_learning_phase and learning_phase?
            // Porting Note: Here we see a key deviation of tfjs-layers from
            // Keras.
            //  Due to the imperative nature of tfjs-layers' backend (tfjs-core),
            //  we do not construct symbolic computation graphs to embody the
            //  training process. Instead, we define a function that performs the
            //  training action. In PyKeras, the data (inputs and targets) are fed
            //  through graph placeholders. In tfjs-layers, the data are fed as
            //  function arguments. Since the function are defined below in the
            //  scope, we don't have equivalents of PyKeras's
            //  `_make_train_funciton`.
            const trainFunction = this.makeTrainFunction();
            const outLabels = this.getDedupedMetricsNames();
            let valFunction;
            let callbackMetrics;
            if (doValidation) {
                this.makeTestFunction();
                valFunction = this.testFunction;
                callbackMetrics =
                    outLabels.slice().concat(outLabels.map(n => 'val_' + n));
            }
            else {
                valFunction = null;
                valIns = [];
                callbackMetrics = outLabels.slice();
            }
            const callbacks = standardizeCallbacks(args.callbacks, args.yieldEvery);
            const out = await this.fitLoop(trainFunction, ins, outLabels, batchSize, args.epochs, args.verbose, callbacks, valFunction, valIns, args.shuffle, callbackMetrics, args.initialEpoch, null, null);
            return out;
        }
        finally {
            this.isTraining = false;
            // Memory clean up.
            disposeNewTensors(inputs, x);
            disposeNewTensors(targets, y);
            disposeNewTensors(originalInputs, x);
            disposeNewTensors(originalTargets, y);
            disposeNewTensors(valX, inputValX);
            disposeNewTensors(valY, inputValY);
            if (sampleWeights != null) {
                tfc.dispose(sampleWeights);
            }
        }
        // TODO(cais): Add value to outLabels.
    }
    /**
     * Abstract fit function for `f(ins)`.
     * @param f A Function returning a list of tensors. For training, this
     *   function is expected to perform the updates to the variables.
     * @param ins List of tensors to be fed to `f`.
     * @param outLabels List of strings, display names of the outputs of `f`.
     * @param batchSize Integer batch size or `== null` if unknown. Default : 32.
     * @param epochs Number of times to iterate over the data. Default : 1.
     * @param verbose Verbosity mode: 0, 1, or 2. Default: 1.
     * @param callbacks List of callbacks to be called during training.
     * @param valF Function to call for validation.
     * @param valIns List of tensors to be fed to `valF`.
     * @param shuffle Whether to shuffle the data at the beginning of every
     * epoch. Default : true.
     * @param callbackMetrics List of strings, the display names of the metrics
     *   passed to the callbacks. They should be the concatenation of the
     *   display names of the outputs of `f` and the list of display names
     *   of the outputs of `valF`.
     * @param initialEpoch Epoch at which to start training (useful for
     *   resuming a previous training run). Default : 0.
     * @param stepsPerEpoch Total number of steps (batches on samples) before
     *   declaring one epoch finished and starting the next epoch. Ignored with
     *   the default value of `undefined` or `null`.
     * @param validationSteps Number of steps to run validation for (only if
     *   doing validation from data tensors). Not applicable for tfjs-layers.
     * @returns A `History` object.
     */
    async fitLoop(f, ins, outLabels, batchSize, epochs, verbose, callbacks, valF, valIns, shuffle, callbackMetrics, initialEpoch, stepsPerEpoch, validationSteps) {
        if (batchSize == null) {
            batchSize = 32;
        }
        if (epochs == null) {
            epochs = 1;
        }
        if (shuffle == null) {
            shuffle = true;
        }
        if (initialEpoch == null) {
            initialEpoch = 0;
        }
        // TODO(cais): Change const to let below when implementing validation.
        let doValidation = false;
        if (valF != null && valIns != null) {
            doValidation = true;
            // TODO(cais): verbose message.
        }
        if (validationSteps != null) {
            doValidation = true;
            if (stepsPerEpoch == null) {
                throw new ValueError('Can only use `validationSteps` when doing step-wise training, ' +
                    'i.e., `stepsPerEpoch` must be set.');
            }
        }
        const numTrainSamples = this.checkNumSamples(ins, batchSize, stepsPerEpoch, 'steps_per_epoch');
        let indexArray;
        if (numTrainSamples != null) {
            indexArray = range(0, numTrainSamples);
        }
        if (verbose == null) {
            verbose = 1;
        }
        const { callbackList, history } = configureCallbacks(callbacks, verbose, epochs, initialEpoch, numTrainSamples, stepsPerEpoch, batchSize, doValidation, callbackMetrics);
        callbackList.setModel(this);
        this.history = history;
        await callbackList.onTrainBegin();
        this.stopTraining_ = false;
        // TODO(cais): Take care of callbacks.validation_data as in PyKeras.
        // TODO(cais): Pre-convert feeds for performance as in PyKeras.
        for (let epoch = initialEpoch; epoch < epochs; ++epoch) {
            await callbackList.onEpochBegin(epoch);
            const epochLogs = {};
            if (stepsPerEpoch != null) {
                throw new NotImplementedError('stepsPerEpoch mode is not implemented yet.');
            }
            else {
                if (shuffle === 'batch') {
                    throw new NotImplementedError('batch shuffling is not implemneted'
                        + ' yet');
                }
                else if (shuffle) {
                    util.shuffle(indexArray);
                }
                // Convert the potentially shuffled indices to Tensor1D, to avoid the
                // cost of repeated creation of Array1Ds later on.
                const epochIndexArray1D = tensor1d(indexArray);
                const batches = makeBatches(numTrainSamples, batchSize);
                for (let batchIndex = 0; batchIndex < batches.length; ++batchIndex) {
                    const batchLogs = {};
                    await callbackList.onBatchBegin(batchIndex, batchLogs);
                    tfc.tidy(() => {
                        const batchStart = batches[batchIndex][0];
                        const batchEnd = batches[batchIndex][1];
                        const batchIds = K.sliceAlongFirstAxis(epochIndexArray1D, batchStart, batchEnd - batchStart);
                        batchLogs['batch'] = batchIndex;
                        batchLogs['size'] = batchEnd - batchStart;
                        // TODO(cais): In ins, train flag can be a number, instead of an
                        //   Tensor? Do we need to handle this in tfjs-layers?
                        const insBatch = sliceArraysByIndices(ins, batchIds);
                        const outs = f(insBatch);
                        for (let i = 0; i < outLabels.length; ++i) {
                            const label = outLabels[i];
                            const out = outs[i];
                            batchLogs[label] = out;
                            tfc.keep(out);
                            // TODO(cais): Use scope() to avoid ownership.
                        }
                        if (batchIndex === batches.length - 1) { // Last batch.
                            if (doValidation) {
                                const valOuts = this.testLoop(valF, valIns, batchSize);
                                // Porting Notes: In tfjs-layers, valOuts is always an Array.
                                for (let i = 0; i < outLabels.length; ++i) {
                                    const label = outLabels[i];
                                    const out = valOuts[i];
                                    tfc.keep(out);
                                    // TODO(cais): Use scope() to avoid ownership.
                                    epochLogs['val_' + label] = out;
                                }
                            }
                        }
                    });
                    await callbackList.onBatchEnd(batchIndex, batchLogs);
                    disposeTensorsInLogs(batchLogs);
                    if (this.stopTraining_) {
                        break;
                    }
                    // TODO(cais): return outs as list of Tensor.
                }
                epochIndexArray1D.dispose();
            }
            // TODO(cais): Run validation at the end of the epoch.
            await callbackList.onEpochEnd(epoch, epochLogs);
            if (this.stopTraining_) {
                break;
            }
        }
        await callbackList.onTrainEnd();
        await this.history.syncData();
        return this.history;
    }
    // TODO(cais): Add code snippet below when it's possible to instantiate
    //   actual dataset objects.
    /**
     * Trains the model using a dataset object.
     *
     * @param dataset A dataset object. Its `iterator()` method is expected
     *   to generate a dataset iterator object, the `next()` method of which
     *   is expected to produce data batches for training. The return value
     *   of the `next()` call ought to contain a boolean `done` field and a
     *   `value` field. The `value` field is expected to be an array of two
     *   `tf.Tensor`s or an array of two nested `tf.Tensor` structures. The former
     *   case is for models with exactly one input and one output (e.g.
     *   a sequential model). The latter case is for models with multiple
     *   inputs and/or multiple outputs.
     *   Of the two items in the array, the first is the input feature(s) and
     *   the second is the output target(s).
     * @param args A `ModelFitDatasetArgs`, containing optional fields.
     *
     * @return A `History` instance. Its `history` attribute contains all
     *   information collected during training.
     *
     * @doc {heading: 'Models', subheading: 'Classes'}
     */
    async fitDataset(dataset, args) {
        return fitDataset(this, dataset, args);
    }
    /**
     * Runs a single gradient update on a single batch of data.
     *
     * This method differs from `fit()` and `fitDataset()` in the following
     * regards:
     *   - It operates on exactly one batch of data.
     *   - It returns only the loss and metric values, instead of
     *     returning the batch-by-batch loss and metric values.
     *   - It doesn't support fine-grained options such as verbosity and
     *     callbacks.
     *
     * @param x Input data. It could be one of the following:
     *   - A `tf.Tensor`, or an Array of `tf.Tensor`s (in case the model has
     *     multiple inputs).
     *   - An Object mapping input names to corresponding `tf.Tensor` (if the
     *     model has named inputs).
     * @param y Target data. It could be either a `tf.Tensor` or multiple
     *   `tf.Tensor`s. It should be consistent with `x`.
     * @returns Training loss or losses (in case the model has
     *   multiple outputs), along with metrics (if any), as numbers.
     *
     * @doc {heading: 'Models', subheading: 'Classes'}
     */
    async trainOnBatch(x, y) {
        // TODO(cais): Support sampleWeight and classWeight.
        // TODO(cais): Support Dataset objects.
        const standardizeOut = await this.standardizeUserData(x, y);
        const inputs = standardizeOut[0];
        const targets = standardizeOut[1];
        const trainFunction = this.makeTrainFunction();
        const losses = trainFunction(inputs.concat(targets));
        const lossValues = [];
        for (const loss of losses) {
            const v = await loss.data();
            lossValues.push(v[0]);
        }
        tfc.dispose(losses);
        disposeNewTensors(standardizeOut[0], x);
        disposeNewTensors(standardizeOut[1], y);
        return singletonOrArray(lossValues);
    }
    /**
     * Extract weight values of the model.
     *
     * @param config: An instance of `io.SaveConfig`, which specifies
     * model-saving options such as whether only trainable weights are to be
     * saved.
     * @returns A `NamedTensorMap` mapping original weight names (i.e.,
     *   non-uniqueified weight names) to their values.
     */
    getNamedWeights(config) {
        const namedWeights = [];
        const trainableOnly = config != null && config.trainableOnly;
        const weights = trainableOnly ? this.trainableWeights : this.weights;
        const weightValues = this.getWeights(trainableOnly);
        for (let i = 0; i < weights.length; ++i) {
            if (trainableOnly && !weights[i].trainable) {
                // Optionally skip non-trainable weights.
                continue;
            }
            namedWeights.push({ name: weights[i].originalName, tensor: weightValues[i] });
        }
        return namedWeights;
    }
    /**
     * Setter used for force stopping of LayersModel.fit() (i.e., training).
     *
     * Example:
     *
     * ```js
     * const input = tf.input({shape: [10]});
     * const output = tf.layers.dense({units: 1}).apply(input);
     * const model = tf.model({inputs: [input], outputs: [output]});
     * model.compile({loss: 'meanSquaredError', optimizer: 'sgd'});
     * const xs = tf.ones([8, 10]);
     * const ys = tf.zeros([8, 1]);
     *
     * const history = await model.fit(xs, ys, {
     *   epochs: 10,
     *   callbacks: {
     *     onEpochEnd: async (epoch, logs) => {
     *       if (epoch === 2) {
     *         model.stopTraining = true;
     *       }
     *     }
     *   }
     * });
     *
     * // There should be only 3 values in the loss array, instead of 10
     * values,
     * // due to the stopping after 3 epochs.
     * console.log(history.history.loss);
     * ```
     */
    set stopTraining(stop) {
        this.stopTraining_ = stop;
    }
    get stopTraining() {
        return this.stopTraining_;
    }
    get optimizer() {
        return this.optimizer_;
    }
    set optimizer(optimizer) {
        if (this.optimizer_ !== optimizer) {
            this.optimizer_ = optimizer;
            this.isOptimizerOwned = false;
        }
    }
    dispose() {
        const result = super.dispose();
        if (result.refCountAfterDispose === 0 && this.optimizer != null &&
            this.isOptimizerOwned) {
            const numTensorsBeforeOptmizerDisposal = tfc.memory().numTensors;
            this.optimizer_.dispose();
            result.numDisposedVariables +=
                numTensorsBeforeOptmizerDisposal - tfc.memory().numTensors;
        }
        return result;
    }
    getLossIdentifiers() {
        let lossNames;
        if (typeof this.loss === 'string') {
            lossNames = toSnakeCase(this.loss);
        }
        else if (Array.isArray(this.loss)) {
            for (const loss of this.loss) {
                if (typeof loss !== 'string') {
                    throw new Error('Serialization of non-string loss is not supported.');
                }
            }
            lossNames = this.loss.map(name => toSnakeCase(name));
        }
        else {
            const outputNames = Object.keys(this.loss);
            lossNames = {};
            const losses = this.loss;
            for (const outputName of outputNames) {
                if (typeof losses[outputName] === 'string') {
                    lossNames[outputName] =
                        toSnakeCase(losses[outputName]);
                }
                else {
                    throw new Error('Serialization of non-string loss is not supported.');
                }
            }
        }
        return lossNames;
    }
    getMetricIdentifiers() {
        if (typeof this.metrics === 'string' ||
            typeof this.metrics === 'function') {
            return [toSnakeCase(Metrics.getLossOrMetricName(this.metrics))];
        }
        else if (Array.isArray(this.metrics)) {
            return this.metrics.map(metric => toSnakeCase(Metrics.getLossOrMetricName(metric)));
        }
        else {
            const metricsIdentifiers = {};
            for (const key in this.metrics) {
                metricsIdentifiers[key] =
                    toSnakeCase(Metrics.getLossOrMetricName(this.metrics[key]));
            }
            return metricsIdentifiers;
        }
    }
    getTrainingConfig() {
        return {
            loss: this.getLossIdentifiers(),
            metrics: this.getMetricIdentifiers(),
            optimizer_config: {
                class_name: this.optimizer.getClassName(),
                config: this.optimizer.getConfig()
            }
        };
        // TODO(cais): Add weight_metrics when they are supported.
        // TODO(cais): Add sample_weight_mode when it's supported.
        // TODO(cais): Add loss_weights when it's supported.
    }
    loadTrainingConfig(trainingConfig) {
        if (trainingConfig.weighted_metrics != null) {
            throw new Error('Loading weight_metrics is not supported yet.');
        }
        if (trainingConfig.loss_weights != null) {
            throw new Error('Loading loss_weights is not supported yet.');
        }
        if (trainingConfig.sample_weight_mode != null) {
            throw new Error('Loading sample_weight_mode is not supported yet.');
        }
        const tsConfig = convertPythonicToTs(trainingConfig.optimizer_config);
        const optimizer = deserialize(tsConfig);
        let loss;
        if (typeof trainingConfig.loss === 'string') {
            loss = toCamelCase(trainingConfig.loss);
        }
        else if (Array.isArray(trainingConfig.loss)) {
            loss = trainingConfig.loss.map(lossEntry => toCamelCase(lossEntry));
        }
        else if (trainingConfig.loss != null) {
            loss = {};
            for (const key in trainingConfig.loss) {
                loss[key] = toCamelCase(trainingConfig.loss[key]);
            }
        }
        let metrics;
        if (Array.isArray(trainingConfig.metrics)) {
            metrics = trainingConfig.metrics.map(metric => toCamelCase(metric));
        }
        else if (trainingConfig.metrics != null) {
            metrics = {};
            for (const key in trainingConfig.metrics) {
                metrics[key] = toCamelCase(trainingConfig.metrics[key]);
            }
        }
        this.compile({ loss, metrics, optimizer });
    }
    /**
     * Save the configuration and/or weights of the LayersModel.
     *
     * An `IOHandler` is an object that has a `save` method of the proper
     * signature defined. The `save` method manages the storing or
     * transmission of serialized data ("artifacts") that represent the
     * model's topology and weights onto or via a specific medium, such as
     * file downloads, local storage, IndexedDB in the web browser and HTTP
     * requests to a server. TensorFlow.js provides `IOHandler`
     * implementations for a number of frequently used saving mediums, such as
     * `tf.io.browserDownloads` and `tf.io.browserLocalStorage`. See `tf.io`
     * for more details.
     *
     * This method also allows you to refer to certain types of `IOHandler`s
     * as URL-like string shortcuts, such as 'localstorage://' and
     * 'indexeddb://'.
     *
     * Example 1: Save `model`'s topology and weights to browser [local
     * storage](https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage);
     * then load it back.
     *
     * ```js
     * const model = tf.sequential(
     *     {layers: [tf.layers.dense({units: 1, inputShape: [3]})]});
     * console.log('Prediction from original model:');
     * model.predict(tf.ones([1, 3])).print();
     *
     * const saveResults = await model.save('localstorage://my-model-1');
     *
     * const loadedModel = await tf.loadLayersModel('localstorage://my-model-1');
     * console.log('Prediction from loaded model:');
     * loadedModel.predict(tf.ones([1, 3])).print();
     * ```
     *
     * Example 2. Saving `model`'s topology and weights to browser
     * [IndexedDB](https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API);
     * then load it back.
     *
     * ```js
     * const model = tf.sequential(
     *     {layers: [tf.layers.dense({units: 1, inputShape: [3]})]});
     * console.log('Prediction from original model:');
     * model.predict(tf.ones([1, 3])).print();
     *
     * const saveResults = await model.save('indexeddb://my-model-1');
     *
     * const loadedModel = await tf.loadLayersModel('indexeddb://my-model-1');
     * console.log('Prediction from loaded model:');
     * loadedModel.predict(tf.ones([1, 3])).print();
     * ```
     *
     * Example 3. Saving `model`'s topology and weights as two files
     * (`my-model-1.json` and `my-model-1.weights.bin`) downloaded from
     * browser.
     *
     * ```js
     * const model = tf.sequential(
     *     {layers: [tf.layers.dense({units: 1, inputShape: [3]})]});
     * const saveResults = await model.save('downloads://my-model-1');
     * ```
     *
     * Example 4. Send  `model`'s topology and weights to an HTTP server.
     * See the documentation of `tf.io.http` for more details
     * including specifying request parameters and implementation of the
     * server.
     *
     * ```js
     * const model = tf.sequential(
     *     {layers: [tf.layers.dense({units: 1, inputShape: [3]})]});
     * const saveResults = await model.save('http://my-server/model/upload');
     * ```
     *
     * @param handlerOrURL An instance of `IOHandler` or a URL-like,
     * scheme-based string shortcut for `IOHandler`.
     * @param config Options for saving the model.
     * @returns A `Promise` of `SaveResult`, which summarizes the result of
     * the saving, such as byte sizes of the saved artifacts for the model's
     *   topology and weight values.
     *
     * @doc {heading: 'Models', subheading: 'Classes', ignoreCI: true}
     */
    async save(handlerOrURL, config) {
        if (typeof handlerOrURL === 'string') {
            const handlers = io.getSaveHandlers(handlerOrURL);
            if (handlers.length === 0) {
                throw new ValueError(`Cannot find any save handlers for URL '${handlerOrURL}'`);
            }
            else if (handlers.length > 1) {
                throw new ValueError(`Found more than one (${handlers.length}) save handlers for ` +
                    `URL '${handlerOrURL}'`);
            }
            handlerOrURL = handlers[0];
        }
        if (handlerOrURL.save == null) {
            throw new ValueError('LayersModel.save() cannot proceed because the IOHandler ' +
                'provided does not have the `save` attribute defined.');
        }
        const weightDataAndSpecs = await io.encodeWeights(this.getNamedWeights(config));
        const returnString = false;
        const unusedArg = null;
        const modelConfig = this.toJSON(unusedArg, returnString);
        const modelArtifacts = {
            modelTopology: modelConfig,
            format: LAYERS_MODEL_FORMAT_NAME,
            generatedBy: `TensorFlow.js tfjs-layers v${version}`,
            convertedBy: null,
        };
        const includeOptimizer = config == null ? false : config.includeOptimizer;
        if (includeOptimizer && this.optimizer != null) {
            modelArtifacts.trainingConfig = this.getTrainingConfig();
            const weightType = 'optimizer';
            const { data: optimizerWeightData, specs: optimizerWeightSpecs } = await io.encodeWeights(await this.optimizer.getWeights(), weightType);
            weightDataAndSpecs.specs.push(...optimizerWeightSpecs);
            weightDataAndSpecs.data = io.concatenateArrayBuffers([weightDataAndSpecs.data, optimizerWeightData]);
        }
        if (this.userDefinedMetadata != null) {
            // Check serialized size of user-defined metadata.
            const checkSize = true;
            checkUserDefinedMetadata(this.userDefinedMetadata, this.name, checkSize);
            modelArtifacts.userDefinedMetadata = this.userDefinedMetadata;
        }
        modelArtifacts.weightData = weightDataAndSpecs.data;
        modelArtifacts.weightSpecs = weightDataAndSpecs.specs;
        return handlerOrURL.save(modelArtifacts);
    }
    /**
     * Set user-defined metadata.
     *
     * The set metadata will be serialized together with the topology
     * and weights of the model during `save()` calls.
     *
     * @param setUserDefinedMetadata
     */
    setUserDefinedMetadata(userDefinedMetadata) {
        checkUserDefinedMetadata(userDefinedMetadata, this.name);
        this.userDefinedMetadata = userDefinedMetadata;
    }
    /**
     * Get user-defined metadata.
     *
     * The metadata is supplied via one of the two routes:
     *   1. By calling `setUserDefinedMetadata()`.
     *   2. Loaded during model loading (if the model is constructed
     *      via `tf.loadLayersModel()`.)
     *
     * If no user-defined metadata is available from either of the
     * two routes, this function will return `undefined`.
     */
    getUserDefinedMetadata() {
        return this.userDefinedMetadata;
    }
}
// The class name is 'Model' rather than 'LayersModel' for backwards
// compatibility since this class name shows up in the serialization format.
/** @nocollapse */
LayersModel.className = 'Model';
export { LayersModel };
serialization.registerClass(LayersModel);
/**
 * A `tf.Functional` is an alias to `tf.LayersModel`.
 *
 * See also:
 *   `tf.LayersModel`, `tf.Sequential`, `tf.loadLayersModel`.
 */
/** @doc {heading: 'Models', subheading: 'Classes'} */
class Functional extends LayersModel {
}
Functional.className = 'Functional';
export { Functional };
serialization.registerClass(Functional);
//# sourceMappingURL=data:application/json;base64,eyJ2ZXJzaW9uIjozLCJmaWxlIjoidHJhaW5pbmcuanMiLCJzb3VyY2VSb290IjoiIiwic291cmNlcyI6WyIuLi8uLi8uLi8uLi8uLi8uLi90ZmpzLWxheWVycy9zcmMvZW5naW5lL3RyYWluaW5nLnRzIl0sIm5hbWVzIjpbXSwibWFwcGluZ3MiOiJBQUFBOzs7Ozs7OztHQVFHO0FBRUgseUNBQXlDO0FBRXpDLE9BQU8sS0FBSyxHQUFHLE1BQU0sdUJBQXVCLENBQUM7QUFDN0MsT0FBTyxFQUFDLEVBQUUsRUFBMEQsU0FBUyxFQUFVLE1BQU0sRUFBRSxhQUFhLEVBQUUsTUFBTSxFQUFZLFFBQVEsRUFBRSxJQUFJLEVBQUMsTUFBTSx1QkFBdUIsQ0FBQztBQUU3SyxPQUFPLEtBQUssQ0FBQyxNQUFNLHlCQUF5QixDQUFDO0FBQzdDLE9BQU8sRUFBZSxrQkFBa0IsRUFBa0Msb0JBQW9CLEVBQUMsTUFBTSxtQkFBbUIsQ0FBQztBQUN6SCxPQUFPLEVBQUMsU0FBUyxFQUFDLE1BQU0sV0FBVyxDQUFDO0FBQ3BDLE9BQU8sRUFBQyxtQkFBbUIsRUFBRSxZQUFZLEVBQUUsVUFBVSxFQUFDLE1BQU0sV0FBVyxDQUFDO0FBS3hFLE9BQU8sRUFBQyxXQUFXLEVBQUMsTUFBTSx5QkFBeUIsQ0FBQztBQUNwRCxPQUFPLEVBQUUsb0JBQW9CLEVBQWtCLE1BQU0sU0FBUyxDQUFDO0FBQy9ELE9BQU8sS0FBSyxNQUFNLE1BQU0sV0FBVyxDQUFDO0FBQ3BDLE9BQU8sS0FBSyxPQUFPLE1BQU0sWUFBWSxDQUFDO0FBQ3RDLE9BQU8sS0FBSyxVQUFVLE1BQU0sZUFBZSxDQUFDO0FBRTVDLE9BQU8sRUFBQyx3QkFBd0IsRUFBQyxNQUFNLDBCQUEwQixDQUFDO0FBQ2xFLE9BQU8sRUFBQyxLQUFLLEVBQUUsWUFBWSxFQUFFLGdCQUFnQixFQUFFLFdBQVcsRUFBRSxXQUFXLEVBQUUsTUFBTSxFQUFDLE1BQU0sd0JBQXdCLENBQUM7QUFDL0csT0FBTyxFQUFDLFlBQVksRUFBQyxNQUFNLHNCQUFzQixDQUFDO0FBQ2xELE9BQU8sRUFBQyxLQUFLLEVBQUMsTUFBTSxxQkFBcUIsQ0FBQztBQUMxQyxPQUFPLEVBQUMsbUJBQW1CLEVBQUMsTUFBTSw4QkFBOEIsQ0FBQztBQUVqRSxPQUFPLEVBQUMsT0FBTyxFQUFDLE1BQU0sWUFBWSxDQUFDO0FBRW5DLE9BQU8sRUFBQyxTQUFTLEVBQWdCLE1BQU0sYUFBYSxDQUFDO0FBRXJELE9BQU8sRUFBQyxPQUFPLEVBQUUsUUFBUSxFQUFDLE1BQU0sWUFBWSxDQUFDO0FBRTdDLE9BQU8sRUFBQyxlQUFlLEVBQUUsVUFBVSxFQUFnRCxNQUFNLG9CQUFvQixDQUFDO0FBQzlHLE9BQU8sRUFBQyxjQUFjLEVBQUUsaUJBQWlCLEVBQUUsMEJBQTBCLEVBQUUsV0FBVyxFQUFnQixXQUFXLEVBQUUsb0JBQW9CLEVBQUMsTUFBTSxvQkFBb0IsQ0FBQztBQUMvSixPQUFPLEVBQThCLG1CQUFtQixFQUFFLHVCQUF1QixFQUFFLGtCQUFrQixFQUFDLE1BQU0sa0JBQWtCLENBQUM7QUFFL0g7O0dBRUc7QUFDSCxNQUFNLFVBQVUsWUFBWSxDQUFDLENBQytCO0lBQzFELE9BQU8sQ0FBQyxZQUFZLE1BQU0sQ0FBQztBQUM3QixDQUFDO0FBRUQ7O0dBRUc7QUFDSCxNQUFNLFVBQVUsV0FBVyxDQUFDLENBQzZCO0lBQ3ZELE9BQU8sS0FBSyxDQUFDLE9BQU8sQ0FBQyxDQUFDLENBQUMsQ0FBQztBQUMxQixDQUFDO0FBRUQ7O0dBRUc7QUFDSCxNQUFNLFVBQVUsVUFBVSxDQUFDLENBQzZCO0lBQ3RELE9BQU8sQ0FBQyxZQUFZLENBQUMsQ0FBQyxDQUFDLElBQUksQ0FBQyxXQUFXLENBQUMsQ0FBQyxDQUFDLENBQUM7QUFDN0MsQ0FBQztBQUVEOzs7Ozs7Ozs7O0dBVUc7QUFDSCxNQUFNLFVBQVUsb0JBQW9CLENBQ2hDLElBQW1ELEVBQUUsS0FBZSxFQUNwRSxNQUFnQixFQUFFLGNBQWMsR0FBRyxJQUFJLEVBQUUsZUFBZSxHQUFHLEVBQUU7SUFDL0QsSUFBSSxLQUFLLElBQUksSUFBSSxJQUFJLEtBQUssQ0FBQyxNQUFNLEtBQUssQ0FBQyxFQUFFO1FBQ3ZDLHlFQUF5RTtRQUN6RSxRQUFRO1FBQ1IsSUFBSSxJQUFJLElBQUksSUFBSSxFQUFFO1lBQ2hCLElBQUksaUJBQWlCLEdBQUcsS0FBSyxDQUFDO1lBQzlCLElBQUksV0FBVyxDQUFDLElBQUksQ0FBQyxJQUFLLElBQWlCLENBQUMsTUFBTSxHQUFHLENBQUMsRUFBRTtnQkFDdEQsaUJBQWlCLEdBQUcsSUFBSSxDQUFDO2FBQzFCO2lCQUFNLElBQUksVUFBVSxDQUFDLElBQUksQ0FBQyxFQUFFO2dCQUMzQixLQUFLLE1BQU0sR0FBRyxJQUFJLElBQUksRUFBRTtvQkFDdEIsSUFBSSxJQUFJLENBQUMsY0FBYyxDQUFDLEdBQUcsQ0FBQyxFQUFFO3dCQUM1QixpQkFBaUIsR0FBRyxJQUFJLENBQUM7d0JBQ3pCLE1BQU07cUJBQ1A7aUJBQ0Y7YUFDRjtpQkFBTTtnQkFDTCw2Q0FBNkM7Z0JBQzdDLGlCQUFpQixHQUFHLElBQUksQ0FBQzthQUMxQjtZQUNELElBQUksaUJBQWlCLEVBQUU7Z0JBQ3JCLE1BQU0sSUFBSSxVQUFVLENBQ2hCLDZCQUE2QixlQUFlLHFCQUFxQjtvQkFDakUsV0FBVyxJQUFJLEVBQUUsQ0FBQyxDQUFDO2FBQ3hCO1NBQ0Y7UUFDRCxPQUFPLEVBQUUsQ0FBQztLQUNYO0lBQ0QsSUFBSSxJQUFJLElBQUksSUFBSSxFQUFFO1FBQ2hCLE9BQU8sS0FBSyxDQUFDLEdBQUcsQ0FBQyxJQUFJLENBQUMsRUFBRSxDQUFDLElBQUksQ0FBQyxDQUFDO0tBQ2hDO0lBRUQsSUFBSSxNQUFnQixDQUFDO0lBQ3JCLElBQUksVUFBVSxDQUFDLElBQUksQ0FBQyxFQUFFO1FBQ3BCLElBQUksR0FBRyxJQUFxQyxDQUFDO1FBQzdDLE1BQU0sR0FBRyxFQUFFLENBQUM7UUFDWixLQUFLLE1BQU0sSUFBSSxJQUFJLEtBQUssRUFBRTtZQUN4QixJQUFJLElBQUksQ0FBQyxJQUFJLENBQUMsSUFBSSxJQUFJLEVBQUU7Z0JBQ3RCLE1BQU0sSUFBSSxVQUFVLENBQ2hCLHlCQUF5QixJQUFJLGdDQUFnQztvQkFDN0QsR0FBRyxLQUFLLEVBQUUsQ0FBQyxDQUFDO2FBQ2pCO1lBQ0QsTUFBTSxDQUFDLElBQUksQ0FBQyxJQUFJLENBQUMsSUFBSSxDQUFDLENBQUMsQ0FBQztTQUN6QjtLQUNGO1NBQU0sSUFBSSxXQUFXLENBQUMsSUFBSSxDQUFDLEVBQUU7UUFDNUIsSUFBSSxHQUFHLElBQWdCLENBQUM7UUFDeEIsSUFBSSxJQUFJLENBQUMsTUFBTSxLQUFLLEtBQUssQ0FBQyxNQUFNLEVBQUU7WUFDaEMsTUFBTSxJQUFJLFVBQVUsQ0FDaEIsNkJBQTZCLGVBQWUsaUJBQWlCO2dCQUM3RCxpRUFBaUU7Z0JBQ2pFLG1DQUFtQyxLQUFLLENBQUMsTUFBTSxrQkFBa0I7Z0JBQ2pFLGdEQUFnRCxJQUFJLEVBQUUsQ0FBQyxDQUFDO1NBQzdEO1FBQ0QsTUFBTSxHQUFHLElBQUksQ0FBQztLQUNmO1NBQU07UUFDTCxJQUFJLEdBQUcsSUFBYyxDQUFDO1FBQ3RCLElBQUksS0FBSyxDQUFDLE1BQU0sR0FBRyxDQUFDLEVBQUU7WUFDcEIsTUFBTSxJQUFJLFVBQVUsQ0FDaEIsYUFBYSxlQUFlLFlBQVksS0FBSyxDQUFDLE1BQU0sY0FBYztnQkFDbEUsMERBQ0ksSUFBSSxDQUFDLEtBQUssRUFBRSxDQUFDLENBQUM7U0FDdkI7UUFDRCxNQUFNLEdBQUcsQ0FBQyxJQUFJLENBQUMsQ0FBQztLQUNqQjtJQUVELE1BQU0sR0FBRywwQkFBMEIsQ0FBQyxNQUFNLENBQUMsQ0FBQztJQUU1Qyw2QkFBNkI7SUFDN0IsSUFBSSxNQUFNLElBQUksSUFBSSxFQUFFO1FBQ2xCLEtBQUssSUFBSSxDQUFDLEdBQUcsQ0FBQyxFQUFFLENBQUMsR0FBRyxLQUFLLENBQUMsTUFBTSxFQUFFLEVBQUUsQ0FBQyxFQUFFO1lBQ3JDLElBQUksTUFBTSxDQUFDLENBQUMsQ0FBQyxJQUFJLElBQUksRUFBRTtnQkFDckIsU0FBUzthQUNWO1lBQ0QsTUFBTSxLQUFLLEdBQUcsTUFBTSxDQUFDLENBQUMsQ0FBQyxDQUFDO1lBQ3hCLElBQUksS0FBSyxDQUFDLEtBQUssQ0FBQyxNQUFNLEtBQUssTUFBTSxDQUFDLENBQUMsQ0FBQyxDQUFDLE1BQU0sRUFBRTtnQkFDM0MsTUFBTSxJQUFJLFVBQVUsQ0FDaEIsdUJBQXVCLGVBQWUsY0FBYyxLQUFLLENBQUMsQ0FBQyxDQUFDLEdBQUc7b0JBQy9ELFdBQVcsTUFBTSxDQUFDLENBQUMsQ0FBQyxDQUFDLE1BQU0sb0NBQW9DO29CQUMvRCxTQUFTLEtBQUssQ0FBQyxLQUFLLEVBQUUsQ0FBQyxDQUFDO2FBQzdCO1lBQ0QsS0FBSyxJQUFJLENBQUMsR0FBRyxDQUFDLEVBQUUsQ0FBQyxHQUFHLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQyxNQUFNLEVBQUUsRUFBRSxDQUFDLEVBQUU7Z0JBQ3pDLElBQUksQ0FBQyxLQUFLLENBQUMsSUFBSSxDQUFDLGNBQWMsRUFBRTtvQkFDOUIsK0JBQStCO29CQUMvQixTQUFTO2lCQUNWO2dCQUNELE1BQU0sR0FBRyxHQUFHLEtBQUssQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLENBQUM7Z0JBQzNCLE1BQU0sTUFBTSxHQUFHLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQztnQkFDNUIsSUFBSSxNQUFNLElBQUksSUFBSSxJQUFJLE1BQU0sSUFBSSxDQUFDLElBQUksR0FBRyxLQUFLLE1BQU0sRUFBRTtvQkFDbkQsTUFBTSxJQUFJLFVBQVUsQ0FDaEIsR0FBRyxlQUFlLDJDQUEyQzt3QkFDN0Qsc0JBQXNCLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQyxLQUFLLENBQUMsQ0FBQyxFQUFFLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQyxNQUFNLENBQUMsSUFBSTt3QkFDOUQseUJBQ0ksTUFBTSxDQUFDLENBQUMsQ0FBQyxDQUFDLEtBQUssQ0FBQyxDQUFDLEVBQUUsTUFBTSxDQUFDLENBQUMsQ0FBQyxDQUFDLE1BQU0sQ0FBQyxJQUFJO3dCQUM1QyxZQUFZLGVBQWUsMkJBQ3ZCLEtBQUssQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLEVBQUU7d0JBQ3BCLCtCQUNJLEtBQUssQ0FBQyxLQUFLLENBQUMsS0FBSyxDQUFDLENBQUMsRUFBRSxLQUFLLENBQUMsS0FBSyxDQUFDLE1BQU0sQ0FBQyxHQUFHO3dCQUMvQyxtQkFBbUIsS0FBSyxDQUFDLEtBQUssSUFBSSxDQUFDLENBQUM7aUJBQ3pDO2FBQ0Y7U0FDRjtLQUNGO0lBQ0QsT0FBTyxNQUFNLENBQUM7QUFDaEIsQ0FBQztBQUVEOzs7Ozs7R0FNRztBQUNILE1BQU0sVUFBVSxpQkFBaUIsQ0FDN0IsTUFBZ0IsRUFBRSxPQUFpQixFQUFFLE9BQWtCO0lBQ3pELE1BQU0sSUFBSSxHQUFHLE1BQU0sQ0FBQyxNQUFNLENBQUMsR0FBRyxDQUFDLEtBQUssQ0FBQyxFQUFFLENBQUMsS0FBSyxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUM7SUFDekQsSUFBSSxDQUFDLElBQUksRUFBRSxDQUFDO0lBQ1osTUFBTSxJQUFJLEdBQUcsTUFBTSxDQUFDLE9BQU8sQ0FBQyxHQUFHLENBQUMsTUFBTSxDQUFDLEVBQUUsQ0FBQyxNQUFNLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQztJQUM1RCxJQUFJLENBQUMsSUFBSSxFQUFFLENBQUM7SUFDWix1Q0FBdUM7SUFDdkMsSUFBSSxJQUFJLENBQUMsTUFBTSxHQUFHLENBQUMsRUFBRTtRQUNuQixNQUFNLElBQUksVUFBVSxDQUNoQixnRUFBZ0U7WUFDaEUsb0JBQW9CO1lBQ3BCLEdBQUcsSUFBSSxDQUFDLFNBQVMsQ0FBQyxNQUFNLENBQUMsR0FBRyxDQUFDLEtBQUssQ0FBQyxFQUFFLENBQUMsS0FBSyxDQUFDLEtBQUssQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDO0tBQzVEO0lBQ0QsSUFBSSxJQUFJLENBQUMsTUFBTSxHQUFHLENBQUMsRUFBRTtRQUNuQixNQUFNLElBQUksVUFBVSxDQUNoQixpRUFBaUU7WUFDakUsb0JBQW9CO1lBQ3BCLEdBQUcsSUFBSSxDQUFDLFNBQVMsQ0FBQyxPQUFPLENBQUMsR0FBRyxDQUFDLE1BQU0sQ0FBQyxFQUFFLENBQUMsTUFBTSxDQUFDLEtBQUssQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDO0tBQy9EO0lBQ0QsSUFBSSxJQUFJLENBQUMsTUFBTSxHQUFHLENBQUMsSUFBSSxJQUFJLENBQUMsTUFBTSxHQUFHLENBQUMsSUFBSSxDQUFDLElBQUksQ0FBQyxXQUFXLENBQUMsSUFBSSxFQUFFLElBQUksQ0FBQyxFQUFFO1FBQ3ZFLE1BQU0sSUFBSSxVQUFVLENBQ2hCLGlFQUFpRTtZQUNqRSxrQkFBa0IsSUFBSSxDQUFDLENBQUMsQ0FBQyx3QkFBd0IsSUFBSSxDQUFDLENBQUMsQ0FBQyxVQUFVO1lBQ2xFLFlBQVksQ0FBQyxDQUFDO0tBQ25CO0FBQ0gsQ0FBQztBQUVEOzs7Ozs7OztHQVFHO0FBQ0gsU0FBUywrQkFBK0IsQ0FDcEMsT0FBaUIsRUFBRSxPQUF5QixFQUFFLFlBQXFCO0lBQ3JFLHVDQUF1QztJQUN2QyxNQUFNLFNBQVMsR0FBRztRQUNoQixNQUFNLENBQUMsZ0JBQWdCLEVBQUUsTUFBTSxDQUFDLGtCQUFrQjtRQUNsRCxNQUFNLENBQUMsdUJBQXVCO0tBQy9CLENBQUM7SUFDRixLQUFLLElBQUksQ0FBQyxHQUFHLENBQUMsRUFBRSxDQUFDLEdBQUcsT0FBTyxDQUFDLE1BQU0sRUFBRSxFQUFFLENBQUMsRUFBRTtRQUN2QyxNQUFNLENBQUMsR0FBRyxPQUFPLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDckIsTUFBTSxJQUFJLEdBQUcsT0FBTyxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQ3hCLE1BQU0sS0FBSyxHQUFHLFlBQVksQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUM5QixJQUFJLElBQUksSUFBSSxJQUFJLEVBQUU7WUFDaEIsU0FBUztTQUNWO1FBQ0QsSUFBSSxJQUFJLEtBQUssTUFBTSxDQUFDLHVCQUF1QixFQUFFO1lBQzNDLElBQUksQ0FBQyxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsS0FBSyxDQUFDLE1BQU0sR0FBRyxDQUFDLENBQUMsS0FBSyxDQUFDLEVBQUU7Z0JBQ3JDLE1BQU0sSUFBSSxVQUFVLENBQ2hCLDJDQUEyQyxDQUFDLENBQUMsS0FBSyxlQUFlO29CQUNqRSwrREFBK0Q7b0JBQy9ELDZEQUE2RDtvQkFDN0QscUJBQXFCLENBQUMsQ0FBQztnQkFDM0IsNkNBQTZDO2FBQzlDO1NBQ0Y7UUFDRCxJQUFJLFNBQVMsQ0FBQyxPQUFPLENBQUMsSUFBSSxDQUFDLEtBQUssQ0FBQyxDQUFDLEVBQUU7WUFDbEMsTUFBTSxZQUFZLEdBQUcsQ0FBQyxDQUFDLEtBQUssQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLENBQUM7WUFDdEMsTUFBTSxXQUFXLEdBQUcsS0FBSyxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsQ0FBQztZQUNuQyxLQUFLLElBQUksQ0FBQyxHQUFHLENBQUMsRUFBRSxDQUFDLEdBQUcsWUFBWSxDQUFDLE1BQU0sRUFBRSxFQUFFLENBQUMsRUFBRTtnQkFDNUMsTUFBTSxTQUFTLEdBQUcsWUFBWSxDQUFDLENBQUMsQ0FBQyxDQUFDO2dCQUNsQyxNQUFNLE1BQU0sR0FBRyxXQUFXLENBQUMsQ0FBQyxDQUFDLENBQUM7Z0JBQzlCLElBQUksTUFBTSxJQUFJLElBQUksSUFBSSxTQUFTLEtBQUssTUFBTSxFQUFFO29CQUMxQyxNQUFNLElBQUksVUFBVSxDQUNoQiw4QkFBOEIsQ0FBQyxDQUFDLEtBQUsscUJBQXFCO3dCQUMxRCxtQkFBbUIsS0FBSyxxQ0FBcUM7d0JBQzdELHVEQUF1RCxDQUFDLENBQUM7aUJBQzlEO2FBQ0Y7U0FDRjtLQUNGO0FBQ0gsQ0FBQztBQUVEOzs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7O0dBeUJHO0FBQ0gsU0FBUyxjQUFjLENBQ25CLElBQXFCLEVBQUUsS0FBZSxFQUFFLE1BQWdCLEVBQ3hELGNBQWMsR0FBRyxJQUFJLEVBQUUsZUFBZSxHQUFHLEVBQUU7SUFDN0MsSUFBSSxNQUFnQixDQUFDO0lBQ3JCLElBQUksS0FBSyxDQUFDLE9BQU8sQ0FBQyxJQUFJLENBQUMsRUFBRTtRQUN2QixJQUFJLElBQUksQ0FBQyxNQUFNLEtBQUssS0FBSyxDQUFDLE1BQU0sRUFBRTtZQUNoQyxNQUFNLElBQUksVUFBVSxDQUNoQiw2QkFBNkIsZUFBZSxpQkFBaUI7Z0JBQzdELGlFQUFpRTtnQkFDakUsdUNBQXVDLEtBQUssQ0FBQyxNQUFNLGFBQWE7Z0JBQ2hFLG9CQUFvQixJQUFJLENBQUMsTUFBTSxjQUFjLENBQUMsQ0FBQztTQUNwRDtRQUNELE1BQU0sR0FBRyxJQUFJLENBQUM7S0FDZjtTQUFNO1FBQ0wsSUFBSSxLQUFLLENBQUMsTUFBTSxHQUFHLENBQUMsRUFBRTtZQUNwQixNQUFNLElBQUksVUFBVSxDQUNoQixxQkFBcUIsS0FBSyxDQUFDLE1BQU0sSUFBSSxlQUFlLFlBQVk7Z0JBQ2hFLHdEQUF3RDtnQkFDeEQsR0FBRyxJQUFJLENBQUMsU0FBUyxDQUFDLElBQUksQ0FBQyxLQUFLLENBQUMsR0FBRyxDQUFDLENBQUM7U0FDdkM7UUFDRCxNQUFNLEdBQUcsQ0FBQyxJQUFJLENBQUMsQ0FBQztLQUNqQjtJQUVELElBQUksTUFBTSxJQUFJLElBQUksRUFBRTtRQUNsQixLQUFLLElBQUksQ0FBQyxHQUFHLENBQUMsRUFBRSxDQUFDLEdBQUcsS0FBSyxDQUFDLE1BQU0sRUFBRSxFQUFFLENBQUMsRUFBRTtZQUNyQyxJQUFJLE1BQU0sQ0FBQyxDQUFDLENBQUMsSUFBSSxJQUFJLEVBQUU7Z0JBQ3JCLFNBQVM7YUFDVjtZQUNELE1BQU0sS0FBSyxHQUFHLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQztZQUN4QixJQUFJLEtBQUssQ0FBQyxLQUFLLENBQUMsTUFBTSxLQUFLLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQyxNQUFNLEVBQUU7Z0JBQzNDLE1BQU0sSUFBSSxVQUFVLENBQ2hCLHVCQUF1QixlQUFlLGNBQWMsS0FBSyxDQUFDLENBQUMsQ0FBQyxHQUFHO29CQUMvRCxXQUFXLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQyxNQUFNLG9DQUFvQztvQkFDL0QsU0FBUyxJQUFJLENBQUMsU0FBUyxDQUFDLEtBQUssQ0FBQyxLQUFLLENBQUMsRUFBRSxDQUFDLENBQUM7YUFDN0M7WUFDRCxLQUFLLElBQUksQ0FBQyxHQUFHLENBQUMsRUFBRSxDQUFDLEdBQUcsTUFBTSxDQUFDLENBQUMsQ0FBQyxDQUFDLE1BQU0sRUFBRSxFQUFFLENBQUMsRUFBRTtnQkFDekMsSUFBSSxDQUFDLEtBQUssQ0FBQyxJQUFJLENBQUMsY0FBYyxFQUFFO29CQUM5QixTQUFTO2lCQUNWO2dCQUNELE1BQU0sR0FBRyxHQUFHLEtBQUssQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLENBQUM7Z0JBQzNCLE1BQU0sTUFBTSxHQUFHLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQztnQkFDNUIsSUFBSSxNQUFNLElBQUksSUFBSSxFQUFFO29CQUNsQixJQUFJLE1BQU0sS0FBSyxHQUFHLEVBQUU7d0JBQ2xCLE1BQU0sSUFBSSxVQUFVLENBQ2hCLHVCQUF1QixlQUFlLGFBQWE7NEJBQ25ELEdBQUcsS0FBSyxDQUFDLENBQUMsQ0FBQyxrQkFBa0IsSUFBSSxDQUFDLFNBQVMsQ0FBQyxNQUFNLENBQUMsQ0FBQyxDQUFDLENBQUMsT0FBTzs0QkFDN0Qsd0JBQXdCLElBQUksQ0FBQyxTQUFTLENBQUMsS0FBSyxDQUFDLEtBQUssQ0FBQyxHQUFHLENBQUMsQ0FBQztxQkFDN0Q7aUJBQ0Y7YUFDRjtTQUNGO0tBQ0Y7QUFDSCxDQUFDO0FBRUQ7Ozs7Ozs7Ozs7OztHQVlHO0FBQ0gsTUFBTSxVQUFVLGNBQWMsQ0FDMUIsT0FDK0MsRUFDL0MsV0FBcUI7SUFDdkIsSUFBSSxPQUFPLElBQUksSUFBSSxJQUFJLEtBQUssQ0FBQyxPQUFPLENBQUMsT0FBTyxDQUFDLElBQUksT0FBTyxDQUFDLE1BQU0sS0FBSyxDQUFDLEVBQUU7UUFDckUsT0FBTyxXQUFXLENBQUMsR0FBRyxDQUFDLElBQUksQ0FBQyxFQUFFLENBQUMsRUFBRSxDQUFDLENBQUM7S0FDcEM7SUFFRCxJQUFJLGNBQytDLENBQUM7SUFDcEQsSUFBSSxPQUFPLE9BQU8sS0FBSyxRQUFRLElBQUksT0FBTyxPQUFPLEtBQUssVUFBVSxFQUFFO1FBQ2hFLGNBQWMsR0FBRyxDQUFDLE9BQU8sQ0FBQyxDQUFDO0tBQzVCO1NBQU0sSUFBSSxLQUFLLENBQUMsT0FBTyxDQUFDLE9BQU8sQ0FBQyxJQUFJLE9BQU8sT0FBTyxLQUFLLFFBQVEsRUFBRTtRQUNoRSxjQUFjLEdBQUcsT0FDMEQsQ0FBQztLQUM3RTtTQUFNO1FBQ0wsTUFBTSxJQUFJLFNBQVMsQ0FDZiw4REFBOEQ7WUFDOUQsc0NBQXNDLE9BQU8sRUFBRSxDQUFDLENBQUM7S0FDdEQ7SUFFRCxJQUFJLEtBQUssQ0FBQyxPQUFPLENBQUMsY0FBYyxDQUFDLEVBQUU7UUFDakMsNENBQTRDO1FBQzVDLE9BQU8sV0FBVyxDQUFDLEdBQUcsQ0FDbEIsSUFBSSxDQUFDLEVBQUUsQ0FBQyxjQUE4QyxDQUFDLENBQUM7S0FDN0Q7U0FBTTtRQUNMLG1DQUFtQztRQUNuQyxNQUFNLGFBQWEsR0FBd0MsRUFBRSxDQUFDO1FBQzlELEtBQUssTUFBTSxJQUFJLElBQUksV0FBVyxFQUFFO1lBQzlCLElBQUksYUFBYSxHQUNiLGNBQWMsQ0FBQyxjQUFjLENBQUMsSUFBSSxDQUFDLENBQUMsQ0FBQyxDQUFDLGNBQWMsQ0FBQyxJQUFJLENBQUMsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDO1lBQ3BFLElBQUksQ0FBQyxLQUFLLENBQUMsT0FBTyxDQUFDLGFBQWEsQ0FBQyxFQUFFO2dCQUNqQyxhQUFhLEdBQUcsQ0FBQyxhQUFhLENBQUMsQ0FBQzthQUNqQztZQUNELGFBQWEsQ0FBQyxJQUFJLENBQUMsYUFBYSxDQUFDLENBQUM7U0FDbkM7UUFDRCxPQUFPLGFBQWEsQ0FBQztLQUN0QjtBQUNILENBQUM7QUEyREQsTUFBTSx3QkFBd0IsR0FBRyxjQUFjLENBQUM7QUFFaEQ7Ozs7Ozs7Ozs7O0dBV0c7QUFDSCxNQUFhLFdBQVksU0FBUSxTQUFTO0lBNEN4QyxZQUFZLElBQW1CO1FBQzdCLEtBQUssQ0FBQyxJQUFJLENBQUMsQ0FBQztRQUNaLElBQUksQ0FBQyxVQUFVLEdBQUcsS0FBSyxDQUFDO0lBQzFCLENBQUM7SUFFRDs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7OztPQWtDRztJQUNILE9BQU8sQ0FDSCxVQUFtQixFQUFFLFNBQW9CLEVBQ3pDLFVBRW9ELE9BQU8sQ0FBQyxHQUFHO1FBQ2pFLElBQUksQ0FBQyxJQUFJLENBQUMsS0FBSyxFQUFFO1lBQ2YsTUFBTSxJQUFJLFVBQVUsQ0FDaEIsbUVBQW1FO2dCQUNuRSwrREFBK0Q7Z0JBQy9ELGdEQUFnRCxDQUFDLENBQUM7U0FDdkQ7UUFDRCxZQUFZLENBQUMsSUFBSSxFQUFFLFVBQVUsRUFBRSxTQUFTLEVBQUUsT0FBTyxDQUFDLENBQUM7SUFDckQsQ0FBQztJQUVEOzs7Ozs7Ozs7T0FTRztJQUNILE9BQU8sQ0FBQyxJQUFzQjtRQUM1QixJQUFJLElBQUksQ0FBQyxJQUFJLElBQUksSUFBSSxFQUFFO1lBQ3JCLElBQUksQ0FBQyxJQUFJLEdBQUcsRUFBRSxDQUFDO1NBQ2hCO1FBQ0QsSUFBSSxDQUFDLElBQUksR0FBRyxJQUFJLENBQUMsSUFBSSxDQUFDO1FBRXRCLElBQUksT0FBTyxJQUFJLENBQUMsU0FBUyxLQUFLLFFBQVEsRUFBRTtZQUN0QyxJQUFJLENBQUMsVUFBVSxHQUFHLFVBQVUsQ0FBQyxZQUFZLENBQUMsSUFBSSxDQUFDLFNBQVMsQ0FBQyxDQUFDO1lBQzFELElBQUksQ0FBQyxnQkFBZ0IsR0FBRyxJQUFJLENBQUM7U0FDOUI7YUFBTTtZQUNMLElBQUksQ0FBQyxDQUFDLElBQUksQ0FBQyxTQUFTLFlBQVksU0FBUyxDQUFDLEVBQUU7Z0JBQzFDLE1BQU0sSUFBSSxVQUFVLENBQ2hCLDZEQUE2RCxDQUFDLENBQUM7YUFDcEU7WUFDRCxJQUFJLENBQUMsVUFBVSxHQUFHLElBQUksQ0FBQyxTQUFTLENBQUM7WUFDakMsSUFBSSxDQUFDLGdCQUFnQixHQUFHLEtBQUssQ0FBQztTQUMvQjtRQUVELCtCQUErQjtRQUMvQixvQ0FBb0M7UUFFcEMsMEJBQTBCO1FBQzFCLElBQUksYUFBYSxHQUFxQixFQUFFLENBQUM7UUFDekMsSUFBSSxDQUFDLEtBQUssQ0FBQyxPQUFPLENBQUMsSUFBSSxDQUFDLElBQUksQ0FBQyxJQUFJLE9BQU8sSUFBSSxDQUFDLElBQUksS0FBSyxRQUFRO1lBQzFELE9BQU8sSUFBSSxDQUFDLElBQUksS0FBSyxVQUFVLEVBQUU7WUFDbkMsSUFBSSxDQUFDLElBQUksR0FBRyxJQUFJLENBQUMsSUFBc0MsQ0FBQztZQUN4RCxLQUFLLE1BQU0sSUFBSSxJQUFJLElBQUksQ0FBQyxJQUFJLEVBQUU7Z0JBQzVCLElBQUksSUFBSSxDQUFDLFdBQVcsQ0FBQyxPQUFPLENBQUMsSUFBSSxDQUFDLEtBQUssQ0FBQyxDQUFDLEVBQUU7b0JBQ3pDLE1BQU0sSUFBSSxVQUFVLENBQ2hCLHNDQUFzQyxJQUFJLEtBQUs7d0JBQy9DLHFDQUFxQyxJQUFJLENBQUMsV0FBVyxFQUFFLENBQUMsQ0FBQztpQkFDOUQ7YUFDRjtZQUNELEtBQUssTUFBTSxJQUFJLElBQUksSUFBSSxDQUFDLFdBQVcsRUFBRTtnQkFDbkMsSUFBSSxJQUFJLENBQUMsSUFBSSxDQUFDLElBQUksQ0FBQyxJQUFJLElBQUksRUFBRTtvQkFDM0IsT0FBTyxDQUFDLElBQUksQ0FDUixXQUFXLElBQUksK0NBQStDO3dCQUM5RCw4REFBOEQ7d0JBQzlELG1CQUFtQixJQUFJLGtCQUFrQixDQUFDLENBQUM7aUJBQ2hEO2dCQUNELGFBQWEsQ0FBQyxJQUFJLENBQUMsTUFBTSxDQUFDLEdBQUcsQ0FBQyxJQUFJLENBQUMsSUFBSSxDQUFDLElBQUksQ0FBQyxDQUFDLENBQUMsQ0FBQzthQUNqRDtTQUNGO2FBQU0sSUFBSSxLQUFLLENBQUMsT0FBTyxDQUFDLElBQUksQ0FBQyxJQUFJLENBQUMsRUFBRTtZQUNuQyxJQUFJLElBQUksQ0FBQyxJQUFJLENBQUMsTUFBTSxLQUFLLElBQUksQ0FBQyxPQUFPLENBQUMsTUFBTSxFQUFFO2dCQUM1QyxNQUFNLElBQUksVUFBVSxDQUNoQiw4REFBOEQ7b0JBQzlELCtCQUErQixJQUFJLENBQUMsT0FBTyxDQUFDLE1BQU0sY0FBYztvQkFDaEUsdUJBQXVCLElBQUksQ0FBQyxJQUFJLEdBQUcsQ0FBQyxDQUFDO2FBQzFDO1lBQ0QsTUFBTSxTQUFTLEdBQUcsSUFBSSxDQUFDLElBQW9DLENBQUM7WUFDNUQsYUFBYSxHQUFHLFNBQVMsQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxNQUFNLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUM7U0FDbkQ7YUFBTTtZQUNMLE1BQU0sWUFBWSxHQUFHLE1BQU0sQ0FBQyxHQUFHLENBQUMsSUFBSSxDQUFDLElBQUksQ0FBQyxDQUFDO1lBQzNDLElBQUksQ0FBQyxPQUFPLENBQUMsT0FBTyxDQUFDLENBQUMsQ0FBQyxFQUFFO2dCQUN2QixhQUFhLENBQUMsSUFBSSxDQUFDLFlBQVksQ0FBQyxDQUFDO1lBQ25DLENBQUMsQ0FBQyxDQUFDO1NBQ0o7UUFFRCxJQUFJLENBQUMsYUFBYSxHQUFHLGFBQWEsQ0FBQztRQUVuQyxJQUFJLENBQUMsZUFBZSxHQUFHLEVBQUUsQ0FBQztRQUMxQixJQUFJLENBQUMsZ0JBQWdCLEdBQUcsRUFBRSxDQUFDO1FBQzNCLElBQUksQ0FBQyxXQUFXLEdBQUcsRUFBRSxDQUFDO1FBQ3RCLEtBQUssSUFBSSxDQUFDLEdBQUcsQ0FBQyxFQUFFLENBQUMsR0FBRyxJQUFJLENBQUMsT0FBTyxDQUFDLE1BQU0sRUFBRSxFQUFFLENBQUMsRUFBRTtZQUM1Qyw0Q0FBNEM7WUFDNUMsTUFBTSxLQUFLLEdBQUcsSUFBSSxDQUFDLG9CQUFvQixDQUFDLENBQUMsQ0FBQyxDQUFDO1lBQzNDLE1BQU0sSUFBSSxHQUFHLElBQUksQ0FBQyxXQUFXLENBQUMsQ0FBQyxDQUFDLENBQUM7WUFDakMsSUFBSSxDQUFDLGVBQWUsQ0FBQyxJQUFJLENBQUMsSUFBSSxDQUFDLENBQUM7WUFDaEMsSUFBSSxDQUFDLGdCQUFnQixDQUFDLElBQUksQ0FBQyxLQUFLLENBQUMsQ0FBQztZQUNsQyxJQUFJLENBQUMsV0FBVyxDQUFDLElBQUksQ0FBQyxJQUFJLENBQUMsYUFBYSxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUM7U0FDOUM7UUFFRCwwQ0FBMEM7UUFDMUMsNENBQTRDO1FBQzVDLE1BQU0saUJBQWlCLEdBQWEsRUFBRSxDQUFDO1FBRXZDLG1CQUFtQjtRQUNuQixJQUFJLENBQUMsT0FBTyxHQUFHLElBQUksQ0FBQyxPQUFPLENBQUM7UUFDNUIsbUNBQW1DO1FBQ25DLElBQUksQ0FBQyxZQUFZLEdBQUcsQ0FBQyxNQUFNLENBQUMsQ0FBQztRQUM3QixJQUFJLENBQUMsY0FBYyxHQUFHLEVBQUUsQ0FBQztRQUV6QixzQkFBc0I7UUFDdEIseUVBQXlFO1FBQ3pFLDBFQUEwRTtRQUMxRSx1RUFBdUU7UUFDdkUsU0FBUyxDQUFDLE1BQU0sRUFBRSxHQUFHLEVBQUU7WUFDckIsS0FBSyxJQUFJLENBQUMsR0FBRyxDQUFDLEVBQUUsQ0FBQyxHQUFHLElBQUksQ0FBQyxPQUFPLENBQUMsTUFBTSxFQUFFLEVBQUUsQ0FBQyxFQUFFO2dCQUM1QyxJQUFJLGlCQUFpQixDQUFDLE9BQU8sQ0FBQyxDQUFDLENBQUMsS0FBSyxDQUFDLENBQUMsRUFBRTtvQkFDdkMsU0FBUztpQkFDVjtnQkFDRCx1REFBdUQ7Z0JBQ3ZELDhDQUE4QztnQkFDOUMsTUFBTSxZQUFZLEdBQUcsSUFBSSxDQUFDLGFBQWEsQ0FBQyxDQUFDLENBQUMsQ0FBQztnQkFDM0MsSUFBSSxJQUFJLENBQUMsT0FBTyxDQUFDLE1BQU0sR0FBRyxDQUFDLEVBQUU7b0JBQzNCLElBQUksQ0FBQyxjQUFjLENBQUMsSUFBSSxDQUFDLENBQUMsWUFBWSxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUM7b0JBQzVDLElBQUksQ0FBQyxZQUFZLENBQUMsSUFBSSxDQUFDLElBQUksQ0FBQyxXQUFXLENBQUMsQ0FBQyxDQUFDLEdBQUcsT0FBTyxDQUFDLENBQUM7aUJBQ3ZEO2FBQ0Y7WUFFRCwwRUFBMEU7WUFDMUUseUVBQXlFO1FBQzNFLENBQUMsQ0FBQyxDQUFDO1FBRUgsTUFBTSxhQUFhLEdBQUcsY0FBYyxDQUFDLElBQUksQ0FBQyxPQUFPLEVBQUUsSUFBSSxDQUFDLFdBQVcsQ0FBQyxDQUFDO1FBQ3JFLHlDQUF5QztRQUV6Qzs7V0FFRztRQUNILE1BQU0sWUFBWSxHQUNkLENBQUMsV0FBbUIsRUFBRSxVQUFrQixFQUN2QyxZQUE0QixFQUFFLEVBQUU7WUFDL0IsSUFBSSxJQUFJLENBQUMsV0FBVyxDQUFDLE1BQU0sR0FBRyxDQUFDLEVBQUU7Z0JBQy9CLFVBQVUsR0FBRyxJQUFJLENBQUMsV0FBVyxDQUFDLFdBQVcsQ0FBQyxHQUFHLEdBQUcsR0FBRyxVQUFVLENBQUM7YUFDL0Q7WUFDRCxJQUFJLENBQUMsWUFBWSxDQUFDLElBQUksQ0FBQyxVQUFVLENBQUMsQ0FBQztZQUNuQyxJQUFJLENBQUMsY0FBYyxDQUFDLElBQUksQ0FBQyxDQUFDLFlBQVksRUFBRSxXQUFXLENBQUMsQ0FBQyxDQUFDO1FBQ3hELENBQUMsQ0FBQztRQUVOLFNBQVMsQ0FBQyxRQUFRLEVBQUUsR0FBRyxFQUFFO1lBQ3ZCLEtBQUssSUFBSSxDQUFDLEdBQUcsQ0FBQyxFQUFFLENBQUMsR0FBRyxJQUFJLENBQUMsT0FBTyxDQUFDLE1BQU0sRUFBRSxFQUFFLENBQUMsRUFBRTtnQkFDNUMsSUFBSSxpQkFBaUIsQ0FBQyxPQUFPLENBQUMsQ0FBQyxDQUFDLEtBQUssQ0FBQyxDQUFDLEVBQUU7b0JBQ3ZDLFNBQVM7aUJBQ1Y7Z0JBQ0QsTUFBTSxhQUFhLEdBQUcsYUFBYSxDQUFDLENBQUMsQ0FBQyxDQUFDO2dCQUN2QyxxREFBcUQ7Z0JBRXJELG9FQUFvRTtnQkFDcEUsTUFBTSxhQUFhLEdBQUcsQ0FBQyxPQUFxQyxFQUFFLEVBQUU7b0JBQzlELE1BQU0sZ0JBQWdCLEdBQUcsRUFBRSxDQUFDO29CQUM1QixJQUFJLFVBQWtCLENBQUM7b0JBQ3ZCLElBQUksS0FBcUIsQ0FBQztvQkFDMUIsSUFBSSxnQkFBZ0MsQ0FBQztvQkFDckMsb0RBQW9EO29CQUVwRCxLQUFLLE1BQU0sTUFBTSxJQUFJLE9BQU8sRUFBRTt3QkFDNUIsSUFBSSxPQUFPLE1BQU0sS0FBSyxRQUFROzRCQUMxQixDQUFDLFVBQVUsRUFBRSxLQUFLLEVBQUUsY0FBYyxFQUFFLElBQUksQ0FBQyxDQUFDLE9BQU8sQ0FBQyxNQUFNLENBQUM7Z0NBQ3JELENBQUMsQ0FBQyxFQUFFOzRCQUNWLE1BQU0sV0FBVyxHQUFHLElBQUksQ0FBQyxvQkFBb0IsQ0FBQyxDQUFDLENBQUMsQ0FBQzs0QkFFakQsSUFBSSxXQUFXLENBQUMsV0FBVyxDQUFDLE1BQU0sR0FBRyxDQUFDLENBQUMsS0FBSyxDQUFDO2dDQUN6QyxJQUFJLENBQUMsYUFBYSxDQUFDLENBQUMsQ0FBQyxLQUFLLE1BQU0sQ0FBQyxrQkFBa0IsRUFBRTtnQ0FDdkQsc0NBQXNDO2dDQUN0QyxJQUFJLENBQUMsVUFBVSxFQUFFLEtBQUssQ0FBQyxDQUFDLE9BQU8sQ0FBQyxNQUFNLENBQUMsS0FBSyxDQUFDLENBQUMsRUFBRTtvQ0FDOUMsS0FBSyxHQUFHLE9BQU8sQ0FBQyxjQUFjLENBQUM7aUNBQ2hDO3FDQUFNLElBQUksQ0FBQyxjQUFjLEVBQUUsSUFBSSxDQUFDLENBQUMsT0FBTyxDQUFDLE1BQU0sQ0FBQyxLQUFLLENBQUMsQ0FBQyxFQUFFO29DQUN4RCxLQUFLLEdBQUcsT0FBTyxDQUFDLGtCQUFrQixDQUFDO2lDQUNwQzs2QkFDRjtpQ0FBTSxJQUNILElBQUksQ0FBQyxhQUFhLENBQUMsQ0FBQyxDQUFDO2dDQUNyQixNQUFNLENBQUMsNkJBQTZCLEVBQUU7Z0NBQ3hDLHdEQUF3RDtnQ0FDeEQsV0FBVztnQ0FDWCxJQUFJLENBQUMsVUFBVSxFQUFFLEtBQUssQ0FBQyxDQUFDLE9BQU8sQ0FBQyxNQUFNLENBQUMsS0FBSyxDQUFDLENBQUMsRUFBRTtvQ0FDOUMsS0FBSyxHQUFHLE9BQU8sQ0FBQyx5QkFBeUIsQ0FBQztpQ0FDM0M7cUNBQU0sSUFBSSxDQUFDLGNBQWMsRUFBRSxJQUFJLENBQUMsQ0FBQyxPQUFPLENBQUMsTUFBTSxDQUFDLEtBQUssQ0FBQyxDQUFDLEVBQUU7b0NBQ3hELEtBQUssR0FBRyxPQUFPLENBQUMsNkJBQTZCLENBQUM7aUNBQy9DOzZCQUNGO2lDQUFNO2dDQUNMLDZDQUE2QztnQ0FDN0MsSUFBSSxDQUFDLFVBQVUsRUFBRSxLQUFLLENBQUMsQ0FBQyxPQUFPLENBQUMsTUFBTSxDQUFDLEtBQUssQ0FBQyxDQUFDLEVBQUU7b0NBQzlDLEtBQUssR0FBRyxPQUFPLENBQUMsbUJBQW1CLENBQUM7aUNBQ3JDO3FDQUFNLElBQUksQ0FBQyxjQUFjLEVBQUUsSUFBSSxDQUFDLENBQUMsT0FBTyxDQUFDLE1BQU0sQ0FBQyxLQUFLLENBQUMsQ0FBQyxFQUFFO29DQUN4RCxLQUFLLEdBQUcsT0FBTyxDQUFDLHVCQUF1QixDQUFDO2lDQUN6Qzs2QkFDRjs0QkFDRCxJQUFJLE1BQWMsQ0FBQzs0QkFDbkIsSUFBSSxDQUFDLFVBQVUsRUFBRSxLQUFLLENBQUMsQ0FBQyxPQUFPLENBQUMsTUFBTSxDQUFDLEtBQUssQ0FBQyxDQUFDLEVBQUU7Z0NBQzlDLE1BQU0sR0FBRyxLQUFLLENBQUM7NkJBQ2hCO2lDQUFNLElBQUksQ0FBQyxjQUFjLEVBQUUsSUFBSSxDQUFDLENBQUMsT0FBTyxDQUFDLE1BQU0sQ0FBQyxLQUFLLENBQUMsQ0FBQyxFQUFFO2dDQUN4RCxNQUFNLEdBQUcsSUFBSSxDQUFDOzZCQUNmOzRCQUNELHNDQUFzQzs0QkFDdEMsZ0JBQWdCLEdBQUcsS0FBSyxDQUFDOzRCQUN6QixVQUFVLEdBQUcsZ0JBQWdCLEdBQUcsTUFBTSxDQUFDO3lCQUN4Qzs2QkFBTTs0QkFDTCxNQUFNLFFBQVEsR0FBRyxPQUFPLENBQUMsR0FBRyxDQUFDLE1BQU0sQ0FBQyxDQUFDOzRCQUNyQyxzQ0FBc0M7NEJBQ3RDLGdCQUFnQixHQUFHLFFBQVEsQ0FBQzs0QkFDNUIsVUFBVTtnQ0FDTixnQkFBZ0IsR0FBRyxPQUFPLENBQUMsbUJBQW1CLENBQUMsTUFBTSxDQUFDLENBQUM7eUJBQzVEO3dCQUVELHlEQUF5RDt3QkFDekQsSUFBSSxZQUE0QixDQUFDO3dCQUNqQyxTQUFTLENBQUMsVUFBVSxFQUFFLEdBQUcsRUFBRTs0QkFDekIsWUFBWSxHQUFHLGdCQUFnQixDQUFDO3dCQUNsQyxDQUFDLENBQUMsQ0FBQzt3QkFDSCxZQUFZLENBQUMsQ0FBQyxFQUFFLFVBQVUsRUFBRSxZQUFZLENBQUMsQ0FBQztxQkFDM0M7Z0JBQ0gsQ0FBQyxDQUFDO2dCQUVGLGFBQWEsQ0FBQyxhQUFhLENBQUMsQ0FBQztnQkFDN0IsK0NBQStDO2FBQ2hEO1FBQ0gsQ0FBQyxDQUFDLENBQUM7UUFFSCw0REFBNEQ7UUFDNUQsMkVBQTJFO1FBQzNFLElBQUksQ0FBQyx5QkFBeUIsR0FBRyxJQUFJLENBQUMsZ0JBQWdCLENBQUM7SUFDekQsQ0FBQztJQUVEOzs7Ozs7OztPQVFHO0lBQ08sZ0NBQWdDO1FBQ3hDLElBQUksSUFBSSxDQUFDLHlCQUF5QixJQUFJLElBQUksRUFBRTtZQUMxQyxPQUFPO1NBQ1I7UUFDRCxJQUFJLElBQUksQ0FBQyxnQkFBZ0IsQ0FBQyxNQUFNO1lBQzVCLElBQUksQ0FBQyx5QkFBeUIsQ0FBQyxNQUFNLEVBQUU7WUFDekMsT0FBTyxDQUFDLElBQUksQ0FDUiwrREFBK0Q7Z0JBQy9ELHlEQUF5RDtnQkFDekQsK0JBQStCLENBQUMsQ0FBQztTQUN0QztJQUNILENBQUM7SUFFRDs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7O09BOEJHO0lBQ0gsUUFBUSxDQUNKLENBQWtCLEVBQUUsQ0FBa0IsRUFDdEMsT0FBMEIsRUFBRTtRQUM5QixNQUFNLFNBQVMsR0FBRyxJQUFJLENBQUMsU0FBUyxJQUFJLElBQUksQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxJQUFJLENBQUMsU0FBUyxDQUFDO1FBQy9ELGNBQWMsQ0FBQyxTQUFTLENBQUMsQ0FBQztRQUUxQiwwREFBMEQ7UUFDMUQsc0JBQXNCO1FBQ3RCLE1BQU0sY0FBYyxHQUFHLElBQUksQ0FBQztRQUM1QixNQUFNLGdCQUFnQixHQUNsQixJQUFJLENBQUMscUJBQXFCLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxjQUFjLEVBQUUsU0FBUyxDQUFDLENBQUM7UUFDaEUsSUFBSTtZQUNGLHdFQUF3RTtZQUN4RSxxQkFBcUI7WUFDckIsTUFBTSxHQUFHLEdBQUcsZ0JBQWdCLENBQUMsQ0FBQyxDQUFDLENBQUMsTUFBTSxDQUFDLGdCQUFnQixDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUM7WUFDNUQsSUFBSSxDQUFDLGdCQUFnQixFQUFFLENBQUM7WUFDeEIsTUFBTSxDQUFDLEdBQUcsSUFBSSxDQUFDLFlBQVksQ0FBQztZQUM1QixNQUFNLFFBQVEsR0FDVixJQUFJLENBQUMsUUFBUSxDQUFDLENBQUMsRUFBRSxHQUFHLEVBQUUsU0FBUyxFQUFFLElBQUksQ0FBQyxPQUFPLEVBQUUsSUFBSSxDQUFDLEtBQUssQ0FBQyxDQUFDO1lBQy9ELE9BQU8sZ0JBQWdCLENBQUMsUUFBUSxDQUFDLENBQUM7U0FDbkM7Z0JBQVM7WUFDUixpQkFBaUIsQ0FBQyxnQkFBZ0IsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQztZQUMxQyxpQkFBaUIsQ0FBQyxnQkFBZ0IsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQztTQUMzQztJQUNILENBQUM7SUFFRCxtRUFBbUU7SUFDbkUsZUFBZTtJQUNmOzs7Ozs7Ozs7Ozs7Ozs7Ozs7O09BbUJHO0lBQ0gsS0FBSyxDQUFDLGVBQWUsQ0FBQyxPQUFvQixFQUFFLElBQStCO1FBRXpFLElBQUksQ0FBQyxnQkFBZ0IsRUFBRSxDQUFDO1FBQ3hCLE9BQU8sZUFBZSxDQUFDLElBQUksRUFBRSxPQUFPLEVBQUUsSUFBSSxDQUFDLENBQUM7SUFDOUMsQ0FBQztJQUVEOzs7Ozs7Ozs7T0FTRztJQUNLLGVBQWUsQ0FDbkIsR0FBb0IsRUFBRSxTQUFrQixFQUFFLEtBQWMsRUFDeEQsU0FBUyxHQUFHLE9BQU87UUFDckIsSUFBSSxVQUFrQixDQUFDO1FBQ3ZCLElBQUksS0FBSyxJQUFJLElBQUksRUFBRTtZQUNqQixVQUFVLEdBQUcsSUFBSSxDQUFDO1lBQ2xCLElBQUksU0FBUyxJQUFJLElBQUksRUFBRTtnQkFDckIsTUFBTSxJQUFJLFVBQVUsQ0FDaEIsTUFBTSxTQUFTLCtDQUErQztvQkFDOUQsbUJBQW1CLFNBQVMsRUFBRSxDQUFDLENBQUM7YUFDckM7U0FDRjthQUFNLElBQUksR0FBRyxJQUFJLElBQUksRUFBRTtZQUN0QixJQUFJLEtBQUssQ0FBQyxPQUFPLENBQUMsR0FBRyxDQUFDLEVBQUU7Z0JBQ3RCLFVBQVUsR0FBRyxHQUFHLENBQUMsQ0FBQyxDQUFDLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxDQUFDO2FBQzlCO2lCQUFNO2dCQUNMLFVBQVUsR0FBRyxHQUFHLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxDQUFDO2FBQzNCO1NBQ0Y7YUFBTTtZQUNMLE1BQU0sSUFBSSxVQUFVLENBQ2hCLHdEQUF3RDtnQkFDeEQsR0FBRyxTQUFTLHNCQUFzQixDQUFDLENBQUM7U0FDekM7UUFDRCxPQUFPLFVBQVUsQ0FBQztJQUNwQixDQUFDO0lBRUQ7Ozs7OztPQU1HO0lBQ0gsT0FBTyxDQUFDLE1BQXNDLEVBQUUsT0FBd0I7UUFFdEUsSUFBSSxLQUFLLENBQUMsT0FBTyxDQUFDLE9BQU8sQ0FBQyxJQUFJLE9BQU8sQ0FBQyxNQUFNLEtBQUssQ0FBQyxFQUFFO1lBQ2xELE1BQU0sSUFBSSxVQUFVLENBQ2hCLG9EQUFvRCxDQUFDLENBQUM7U0FDM0Q7UUFFRCxNQUFNLGNBQWMsR0FBRyxLQUFLLENBQUMsT0FBTyxDQUFDLE9BQU8sQ0FBQyxDQUFDO1FBQzlDLE1BQU0sV0FBVyxHQUNiLENBQUMsY0FBYyxDQUFDLENBQUMsQ0FBQyxPQUFPLENBQUMsQ0FBQyxDQUFDLENBQUMsT0FBTyxDQUFDLENBQUMsQ0FBQztRQUMzQyxNQUFNLHFCQUFxQixHQUFHLElBQUksQ0FBQyx1QkFBdUIsQ0FBQyxXQUFXLENBQUMsQ0FBQztRQUV4RSxvQ0FBb0M7UUFDcEMsTUFBTSxRQUFRLEdBQUcsSUFBSSxRQUFRLEVBQUUsQ0FBQztRQUNoQyxJQUFJLE1BQU0sWUFBWSxNQUFNLEVBQUU7WUFDNUIsTUFBTSxHQUFHLENBQUMsTUFBTSxDQUFDLENBQUM7U0FDbkI7UUFDRCxJQUFJLEtBQUssQ0FBQyxPQUFPLENBQUMsTUFBTSxDQUFDLEVBQUU7WUFDekIsSUFBSSxNQUFNLENBQUMsTUFBTSxLQUFLLElBQUksQ0FBQyxNQUFNLENBQUMsTUFBTSxFQUFFO2dCQUN4QyxNQUFNLElBQUksVUFBVSxDQUNoQixrQ0FBa0MsTUFBTSxDQUFDLE1BQU0sSUFBSTtvQkFDbkQsb0RBQW9EO29CQUNwRCxJQUFJLElBQUksQ0FBQyxNQUFNLENBQUMsTUFBTSxJQUFJLENBQUMsQ0FBQzthQUNqQztZQUNELEtBQUssSUFBSSxDQUFDLEdBQUcsQ0FBQyxFQUFFLENBQUMsR0FBRyxJQUFJLENBQUMsTUFBTSxDQUFDLE1BQU0sRUFBRSxFQUFFLENBQUMsRUFBRTtnQkFDM0MsUUFBUSxDQUFDLEdBQUcsQ0FBQyxJQUFJLENBQUMsTUFBTSxDQUFDLENBQUMsQ0FBQyxFQUFFLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO2FBQ3pDO1NBQ0Y7YUFBTTtZQUNMLEtBQUssTUFBTSxLQUFLLElBQUksSUFBSSxDQUFDLE1BQU0sRUFBRTtnQkFDL0IsTUFBTSxXQUFXLEdBQUcsTUFBTSxDQUFDLEtBQUssQ0FBQyxJQUFJLENBQUMsQ0FBQztnQkFDdkMsSUFBSSxXQUFXLElBQUksSUFBSSxFQUFFO29CQUN2QixNQUFNLElBQUksVUFBVSxDQUNoQiw4Q0FBOEMsS0FBSyxDQUFDLElBQUksRUFBRSxDQUFDLENBQUM7aUJBQ2pFO2dCQUNELFFBQVEsQ0FBQyxHQUFHLENBQUMsS0FBSyxFQUFFLFdBQVcsQ0FBQyxDQUFDO2FBQ2xDO1NBQ0Y7UUFFRCxpQkFBaUI7UUFDakIsTUFBTSxjQUFjLEdBQUcsT0FBTyxDQUFDLHFCQUFxQixFQUFFLFFBQVEsQ0FBYSxDQUFDO1FBQzVFLE9BQU8sY0FBYyxDQUFDLENBQUMsQ0FBQyxjQUFjLENBQUMsQ0FBQyxDQUFDLGNBQWMsQ0FBQyxDQUFDLENBQUMsQ0FBQztJQUM3RCxDQUFDO0lBRUQ7O09BRUc7SUFDSyx1QkFBdUIsQ0FBQyxtQkFBNkI7UUFFM0QsTUFBTSxxQkFBcUIsR0FDdkIsWUFBWSxDQUFDLElBQUksRUFBRSxtQkFBbUIsQ0FBQyxNQUFNLENBQUMsQ0FBQztRQUNuRCxJQUFJLGdCQUFnQixHQUFHLG1CQUFtQixDQUFDLE1BQU0sQ0FBQztRQUNsRCxLQUFLLE1BQU0sS0FBSyxJQUFJLElBQUksQ0FBQyxNQUFNLEVBQUU7WUFDL0IsTUFBTSxZQUFZLEdBQ2QsS0FBSyxDQUFDLE9BQU8sQ0FBQyxLQUFLLENBQUMsTUFBTSxDQUFDLENBQUMsQ0FBQyxDQUFDLEtBQUssQ0FBQyxNQUFNLENBQUMsQ0FBQyxDQUFDLENBQUMsS0FBSyxDQUFDLE1BQU0sQ0FBQyxDQUFDO1lBQ2hFLE1BQU0sZ0JBQWdCLEdBQUcsWUFBWSxDQUFDLEdBQUcsQ0FBQyxNQUFNLENBQUMsRUFBRSxDQUFDLE1BQU0sQ0FBQyxJQUFJLENBQUMsQ0FBQztZQUNqRSxLQUFLLElBQUksQ0FBQyxHQUFHLENBQUMsRUFBRSxDQUFDLEdBQUcsbUJBQW1CLENBQUMsTUFBTSxFQUFFLEVBQUUsQ0FBQyxFQUFFO2dCQUNuRCxNQUFNLEtBQUssR0FBRyxnQkFBZ0IsQ0FBQyxPQUFPLENBQUMsbUJBQW1CLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQztnQkFDL0QsSUFBSSxLQUFLLEtBQUssQ0FBQyxDQUFDLEVBQUU7b0JBQ2hCLHFCQUFxQixDQUFDLENBQUMsQ0FBQyxHQUFHLFlBQVksQ0FBQyxLQUFLLENBQUMsQ0FBQztvQkFDL0MsZ0JBQWdCLEVBQUUsQ0FBQztpQkFDcEI7Z0JBQ0QsSUFBSSxnQkFBZ0IsS0FBSyxDQUFDLEVBQUU7b0JBQzFCLE1BQU07aUJBQ1A7YUFDRjtZQUNELElBQUksZ0JBQWdCLEtBQUssQ0FBQyxFQUFFO2dCQUMxQixNQUFNO2FBQ1A7U0FDRjtRQUVELElBQUksZ0JBQWdCLEdBQUcsQ0FBQyxFQUFFO1lBQ3hCLE1BQU0sY0FBYyxHQUFhLEVBQUUsQ0FBQztZQUNwQyxxQkFBcUIsQ0FBQyxPQUFPLENBQUMsQ0FBQyxNQUFNLEVBQUUsQ0FBQyxFQUFFLEVBQUU7Z0JBQzFDLElBQUksTUFBTSxJQUFJLElBQUksRUFBRTtvQkFDbEIsY0FBYyxDQUFDLElBQUksQ0FBQyxtQkFBbUIsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO2lCQUM3QztZQUNILENBQUMsQ0FBQyxDQUFDO1lBQ0gsTUFBTSxJQUFJLFVBQVUsQ0FDaEIsa0RBQWtEO2dCQUNsRCxHQUFHLElBQUksQ0FBQyxTQUFTLENBQUMsY0FBYyxDQUFDLEVBQUUsQ0FBQyxDQUFDO1NBQzFDO1FBQ0QsT0FBTyxxQkFBcUIsQ0FBQztJQUMvQixDQUFDO0lBRUQ7Ozs7Ozs7Ozs7OztPQVlHO0lBQ0ssV0FBVyxDQUFDLEdBQW9CLEVBQUUsU0FBUyxHQUFHLEVBQUUsRUFBRSxPQUFPLEdBQUcsS0FBSztRQUV2RSxPQUFPLEdBQUcsQ0FBQyxJQUFJLENBQUMsR0FBRyxFQUFFO1lBQ25CLE1BQU0sVUFBVSxHQUFHLElBQUksQ0FBQyxlQUFlLENBQUMsR0FBRyxDQUFDLENBQUM7WUFDN0MsSUFBSSxPQUFPLEVBQUU7Z0JBQ1gsTUFBTSxJQUFJLG1CQUFtQixDQUN6QiwrQ0FBK0MsQ0FBQyxDQUFDO2FBQ3REO1lBRUQsNEJBQTRCO1lBQzVCLHdFQUF3RTtZQUN4RSxxRUFBcUU7WUFDckUsZ0NBQWdDO1lBRWhDLE1BQU0sT0FBTyxHQUFHLFdBQVcsQ0FBQyxVQUFVLEVBQUUsU0FBUyxDQUFDLENBQUM7WUFDbkQsTUFBTSxXQUFXLEdBQWUsSUFBSSxDQUFDLE9BQU8sQ0FBQyxHQUFHLENBQUMsTUFBTSxDQUFDLEVBQUUsQ0FBQyxFQUFFLENBQUMsQ0FBQztZQUUvRCxrRUFBa0U7WUFDbEUsS0FBSyxJQUFJLFVBQVUsR0FBRyxDQUFDLEVBQUUsVUFBVSxHQUFHLE9BQU8sQ0FBQyxNQUFNLEVBQUUsRUFBRSxVQUFVLEVBQUU7Z0JBQ2xFLE1BQU0sU0FBUyxHQUFHLEdBQUcsQ0FBQyxJQUFJLENBQUMsR0FBRyxFQUFFO29CQUM5QixNQUFNLFVBQVUsR0FBRyxPQUFPLENBQUMsVUFBVSxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUM7b0JBQzFDLE1BQU0sUUFBUSxHQUFHLE9BQU8sQ0FBQyxVQUFVLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQztvQkFDeEMsc0VBQXNFO29CQUN0RSxtQkFBbUI7b0JBQ25CLE1BQU0sUUFBUSxHQUFHLFdBQVcsQ0FBQyxHQUFHLEVBQUUsVUFBVSxFQUFFLFFBQVEsQ0FBQyxDQUFDO29CQUV4RCxxQ0FBcUM7b0JBQ3JDLE1BQU0sS0FBSyxHQUFHLEVBQUUsQ0FBQztvQkFDakIsSUFBSSxLQUFLLENBQUMsT0FBTyxDQUFDLFFBQVEsQ0FBQyxFQUFFO3dCQUMzQixLQUFLLElBQUksQ0FBQyxHQUFHLENBQUMsRUFBRSxDQUFDLEdBQUcsUUFBUSxDQUFDLE1BQU0sRUFBRSxFQUFFLENBQUMsRUFBRTs0QkFDeEMsS0FBSyxDQUFDLElBQUksQ0FBQyxFQUFDLEdBQUcsRUFBRSxJQUFJLENBQUMsTUFBTSxDQUFDLENBQUMsQ0FBQyxFQUFFLEtBQUssRUFBRSxRQUFRLENBQUMsQ0FBQyxDQUFDLEVBQUMsQ0FBQyxDQUFDO3lCQUN2RDtxQkFDRjt5QkFBTTt3QkFDTCxLQUFLLENBQUMsSUFBSSxDQUFDLEVBQUMsR0FBRyxFQUFFLElBQUksQ0FBQyxNQUFNLENBQUMsQ0FBQyxDQUFDLEVBQUUsS0FBSyxFQUFFLFFBQVEsRUFBQyxDQUFDLENBQUM7cUJBQ3BEO29CQUNELE1BQU0sUUFBUSxHQUFHLElBQUksUUFBUSxDQUFDLEtBQUssQ0FBQyxDQUFDO29CQUNyQyxPQUFPLE9BQU8sQ0FBQyxJQUFJLENBQUMsT0FBTyxFQUFFLFFBQVEsQ0FBYSxDQUFDO2dCQUNyRCxDQUFDLENBQUMsQ0FBQztnQkFDSCxTQUFTLENBQUMsT0FBTyxDQUFDLENBQUMsUUFBUSxFQUFFLENBQUMsRUFBRSxFQUFFLENBQUMsV0FBVyxDQUFDLENBQUMsQ0FBQyxDQUFDLElBQUksQ0FBQyxRQUFRLENBQUMsQ0FBQyxDQUFDO2FBQ25FO1lBQ0QsT0FBTyxnQkFBZ0IsQ0FDbkIsV0FBVyxDQUFDLEdBQUcsQ0FBQyxPQUFPLENBQUMsRUFBRSxDQUFDLEdBQUcsQ0FBQyxNQUFNLENBQUMsT0FBTyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUMxRCxDQUFDLENBQUMsQ0FBQztJQUNMLENBQUM7SUFFRDs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7T0EwQkc7SUFDSCxPQUFPLENBQUMsQ0FBa0IsRUFBRSxPQUF5QixFQUFFO1FBQ3JELE1BQU0sZUFBZSxHQUFHLDBCQUEwQixDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQ3RELGNBQWMsQ0FDVixlQUFlLEVBQUUsSUFBSSxDQUFDLFVBQVUsRUFBRSxJQUFJLENBQUMsZUFBZSxFQUFFLEtBQUssQ0FBQyxDQUFDO1FBQ25FLElBQUk7WUFDRiw0Q0FBNEM7WUFDNUMsMkJBQTJCO1lBQzNCLDREQUE0RDtZQUM1RCxtQ0FBbUM7WUFDbkMsTUFBTSxTQUFTLEdBQUcsSUFBSSxDQUFDLFNBQVMsSUFBSSxJQUFJLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsSUFBSSxDQUFDLFNBQVMsQ0FBQztZQUMvRCxjQUFjLENBQUMsU0FBUyxDQUFDLENBQUM7WUFDMUIsT0FBTyxJQUFJLENBQUMsV0FBVyxDQUFDLGVBQWUsRUFBRSxTQUFTLENBQUMsQ0FBQztTQUNyRDtnQkFBUztZQUNSLGlCQUFpQixDQUFDLGVBQWUsRUFBRSxDQUFDLENBQUMsQ0FBQztTQUN2QztJQUNILENBQUM7SUFFRDs7Ozs7Ozs7Ozs7Ozs7T0FjRztJQUNILGNBQWMsQ0FBQyxDQUFrQjtRQUMvQixjQUFjLENBQUMsQ0FBQyxFQUFFLElBQUksQ0FBQyxVQUFVLEVBQUUsSUFBSSxDQUFDLGVBQWUsRUFBRSxJQUFJLENBQUMsQ0FBQztRQUMvRCw0REFBNEQ7UUFDNUQsbUNBQW1DO1FBQ25DLE1BQU0sU0FBUyxHQUFHLENBQUMsS0FBSyxDQUFDLE9BQU8sQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDekQsT0FBTyxJQUFJLENBQUMsV0FBVyxDQUFDLENBQUMsRUFBRSxTQUFTLENBQUMsQ0FBQztJQUN4QyxDQUFDO0lBRVMscUJBQXFCLENBQzNCLENBQWdELEVBQ2hELENBQWdELEVBQUUsY0FBYyxHQUFHLElBQUksRUFDdkUsU0FBa0I7UUFDcEIsNENBQTRDO1FBQzVDLElBQUksSUFBSSxDQUFDLFVBQVUsSUFBSSxJQUFJLEVBQUU7WUFDM0IsTUFBTSxJQUFJLFlBQVksQ0FDbEIsd0RBQXdEO2dCQUN4RCx3Q0FBd0MsQ0FBQyxDQUFDO1NBQy9DO1FBQ0QsTUFBTSxZQUFZLEdBQVksRUFBRSxDQUFDO1FBQ2pDLEtBQUssSUFBSSxDQUFDLEdBQUcsQ0FBQyxFQUFFLENBQUMsR0FBRyxJQUFJLENBQUMsZ0JBQWdCLENBQUMsTUFBTSxFQUFFLEVBQUUsQ0FBQyxFQUFFO1lBQ3JELE1BQU0sV0FBVyxHQUFHLElBQUksQ0FBQyxnQkFBZ0IsQ0FBQyxDQUFDLENBQUMsQ0FBQztZQUM3QyxNQUFNLE1BQU0sR0FBRyxJQUFJLENBQUMsV0FBVyxDQUFDLENBQUMsQ0FBQyxDQUFDO1lBQ25DLElBQUksTUFBTSxLQUFLLE1BQU0sQ0FBQyw2QkFBNkIsRUFBRTtnQkFDbkQsWUFBWSxDQUFDLElBQUksQ0FDYixXQUFXLENBQUMsS0FBSyxDQUFDLENBQUMsRUFBRSxXQUFXLENBQUMsTUFBTSxHQUFHLENBQUMsQ0FBQyxDQUFDLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQzthQUMvRDtpQkFBTTtnQkFDTCxzRUFBc0U7Z0JBQ3RFLFlBQVksQ0FBQyxJQUFJLENBQUMsV0FBVyxDQUFDLENBQUM7YUFDaEM7U0FDRjtRQUNELENBQUMsR0FBRyxvQkFBb0IsQ0FDcEIsQ0FBQyxFQUFFLElBQUksQ0FBQyxjQUFjLEVBQUUsSUFBSSxDQUFDLGVBQWUsRUFBRSxLQUFLLEVBQUUsT0FBTyxDQUFDLENBQUM7UUFDbEUsQ0FBQyxHQUFHLG9CQUFvQixDQUNwQixDQUFDLEVBQUUsSUFBSSxDQUFDLGVBQWUsRUFBRSxZQUFZLEVBQUUsS0FBSyxFQUFFLFFBQVEsQ0FBQyxDQUFDO1FBQzVELHdEQUF3RDtRQUN4RCxpQkFBaUIsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFLElBQUksQ0FBQyxDQUFDO1FBQzlCLDJDQUEyQztRQUMzQywrQkFBK0IsQ0FBQyxDQUFDLEVBQUUsSUFBSSxDQUFDLFdBQVcsRUFBRSxJQUFJLENBQUMsZ0JBQWdCLENBQUMsQ0FBQztRQUM1RSxJQUFJLElBQUksQ0FBQyxRQUFRLElBQUksU0FBUyxJQUFJLElBQUksSUFBSSxTQUFTLEdBQUcsQ0FBQyxFQUFFO1lBQ3ZELElBQUksQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsR0FBRyxTQUFTLEtBQUssQ0FBQyxFQUFFO2dCQUNuQyxNQUFNLElBQUksVUFBVSxDQUNoQiw0REFBNEQ7b0JBQzVELHdEQUF3RDtvQkFDeEQsR0FBRyxTQUFTLFlBQVksQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsYUFBYSxDQUFDLENBQUM7YUFDekQ7U0FDRjtRQUNELE9BQU8sQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUM7SUFDaEIsQ0FBQztJQUVTLEtBQUssQ0FBQyxtQkFBbUIsQ0FDL0IsQ0FBZ0QsRUFDaEQsQ0FBZ0QsRUFDaEQsWUFBNkQsRUFDN0QsV0FBc0QsRUFDdEQsY0FBYyxHQUFHLElBQUksRUFDckIsU0FBa0I7UUFDcEIsTUFBTSxDQUFDLFVBQVUsRUFBRSxVQUFVLENBQUMsR0FDMUIsSUFBSSxDQUFDLHFCQUFxQixDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsY0FBYyxFQUFFLFNBQVMsQ0FBQyxDQUFDO1FBQ2hFLG9DQUFvQztRQUNwQyxJQUFJLFlBQVksSUFBSSxJQUFJLEVBQUU7WUFDeEIsTUFBTSxJQUFJLEtBQUssQ0FBQyxxQ0FBcUMsQ0FBQyxDQUFDO1NBQ3hEO1FBRUQsSUFBSSxxQkFBcUIsR0FBYSxJQUFJLENBQUM7UUFDM0MsSUFBSSxXQUFXLElBQUksSUFBSSxFQUFFO1lBQ3ZCLE1BQU0sWUFBWSxHQUNkLHVCQUF1QixDQUFDLFdBQVcsRUFBRSxJQUFJLENBQUMsV0FBVyxDQUFDLENBQUM7WUFDM0QscUJBQXFCLEdBQUcsRUFBRSxDQUFDO1lBQzNCLEtBQUssSUFBSSxDQUFDLEdBQUcsQ0FBQyxFQUFFLENBQUMsR0FBRyxZQUFZLENBQUMsTUFBTSxFQUFFLEVBQUUsQ0FBQyxFQUFFO2dCQUM1QyxxQkFBcUIsQ0FBQyxJQUFJLENBQ3RCLE1BQU0sa0JBQWtCLENBQUMsVUFBVSxDQUFDLENBQUMsQ0FBQyxFQUFFLElBQUksRUFBRSxZQUFZLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO2FBQ3JFO1NBQ0Y7UUFFRCw0REFBNEQ7UUFDNUQsT0FBTyxDQUFDLFVBQVUsRUFBRSxVQUFVLEVBQUUscUJBQXFCLENBQUMsQ0FBQztJQUN6RCxDQUFDO0lBRUQ7Ozs7Ozs7Ozs7T0FVRztJQUNLLFFBQVEsQ0FDWixDQUErQixFQUFFLEdBQWEsRUFBRSxTQUFrQixFQUNsRSxPQUFPLEdBQUcsQ0FBQyxFQUFFLEtBQWM7UUFDN0IsT0FBTyxHQUFHLENBQUMsSUFBSSxDQUFDLEdBQUcsRUFBRTtZQUNuQixNQUFNLFVBQVUsR0FBRyxJQUFJLENBQUMsZUFBZSxDQUFDLEdBQUcsRUFBRSxTQUFTLEVBQUUsS0FBSyxFQUFFLE9BQU8sQ0FBQyxDQUFDO1lBQ3hFLE1BQU0sSUFBSSxHQUFhLEVBQUUsQ0FBQztZQUMxQixJQUFJLE9BQU8sR0FBRyxDQUFDLEVBQUU7Z0JBQ2YsTUFBTSxJQUFJLG1CQUFtQixDQUFDLHNDQUFzQyxDQUFDLENBQUM7YUFDdkU7WUFDRCxzRUFBc0U7WUFDdEUsSUFBSSxLQUFLLElBQUksSUFBSSxFQUFFO2dCQUNqQixNQUFNLElBQUksbUJBQW1CLENBQ3pCLGlEQUFpRCxDQUFDLENBQUM7YUFDeEQ7aUJBQU07Z0JBQ0wsTUFBTSxPQUFPLEdBQUcsV0FBVyxDQUFDLFVBQVUsRUFBRSxTQUFTLENBQUMsQ0FBQztnQkFDbkQsTUFBTSxVQUFVLEdBQUcsUUFBUSxDQUFDLEtBQUssQ0FBQyxDQUFDLEVBQUUsVUFBVSxDQUFDLENBQUMsQ0FBQztnQkFDbEQsS0FBSyxJQUFJLFVBQVUsR0FBRyxDQUFDLEVBQUUsVUFBVSxHQUFHLE9BQU8sQ0FBQyxNQUFNLEVBQUUsRUFBRSxVQUFVLEVBQUU7b0JBQ2xFLE1BQU0sVUFBVSxHQUFHLE9BQU8sQ0FBQyxVQUFVLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQztvQkFDMUMsTUFBTSxRQUFRLEdBQUcsT0FBTyxDQUFDLFVBQVUsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO29CQUN4QyxNQUFNLFFBQVEsR0FDVixDQUFDLENBQUMsbUJBQW1CLENBQ2pCLFVBQVUsRUFBRSxVQUFVLEVBQUUsUUFBUSxHQUFHLFVBQVUsQ0FBYSxDQUFDO29CQUNuRSxnRUFBZ0U7b0JBQ2hFLHNEQUFzRDtvQkFDdEQsTUFBTSxRQUFRLEdBQUcsb0JBQW9CLENBQUMsR0FBRyxFQUFFLFFBQVEsQ0FBYSxDQUFDO29CQUNqRSxNQUFNLFNBQVMsR0FBRyxDQUFDLENBQUMsUUFBUSxDQUFDLENBQUM7b0JBQzlCLElBQUksVUFBVSxLQUFLLENBQUMsRUFBRTt3QkFDcEIsS0FBSyxJQUFJLENBQUMsR0FBRyxDQUFDLEVBQUUsQ0FBQyxHQUFHLFNBQVMsQ0FBQyxNQUFNLEVBQUUsRUFBRSxDQUFDLEVBQUU7NEJBQ3pDLElBQUksQ0FBQyxJQUFJLENBQUMsTUFBTSxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUM7eUJBQ3RCO3FCQUNGO29CQUNELEtBQUssSUFBSSxDQUFDLEdBQUcsQ0FBQyxFQUFFLENBQUMsR0FBRyxTQUFTLENBQUMsTUFBTSxFQUFFLEVBQUUsQ0FBQyxFQUFFO3dCQUN6QyxNQUFNLFFBQVEsR0FBRyxTQUFTLENBQUMsQ0FBQyxDQUFDLENBQUM7d0JBQzlCLElBQUksQ0FBQyxDQUFDLENBQUM7NEJBQ0gsR0FBRyxDQUFDLEdBQUcsQ0FBQyxJQUFJLENBQUMsQ0FBQyxDQUFDLEVBQUUsR0FBRyxDQUFDLEdBQUcsQ0FBQyxRQUFRLEdBQUcsVUFBVSxFQUFFLFFBQVEsQ0FBQyxDQUFDLENBQUM7cUJBQ2hFO2lCQUNGO2dCQUNELEtBQUssSUFBSSxDQUFDLEdBQUcsQ0FBQyxFQUFFLENBQUMsR0FBRyxJQUFJLENBQUMsTUFBTSxFQUFFLEVBQUUsQ0FBQyxFQUFFO29CQUNwQyxJQUFJLENBQUMsQ0FBQyxDQUFDLEdBQUcsR0FBRyxDQUFDLEdBQUcsQ0FBQyxJQUFJLENBQUMsQ0FBQyxDQUFDLEVBQUUsVUFBVSxDQUFDLENBQUM7aUJBQ3hDO2FBQ0Y7WUFDRCxPQUFPLElBQUksQ0FBQztRQUNkLENBQUMsQ0FBQyxDQUFDO0lBQ0wsQ0FBQztJQUVTLHNCQUFzQjtRQUM5QixNQUFNLFNBQVMsR0FBRyxJQUFJLENBQUMsWUFBWSxDQUFDO1FBQ3BDLG1FQUFtRTtRQUNuRSxvQ0FBb0M7UUFDcEMsTUFBTSxnQkFBZ0IsR0FBRyxFQUFFLENBQUM7UUFDNUIsS0FBSyxJQUFJLENBQUMsR0FBRyxDQUFDLEVBQUUsQ0FBQyxHQUFHLFNBQVMsQ0FBQyxNQUFNLEVBQUUsRUFBRSxDQUFDLEVBQUU7WUFDekMsTUFBTSxLQUFLLEdBQUcsU0FBUyxDQUFDLENBQUMsQ0FBQyxDQUFDO1lBQzNCLElBQUksUUFBUSxHQUFHLEtBQUssQ0FBQztZQUNyQixJQUFJLEtBQUssQ0FBQyxTQUFTLEVBQUUsS0FBSyxDQUFDLEdBQUcsQ0FBQyxFQUFFO2dCQUMvQixNQUFNLFFBQVEsR0FBRyxLQUFLLENBQUMsU0FBUyxDQUFDLEtBQUssQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUUsS0FBSyxDQUFDLENBQUM7Z0JBQ3JELFFBQVEsSUFBSSxJQUFJLFFBQVEsRUFBRSxDQUFDO2FBQzVCO1lBQ0QsZ0JBQWdCLENBQUMsSUFBSSxDQUFDLFFBQVEsQ0FBQyxDQUFDO1NBQ2pDO1FBQ0QsT0FBTyxnQkFBZ0IsQ0FBQztJQUMxQixDQUFDO0lBRUQ7Ozs7Ozs7OztPQVNHO0lBQ08saUJBQWlCO1FBQ3pCLE9BQU8sQ0FBQyxJQUFjLEVBQUUsRUFBRTtZQUN4QixNQUFNLFVBQVUsR0FBYSxFQUFFLENBQUM7WUFFaEMsTUFBTSxNQUFNLEdBQUcsSUFBSSxDQUFDLEtBQUssQ0FBQyxDQUFDLEVBQUUsSUFBSSxDQUFDLE1BQU0sQ0FBQyxNQUFNLENBQUMsQ0FBQztZQUNqRCxNQUFNLE9BQU8sR0FBRyxJQUFJLENBQUMsS0FBSyxDQUN0QixJQUFJLENBQUMsTUFBTSxDQUFDLE1BQU0sRUFBRSxJQUFJLENBQUMsTUFBTSxDQUFDLE1BQU0sR0FBRyxJQUFJLENBQUMsT0FBTyxDQUFDLE1BQU0sQ0FBQyxDQUFDO1lBQ2xFLE1BQU0sYUFBYSxHQUFHLElBQUksQ0FBQyxLQUFLLENBQzVCLElBQUksQ0FBQyxNQUFNLENBQUMsTUFBTSxHQUFHLElBQUksQ0FBQyxPQUFPLENBQUMsTUFBTSxFQUN4QyxJQUFJLENBQUMsTUFBTSxDQUFDLE1BQU0sR0FBRyxJQUFJLENBQUMsT0FBTyxDQUFDLE1BQU0sR0FBRyxDQUFDLENBQUMsQ0FBQztZQUVsRCxNQUFNLGFBQWEsR0FBYSxFQUFFLENBQUM7WUFFbkMsOERBQThEO1lBQzlELGdFQUFnRTtZQUNoRSxZQUFZO1lBQ1osTUFBTSxpQkFBaUIsR0FBRyxHQUFHLEVBQUU7Z0JBQzdCLE1BQU0sS0FBSyxHQUFHLEVBQUUsQ0FBQztnQkFDakIsS0FBSyxJQUFJLENBQUMsR0FBRyxDQUFDLEVBQUUsQ0FBQyxHQUFHLElBQUksQ0FBQyxNQUFNLENBQUMsTUFBTSxFQUFFLEVBQUUsQ0FBQyxFQUFFO29CQUMzQyxLQUFLLENBQUMsSUFBSSxDQUFDLEVBQUMsR0FBRyxFQUFFLElBQUksQ0FBQyxNQUFNLENBQUMsQ0FBQyxDQUFDLEVBQUUsS0FBSyxFQUFFLE1BQU0sQ0FBQyxDQUFDLENBQUMsRUFBQyxDQUFDLENBQUM7aUJBQ3JEO2dCQUNELE1BQU0sUUFBUSxHQUFHLElBQUksUUFBUSxDQUFDLEtBQUssQ0FBQyxDQUFDO2dCQUNyQyxNQUFNLE9BQU8sR0FDVCxPQUFPLENBQUMsSUFBSSxDQUFDLE9BQU8sRUFBRSxRQUFRLEVBQUUsRUFBQyxVQUFVLEVBQUUsSUFBSSxFQUFDLENBQWEsQ0FBQztnQkFDcEUsK0RBQStEO2dCQUMvRCxrQkFBa0I7Z0JBRWxCLElBQUksU0FBaUIsQ0FBQztnQkFDdEIsS0FBSyxJQUFJLENBQUMsR0FBRyxDQUFDLEVBQUUsQ0FBQyxHQUFHLElBQUksQ0FBQyxhQUFhLENBQUMsTUFBTSxFQUFFLEVBQUUsQ0FBQyxFQUFFO29CQUNsRCxNQUFNLFlBQVksR0FBRyxJQUFJLENBQUMsYUFBYSxDQUFDLENBQUMsQ0FBQyxDQUFDO29CQUMzQyxJQUFJLElBQUksR0FBRyxZQUFZLENBQUMsT0FBTyxDQUFDLENBQUMsQ0FBQyxFQUFFLE9BQU8sQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO29CQUNoRCxJQUFJLGFBQWEsQ0FBQyxDQUFDLENBQUMsSUFBSSxJQUFJLEVBQUU7d0JBQzVCLElBQUksR0FBRyxtQkFBbUIsQ0FBQyxJQUFJLEVBQUUsYUFBYSxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUM7cUJBQ3BEO29CQUVELG1DQUFtQztvQkFDbkMsTUFBTSxRQUFRLEdBQVcsR0FBRyxDQUFDLElBQUksQ0FBQyxJQUFJLENBQUMsQ0FBQztvQkFDeEMseURBQXlEO29CQUN6RCxVQUFVLENBQUMsSUFBSSxDQUFDLFFBQVEsQ0FBQyxDQUFDO29CQUMxQixJQUFJLENBQUMsS0FBSyxDQUFDLEVBQUU7d0JBQ1gsU0FBUyxHQUFHLElBQUksQ0FBQztxQkFDbEI7eUJBQU07d0JBQ0wsU0FBUyxHQUFHLEdBQUcsQ0FBQyxHQUFHLENBQUMsU0FBUyxFQUFFLElBQUksQ0FBQyxDQUFDO3FCQUN0QztpQkFDRjtnQkFFRCx1QkFBdUI7Z0JBQ3ZCLDBEQUEwRDtnQkFDMUQsd0NBQXdDO2dCQUN4QyxLQUFLLElBQUksQ0FBQyxHQUFHLENBQUMsRUFBRSxDQUFDLEdBQUcsSUFBSSxDQUFDLGNBQWMsQ0FBQyxNQUFNLEVBQUUsRUFBRSxDQUFDLEVBQUU7b0JBQ25ELElBQUksY0FBc0IsQ0FBQztvQkFFM0IsSUFBSSxJQUFJLENBQUMsT0FBTyxDQUFDLE1BQU0sR0FBRyxDQUFDLElBQUksQ0FBQyxHQUFHLElBQUksQ0FBQyxPQUFPLENBQUMsTUFBTSxFQUFFO3dCQUN0RCxjQUFjLEdBQUcsVUFBVSxDQUFDLENBQUMsQ0FBQyxDQUFDO3FCQUNoQzt5QkFBTTt3QkFDTCxNQUFNLE1BQU0sR0FBRyxJQUFJLENBQUMsY0FBYyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO3dCQUN6QyxNQUFNLFdBQVcsR0FBRyxJQUFJLENBQUMsY0FBYyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO3dCQUM5QyxjQUFjOzRCQUNWLEdBQUcsQ0FBQyxJQUFJLENBQUMsTUFBTSxDQUFDLE9BQU8sQ0FBQyxXQUFXLENBQUMsRUFBRSxPQUFPLENBQUMsV0FBVyxDQUFDLENBQUMsQ0FBQyxDQUFDO3FCQUNsRTtvQkFFRCxHQUFHLENBQUMsSUFBSSxDQUFDLGNBQWMsQ0FBQyxDQUFDO29CQUN6Qix5REFBeUQ7b0JBQ3pELGFBQWEsQ0FBQyxJQUFJLENBQUMsY0FBYyxDQUFDLENBQUM7aUJBQ3BDO2dCQUVELFNBQVMsR0FBRyxHQUFHLENBQUMsSUFBSSxDQUFDLFNBQVMsQ0FBQyxDQUFDO2dCQUVoQyw2QkFBNkI7Z0JBQzdCLElBQUksQ0FBQyxlQUFlLEVBQUUsQ0FBQyxPQUFPLENBQUMsZUFBZSxDQUFDLEVBQUU7b0JBQy9DLFNBQVMsR0FBRyxHQUFHLENBQUMsR0FBRyxDQUFDLFNBQVMsRUFBRSxlQUFlLENBQUMsQ0FBQztnQkFDbEQsQ0FBQyxDQUFDLENBQUM7Z0JBRUgsT0FBTyxTQUFtQixDQUFDO1lBQzdCLENBQUMsQ0FBQztZQUVGLE1BQU0sU0FBUyxHQUFHLElBQUksQ0FBQyx5QkFBeUIsQ0FBQyxHQUFHLENBQ2hELEtBQUssQ0FBQyxFQUFFLENBQUMsS0FBSyxDQUFDLElBQUksRUFBa0IsQ0FBQyxDQUFDO1lBQzNDLE1BQU0sVUFBVSxHQUFHLElBQUksQ0FBQztZQUN4QixNQUFNLGNBQWMsR0FDaEIsSUFBSSxDQUFDLFVBQVUsQ0FBQyxRQUFRLENBQUMsaUJBQWlCLEVBQUUsVUFBVSxFQUFFLFNBQVMsQ0FBQyxDQUFDO1lBRXZFLE9BQU8sQ0FBQyxjQUFjLENBQUMsQ0FBQyxNQUFNLENBQUMsYUFBYSxDQUFDLENBQUM7UUFDaEQsQ0FBQyxDQUFDO0lBQ0osQ0FBQztJQUVEOzs7O09BSUc7SUFDSyxnQkFBZ0I7UUFDdEIsSUFBSSxDQUFDLFlBQVksR0FBRyxDQUFDLElBQWMsRUFBRSxFQUFFO1lBQ3JDLE9BQU8sR0FBRyxDQUFDLElBQUksQ0FBQyxHQUFHLEVBQUU7Z0JBQ25CLE1BQU0sVUFBVSxHQUFhLEVBQUUsQ0FBQztnQkFDaEMsSUFBSSxTQUFpQixDQUFDO2dCQUN0QixNQUFNLE1BQU0sR0FBRyxJQUFJLENBQUMsS0FBSyxDQUFDLENBQUMsRUFBRSxJQUFJLENBQUMsTUFBTSxDQUFDLE1BQU0sQ0FBQyxDQUFDO2dCQUNqRCxNQUFNLE9BQU8sR0FBRyxJQUFJLENBQUMsS0FBSyxDQUN0QixJQUFJLENBQUMsTUFBTSxDQUFDLE1BQU0sRUFBRSxJQUFJLENBQUMsTUFBTSxDQUFDLE1BQU0sR0FBRyxJQUFJLENBQUMsT0FBTyxDQUFDLE1BQU0sQ0FBQyxDQUFDO2dCQUNsRSxNQUFNLEtBQUssR0FBRyxFQUFFLENBQUM7Z0JBQ2pCLEtBQUssSUFBSSxDQUFDLEdBQUcsQ0FBQyxFQUFFLENBQUMsR0FBRyxJQUFJLENBQUMsTUFBTSxDQUFDLE1BQU0sRUFBRSxFQUFFLENBQUMsRUFBRTtvQkFDM0MsS0FBSyxDQUFDLElBQUksQ0FBQyxFQUFDLEdBQUcsRUFBRSxJQUFJLENBQUMsTUFBTSxDQUFDLENBQUMsQ0FBQyxFQUFFLEtBQUssRUFBRSxNQUFNLENBQUMsQ0FBQyxDQUFDLEVBQUMsQ0FBQyxDQUFDO2lCQUNyRDtnQkFDRCxNQUFNLFFBQVEsR0FBRyxJQUFJLFFBQVEsQ0FBQyxLQUFLLENBQUMsQ0FBQztnQkFDckMsTUFBTSxPQUFPLEdBQUcsT0FBTyxDQUFDLElBQUksQ0FBQyxPQUFPLEVBQUUsUUFBUSxDQUFhLENBQUM7Z0JBQzVELHNCQUFzQjtnQkFDdEIsS0FBSyxJQUFJLENBQUMsR0FBRyxDQUFDLEVBQUUsQ0FBQyxHQUFHLElBQUksQ0FBQyxhQUFhLENBQUMsTUFBTSxFQUFFLEVBQUUsQ0FBQyxFQUFFO29CQUNsRCxNQUFNLFlBQVksR0FBRyxJQUFJLENBQUMsYUFBYSxDQUFDLENBQUMsQ0FBQyxDQUFDO29CQUMzQywwREFBMEQ7b0JBQzFELGFBQWE7b0JBQ2IsTUFBTSxJQUFJLEdBQVcsR0FBRyxDQUFDLElBQUksQ0FBQyxZQUFZLENBQUMsT0FBTyxDQUFDLENBQUMsQ0FBQyxFQUFFLE9BQU8sQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUM7b0JBQ3BFLElBQUksQ0FBQyxLQUFLLENBQUMsRUFBRTt3QkFDWCxTQUFTLEdBQUcsSUFBSSxDQUFDO3FCQUNsQjt5QkFBTTt3QkFDTCxTQUFTLEdBQUcsR0FBRyxDQUFDLEdBQUcsQ0FBQyxTQUFTLEVBQUUsSUFBSSxDQUFDLENBQUM7cUJBQ3RDO29CQUNELFVBQVUsQ0FBQyxJQUFJLENBQUMsU0FBUyxDQUFDLENBQUM7aUJBQzVCO2dCQUNELHVCQUF1QjtnQkFDdkIsS0FBSyxJQUFJLENBQUMsR0FBRyxDQUFDLEVBQUUsQ0FBQyxHQUFHLElBQUksQ0FBQyxjQUFjLENBQUMsTUFBTSxFQUFFLEVBQUUsQ0FBQyxFQUFFO29CQUNuRCxNQUFNLE1BQU0sR0FBRyxJQUFJLENBQUMsY0FBYyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO29CQUN6QyxNQUFNLFdBQVcsR0FBRyxJQUFJLENBQUMsY0FBYyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO29CQUM5QyxpRUFBaUU7b0JBQ2pFLE1BQU0sVUFBVSxHQUNaLEdBQUcsQ0FBQyxJQUFJLENBQUMsTUFBTSxDQUFDLE9BQU8sQ0FBQyxXQUFXLENBQUMsRUFBRSxPQUFPLENBQUMsV0FBVyxDQUFDLENBQUMsQ0FBQyxDQUFDO29CQUNqRSxVQUFVLENBQUMsSUFBSSxDQUFDLFVBQW9CLENBQUMsQ0FBQztpQkFDdkM7Z0JBQ0QsT0FBTyxVQUFVLENBQUM7WUFDcEIsQ0FBQyxDQUFDLENBQUM7UUFDTCxDQUFDLENBQUM7SUFDSixDQUFDO0lBRUQ7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7OztPQWlDRztJQUNILEtBQUssQ0FBQyxHQUFHLENBQ0wsQ0FBZ0QsRUFDaEQsQ0FBZ0QsRUFDaEQsT0FBcUIsRUFBRTtRQUN6QixJQUFJLElBQUksQ0FBQyxVQUFVLEVBQUU7WUFDbkIsTUFBTSxJQUFJLEtBQUssQ0FDWCw4REFBOEQsQ0FBQyxDQUFDO1NBQ3JFO1FBQ0QsSUFBSSxDQUFDLFVBQVUsR0FBRyxJQUFJLENBQUM7UUFDdkIsSUFBSSxNQUFnQixDQUFDO1FBQ3JCLElBQUksT0FBaUIsQ0FBQztRQUN0QixJQUFJLGNBQXdCLENBQUM7UUFDN0IsSUFBSSxlQUF5QixDQUFDO1FBQzlCLElBQUksU0FBMEIsQ0FBQztRQUMvQixJQUFJLFNBQTBCLENBQUM7UUFDL0IsSUFBSSxJQUFxQixDQUFDO1FBQzFCLElBQUksSUFBcUIsQ0FBQztRQUMxQixJQUFJLGFBQXVCLENBQUM7UUFDNUIsSUFBSTtZQUNGLE1BQU0sU0FBUyxHQUFHLElBQUksQ0FBQyxTQUFTLElBQUksSUFBSSxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLElBQUksQ0FBQyxTQUFTLENBQUM7WUFDL0QsY0FBYyxDQUFDLFNBQVMsQ0FBQyxDQUFDO1lBRTFCLHNCQUFzQjtZQUN0QixvQ0FBb0M7WUFDcEMsTUFBTSxjQUFjLEdBQUcsS0FBSyxDQUFDO1lBQzdCLE1BQU0sZ0JBQWdCLEdBQ2xCLE1BQU0sSUFBSSxDQUFDLG1CQUFtQixDQUMxQixDQUFDLEVBQUUsQ0FBQyxFQUFFLElBQUksQ0FBQyxZQUFZLEVBQUUsSUFBSSxDQUFDLFdBQVcsRUFBRSxjQUFjLEVBQ3pELFNBQVMsQ0FBbUMsQ0FBQztZQUNyRCxNQUFNLEdBQUcsZ0JBQWdCLENBQUMsQ0FBQyxDQUFDLENBQUM7WUFDN0IsT0FBTyxHQUFHLGdCQUFnQixDQUFDLENBQUMsQ0FBQyxDQUFDO1lBQzlCLGFBQWEsR0FBRyxnQkFBZ0IsQ0FBQyxDQUFDLENBQUMsQ0FBQztZQUVwQywyQkFBMkI7WUFDM0IsSUFBSSxZQUFZLEdBQUcsS0FBSyxDQUFDO1lBQ3pCLElBQUksTUFBZ0IsQ0FBQztZQUNyQixJQUFJLElBQUksQ0FBQyxjQUFjLElBQUksSUFBSSxJQUFJLElBQUksQ0FBQyxjQUFjLENBQUMsTUFBTSxHQUFHLENBQUMsRUFBRTtnQkFDakUsWUFBWSxHQUFHLElBQUksQ0FBQztnQkFDcEIsSUFBSSxJQUFJLENBQUMsY0FBYyxDQUFDLE1BQU0sS0FBSyxDQUFDLEVBQUU7b0JBQ3BDLG1EQUFtRDtvQkFDbkQsU0FBUyxHQUFHLElBQUksQ0FBQyxjQUFjLENBQUMsQ0FBQyxDQUFDLENBQUM7b0JBQ25DLFNBQVMsR0FBRyxJQUFJLENBQUMsY0FBYyxDQUFDLENBQUMsQ0FBQyxDQUFDO2lCQUNwQztxQkFBTSxJQUFJLElBQUksQ0FBQyxjQUFjLENBQUMsTUFBTSxLQUFLLENBQUMsRUFBRTtvQkFDM0MsTUFBTSxJQUFJLG1CQUFtQixDQUN6QiwrREFBK0QsQ0FBQyxDQUFDO2lCQUN0RTtxQkFBTTtvQkFDTCxNQUFNLElBQUksVUFBVSxDQUNoQiwrREFBK0Q7d0JBQy9ELDRDQUE0Qzt3QkFDNUMsR0FBRyxJQUFJLENBQUMsY0FBYyxjQUFjLENBQUMsQ0FBQztpQkFDM0M7Z0JBRUQsTUFBTSxjQUFjLEdBQUcsSUFBSSxDQUFDO2dCQUM1QixNQUFNLGVBQWUsR0FDakIsTUFBTSxJQUFJLENBQUMsbUJBQW1CLENBQzFCLFNBQVMsRUFBRSxTQUFTLEVBQUUsSUFBSSxFQUFFLDZCQUE2QixDQUN6RCxJQUFJLEVBQXdCLDRCQUE0QixDQUN4RCxjQUFjLEVBQUUsU0FBUyxDQUFtQyxDQUFDO2dCQUNyRSxJQUFJLEdBQUcsZUFBZSxDQUFDLENBQUMsQ0FBQyxDQUFDO2dCQUMxQixJQUFJLEdBQUcsZUFBZSxDQUFDLENBQUMsQ0FBQyxDQUFDO2dCQUMxQixNQUFNLEdBQUcsSUFBSSxDQUFDLE1BQU0sQ0FBQyxJQUFJLENBQUMsQ0FBQztnQkFDM0Isa0RBQWtEO2FBQ25EO2lCQUFNLElBQ0gsSUFBSSxDQUFDLGVBQWUsSUFBSSxJQUFJLElBQUksSUFBSSxDQUFDLGVBQWUsR0FBRyxDQUFDO2dCQUN4RCxJQUFJLENBQUMsZUFBZSxHQUFHLENBQUMsRUFBRTtnQkFDNUIsWUFBWSxHQUFHLElBQUksQ0FBQztnQkFDcEIsOERBQThEO2dCQUM5RCxNQUFNLE9BQU8sR0FDVCxJQUFJLENBQUMsS0FBSyxDQUFDLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLEdBQUcsQ0FBQyxDQUFDLEdBQUcsSUFBSSxDQUFDLGVBQWUsQ0FBQyxDQUFDLENBQUM7Z0JBQ2hFLE1BQU0saUJBQWlCLEdBQUcsTUFBTSxDQUFDLENBQUMsQ0FBQyxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsQ0FBQztnQkFDN0MsSUFBSSxHQUFHLFdBQVcsQ0FBQyxNQUFNLEVBQUUsT0FBTyxFQUFFLGlCQUFpQixDQUFhLENBQUM7Z0JBQ25FLGNBQWMsR0FBRyxNQUFNLENBQUM7Z0JBQ3hCLE1BQU0sR0FBRyxXQUFXLENBQUMsTUFBTSxFQUFFLENBQUMsRUFBRSxPQUFPLENBQWEsQ0FBQztnQkFDckQsSUFBSSxHQUFHLFdBQVcsQ0FBQyxPQUFPLEVBQUUsT0FBTyxFQUFFLGlCQUFpQixDQUFhLENBQUM7Z0JBQ3BFLGVBQWUsR0FBRyxPQUFPLENBQUM7Z0JBQzFCLE9BQU8sR0FBRyxXQUFXLENBQUMsT0FBTyxFQUFFLENBQUMsRUFBRSxPQUFPLENBQWEsQ0FBQztnQkFDdkQsb0VBQW9FO2dCQUNwRSxzQkFBc0I7Z0JBQ3RCLE1BQU0sR0FBRyxJQUFJLENBQUMsTUFBTSxDQUFDLElBQUksQ0FBQyxDQUFDO2dCQUUzQixrREFBa0Q7YUFDbkQ7aUJBQU0sSUFBSSxJQUFJLENBQUMsZUFBZSxJQUFJLElBQUksRUFBRTtnQkFDdkMsWUFBWSxHQUFHLElBQUksQ0FBQztnQkFDcEIsb0NBQW9DO2FBQ3JDO1lBRUQsTUFBTSxHQUFHLEdBQUcsTUFBTSxDQUFDLE1BQU0sQ0FBQyxPQUFPLENBQUMsQ0FBQyxNQUFNLENBQUMsYUFBYSxDQUFDLENBQUM7WUFFekQsSUFBSSxDQUFDLGdDQUFnQyxFQUFFLENBQUM7WUFFeEMsNERBQTREO1lBRTVELGdFQUFnRTtZQUNoRSxTQUFTO1lBQ1QscUVBQXFFO1lBQ3JFLGlFQUFpRTtZQUNqRSxxRUFBcUU7WUFDckUsc0VBQXNFO1lBQ3RFLG1FQUFtRTtZQUNuRSxtRUFBbUU7WUFDbkUsaURBQWlEO1lBQ2pELDJCQUEyQjtZQUMzQixNQUFNLGFBQWEsR0FBRyxJQUFJLENBQUMsaUJBQWlCLEVBQUUsQ0FBQztZQUMvQyxNQUFNLFNBQVMsR0FBRyxJQUFJLENBQUMsc0JBQXNCLEVBQUUsQ0FBQztZQUVoRCxJQUFJLFdBQXlDLENBQUM7WUFDOUMsSUFBSSxlQUF5QixDQUFDO1lBQzlCLElBQUksWUFBWSxFQUFFO2dCQUNoQixJQUFJLENBQUMsZ0JBQWdCLEVBQUUsQ0FBQztnQkFDeEIsV0FBVyxHQUFHLElBQUksQ0FBQyxZQUFZLENBQUM7Z0JBQ2hDLGVBQWU7b0JBQ1gsU0FBUyxDQUFDLEtBQUssRUFBRSxDQUFDLE1BQU0sQ0FBQyxTQUFTLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsTUFBTSxHQUFHLENBQUMsQ0FBQyxDQUFDLENBQUM7YUFDOUQ7aUJBQU07Z0JBQ0wsV0FBVyxHQUFHLElBQUksQ0FBQztnQkFDbkIsTUFBTSxHQUFHLEVBQUUsQ0FBQztnQkFDWixlQUFlLEdBQUcsU0FBUyxDQUFDLEtBQUssRUFBRSxDQUFDO2FBQ3JDO1lBRUQsTUFBTSxTQUFTLEdBQUcsb0JBQW9CLENBQUMsSUFBSSxDQUFDLFNBQVMsRUFBRSxJQUFJLENBQUMsVUFBVSxDQUFDLENBQUM7WUFDeEUsTUFBTSxHQUFHLEdBQUcsTUFBTSxJQUFJLENBQUMsT0FBTyxDQUMxQixhQUFhLEVBQUUsR0FBRyxFQUFFLFNBQVMsRUFBRSxTQUFTLEVBQUUsSUFBSSxDQUFDLE1BQU0sRUFDckQsSUFBSSxDQUFDLE9BQU8sRUFBRSxTQUFTLEVBQUUsV0FBVyxFQUFFLE1BQU0sRUFBRSxJQUFJLENBQUMsT0FBTyxFQUMxRCxlQUFlLEVBQUUsSUFBSSxDQUFDLFlBQVksRUFBRSxJQUFJLEVBQUUsSUFBSSxDQUFDLENBQUM7WUFDcEQsT0FBTyxHQUFHLENBQUM7U0FDWjtnQkFBUztZQUNSLElBQUksQ0FBQyxVQUFVLEdBQUcsS0FBSyxDQUFDO1lBQ3hCLG1CQUFtQjtZQUNuQixpQkFBaUIsQ0FBQyxNQUFNLEVBQUUsQ0FBQyxDQUFDLENBQUM7WUFDN0IsaUJBQWlCLENBQUMsT0FBTyxFQUFFLENBQUMsQ0FBQyxDQUFDO1lBQzlCLGlCQUFpQixDQUFDLGNBQWMsRUFBRSxDQUFDLENBQUMsQ0FBQztZQUNyQyxpQkFBaUIsQ0FBQyxlQUFlLEVBQUUsQ0FBQyxDQUFDLENBQUM7WUFDdEMsaUJBQWlCLENBQUMsSUFBZ0IsRUFBRSxTQUFTLENBQUMsQ0FBQztZQUMvQyxpQkFBaUIsQ0FBQyxJQUFnQixFQUFFLFNBQVMsQ0FBQyxDQUFDO1lBQy9DLElBQUksYUFBYSxJQUFJLElBQUksRUFBRTtnQkFDekIsR0FBRyxDQUFDLE9BQU8sQ0FBQyxhQUFhLENBQUMsQ0FBQzthQUM1QjtTQUNGO1FBQ0Qsc0NBQXNDO0lBQ3hDLENBQUM7SUFFRDs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7T0EwQkc7SUFDSCxLQUFLLENBQUMsT0FBTyxDQUNULENBQStCLEVBQUUsR0FBYSxFQUFFLFNBQ3hDLEVBQUUsU0FBa0IsRUFBRSxNQUFlLEVBQUUsT0FBZ0IsRUFDL0QsU0FBMEIsRUFBRSxJQUFtQyxFQUFFLE1BQ3pELEVBQUUsT0FBd0IsRUFBRSxlQUEwQixFQUM5RCxZQUFxQixFQUFFLGFBQXNCLEVBQUUsZUFBd0I7UUFFekUsSUFBSSxTQUFTLElBQUksSUFBSSxFQUFFO1lBQ3JCLFNBQVMsR0FBRyxFQUFFLENBQUM7U0FDaEI7UUFDRCxJQUFJLE1BQU0sSUFBSSxJQUFJLEVBQUU7WUFDbEIsTUFBTSxHQUFHLENBQUMsQ0FBQztTQUNaO1FBQ0QsSUFBSSxPQUFPLElBQUksSUFBSSxFQUFFO1lBQ25CLE9BQU8sR0FBRyxJQUFJLENBQUM7U0FDaEI7UUFDRCxJQUFJLFlBQVksSUFBSSxJQUFJLEVBQUU7WUFDeEIsWUFBWSxHQUFHLENBQUMsQ0FBQztTQUNsQjtRQUVELHNFQUFzRTtRQUN0RSxJQUFJLFlBQVksR0FBRyxLQUFLLENBQUM7UUFDekIsSUFBSSxJQUFJLElBQUksSUFBSSxJQUFJLE1BQU0sSUFBSSxJQUFJLEVBQUU7WUFDbEMsWUFBWSxHQUFHLElBQUksQ0FBQztZQUNwQiwrQkFBK0I7U0FDaEM7UUFDRCxJQUFJLGVBQWUsSUFBSSxJQUFJLEVBQUU7WUFDM0IsWUFBWSxHQUFHLElBQUksQ0FBQztZQUNwQixJQUFJLGFBQWEsSUFBSSxJQUFJLEVBQUU7Z0JBQ3pCLE1BQU0sSUFBSSxVQUFVLENBQ2hCLGdFQUFnRTtvQkFDaEUsb0NBQW9DLENBQUMsQ0FBQzthQUMzQztTQUNGO1FBRUQsTUFBTSxlQUFlLEdBQ2pCLElBQUksQ0FBQyxlQUFlLENBQUMsR0FBRyxFQUFFLFNBQVMsRUFBRSxhQUFhLEVBQUUsaUJBQWlCLENBQUMsQ0FBQztRQUMzRSxJQUFJLFVBQW9CLENBQUM7UUFDekIsSUFBSSxlQUFlLElBQUksSUFBSSxFQUFFO1lBQzNCLFVBQVUsR0FBRyxLQUFLLENBQUMsQ0FBQyxFQUFFLGVBQWUsQ0FBQyxDQUFDO1NBQ3hDO1FBRUQsSUFBSSxPQUFPLElBQUksSUFBSSxFQUFFO1lBQ25CLE9BQU8sR0FBRyxDQUFDLENBQUM7U0FDYjtRQUVELE1BQU0sRUFBQyxZQUFZLEVBQUUsT0FBTyxFQUFDLEdBQUcsa0JBQWtCLENBQzlDLFNBQVMsRUFBRSxPQUFPLEVBQUUsTUFBTSxFQUFFLFlBQVksRUFBRSxlQUFlLEVBQ3pELGFBQWEsRUFBRSxTQUFTLEVBQUUsWUFBWSxFQUFFLGVBQWUsQ0FBQyxDQUFDO1FBQzdELFlBQVksQ0FBQyxRQUFRLENBQUMsSUFBSSxDQUFDLENBQUM7UUFDNUIsSUFBSSxDQUFDLE9BQU8sR0FBRyxPQUFPLENBQUM7UUFDdkIsTUFBTSxZQUFZLENBQUMsWUFBWSxFQUFFLENBQUM7UUFDbEMsSUFBSSxDQUFDLGFBQWEsR0FBRyxLQUFLLENBQUM7UUFDM0Isb0VBQW9FO1FBQ3BFLCtEQUErRDtRQUUvRCxLQUFLLElBQUksS0FBSyxHQUFHLFlBQVksRUFBRSxLQUFLLEdBQUcsTUFBTSxFQUFFLEVBQUUsS0FBSyxFQUFFO1lBQ3RELE1BQU0sWUFBWSxDQUFDLFlBQVksQ0FBQyxLQUFLLENBQUMsQ0FBQztZQUN2QyxNQUFNLFNBQVMsR0FBbUIsRUFBRSxDQUFDO1lBQ3JDLElBQUksYUFBYSxJQUFJLElBQUksRUFBRTtnQkFDekIsTUFBTSxJQUFJLG1CQUFtQixDQUN6Qiw0Q0FBNEMsQ0FBQyxDQUFDO2FBQ25EO2lCQUFNO2dCQUNMLElBQUksT0FBTyxLQUFLLE9BQU8sRUFBRTtvQkFDdkIsTUFBTSxJQUFJLG1CQUFtQixDQUFDLG9DQUFvQzswQkFDbEMsTUFBTSxDQUFDLENBQUM7aUJBQ3pDO3FCQUFNLElBQUksT0FBTyxFQUFFO29CQUNsQixJQUFJLENBQUMsT0FBTyxDQUFDLFVBQVUsQ0FBQyxDQUFDO2lCQUMxQjtnQkFDRCxxRUFBcUU7Z0JBQ3JFLGtEQUFrRDtnQkFDbEQsTUFBTSxpQkFBaUIsR0FBRyxRQUFRLENBQUMsVUFBVSxDQUFDLENBQUM7Z0JBRS9DLE1BQU0sT0FBTyxHQUFHLFdBQVcsQ0FBQyxlQUFlLEVBQUUsU0FBUyxDQUFDLENBQUM7Z0JBQ3hELEtBQUssSUFBSSxVQUFVLEdBQUcsQ0FBQyxFQUFFLFVBQVUsR0FBRyxPQUFPLENBQUMsTUFBTSxFQUFFLEVBQUUsVUFBVSxFQUFFO29CQUNsRSxNQUFNLFNBQVMsR0FBbUIsRUFBRSxDQUFDO29CQUNyQyxNQUFNLFlBQVksQ0FBQyxZQUFZLENBQUMsVUFBVSxFQUFFLFNBQVMsQ0FBQyxDQUFDO29CQUV2RCxHQUFHLENBQUMsSUFBSSxDQUFDLEdBQUcsRUFBRTt3QkFDWixNQUFNLFVBQVUsR0FBRyxPQUFPLENBQUMsVUFBVSxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUM7d0JBQzFDLE1BQU0sUUFBUSxHQUFHLE9BQU8sQ0FBQyxVQUFVLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQzt3QkFDeEMsTUFBTSxRQUFRLEdBQUcsQ0FBQyxDQUFDLG1CQUFtQixDQUNqQixpQkFBaUIsRUFBRSxVQUFVLEVBQzdCLFFBQVEsR0FBRyxVQUFVLENBQWEsQ0FBQzt3QkFDeEQsU0FBUyxDQUFDLE9BQU8sQ0FBQyxHQUFHLFVBQVUsQ0FBQzt3QkFDaEMsU0FBUyxDQUFDLE1BQU0sQ0FBQyxHQUFHLFFBQVEsR0FBRyxVQUFVLENBQUM7d0JBRTFDLGdFQUFnRTt3QkFDaEUsc0RBQXNEO3dCQUN0RCxNQUFNLFFBQVEsR0FBRyxvQkFBb0IsQ0FBQyxHQUFHLEVBQUUsUUFBUSxDQUFhLENBQUM7d0JBQ2pFLE1BQU0sSUFBSSxHQUFHLENBQUMsQ0FBQyxRQUFRLENBQUMsQ0FBQzt3QkFDekIsS0FBSyxJQUFJLENBQUMsR0FBRyxDQUFDLEVBQUUsQ0FBQyxHQUFHLFNBQVMsQ0FBQyxNQUFNLEVBQUUsRUFBRSxDQUFDLEVBQUU7NEJBQ3pDLE1BQU0sS0FBSyxHQUFHLFNBQVMsQ0FBQyxDQUFDLENBQUMsQ0FBQzs0QkFDM0IsTUFBTSxHQUFHLEdBQUcsSUFBSSxDQUFDLENBQUMsQ0FBQyxDQUFDOzRCQUNwQixTQUFTLENBQUMsS0FBSyxDQUFDLEdBQUcsR0FBRyxDQUFDOzRCQUN2QixHQUFHLENBQUMsSUFBSSxDQUFDLEdBQUcsQ0FBQyxDQUFDOzRCQUNkLDhDQUE4Qzt5QkFDL0M7d0JBRUQsSUFBSSxVQUFVLEtBQUssT0FBTyxDQUFDLE1BQU0sR0FBRyxDQUFDLEVBQUUsRUFBRyxjQUFjOzRCQUN0RCxJQUFJLFlBQVksRUFBRTtnQ0FDaEIsTUFBTSxPQUFPLEdBQUcsSUFBSSxDQUFDLFFBQVEsQ0FBQyxJQUFJLEVBQUUsTUFBTSxFQUFFLFNBQVMsQ0FBQyxDQUFDO2dDQUN2RCw2REFBNkQ7Z0NBQzdELEtBQUssSUFBSSxDQUFDLEdBQUcsQ0FBQyxFQUFFLENBQUMsR0FBRyxTQUFTLENBQUMsTUFBTSxFQUFFLEVBQUUsQ0FBQyxFQUFFO29DQUN6QyxNQUFNLEtBQUssR0FBRyxTQUFTLENBQUMsQ0FBQyxDQUFDLENBQUM7b0NBQzNCLE1BQU0sR0FBRyxHQUFHLE9BQU8sQ0FBQyxDQUFDLENBQUMsQ0FBQztvQ0FDdkIsR0FBRyxDQUFDLElBQUksQ0FBQyxHQUFHLENBQUMsQ0FBQztvQ0FDZCw4Q0FBOEM7b0NBQzlDLFNBQVMsQ0FBQyxNQUFNLEdBQUcsS0FBSyxDQUFDLEdBQUcsR0FBRyxDQUFDO2lDQUNqQzs2QkFDRjt5QkFDRjtvQkFDSCxDQUFDLENBQUMsQ0FBQztvQkFFSCxNQUFNLFlBQVksQ0FBQyxVQUFVLENBQUMsVUFBVSxFQUFFLFNBQVMsQ0FBQyxDQUFDO29CQUNyRCxvQkFBb0IsQ0FBQyxTQUFTLENBQUMsQ0FBQztvQkFFaEMsSUFBSSxJQUFJLENBQUMsYUFBYSxFQUFFO3dCQUN0QixNQUFNO3FCQUNQO29CQUNELDZDQUE2QztpQkFDOUM7Z0JBRUQsaUJBQWlCLENBQUMsT0FBTyxFQUFFLENBQUM7YUFDN0I7WUFDRCxzREFBc0Q7WUFDdEQsTUFBTSxZQUFZLENBQUMsVUFBVSxDQUFDLEtBQUssRUFBRSxTQUFTLENBQUMsQ0FBQztZQUNoRCxJQUFJLElBQUksQ0FBQyxhQUFhLEVBQUU7Z0JBQ3RCLE1BQU07YUFDUDtTQUNGO1FBQ0QsTUFBTSxZQUFZLENBQUMsVUFBVSxFQUFFLENBQUM7UUFFaEMsTUFBTSxJQUFJLENBQUMsT0FBTyxDQUFDLFFBQVEsRUFBRSxDQUFDO1FBQzlCLE9BQU8sSUFBSSxDQUFDLE9BQU8sQ0FBQztJQUN0QixDQUFDO0lBRUQsdUVBQXVFO0lBQ3ZFLDRCQUE0QjtJQUM1Qjs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7T0FvQkc7SUFDSCxLQUFLLENBQUMsVUFBVSxDQUFJLE9BQW1CLEVBQUUsSUFBNEI7UUFFbkUsT0FBTyxVQUFVLENBQUMsSUFBSSxFQUFFLE9BQU8sRUFBRSxJQUFJLENBQUMsQ0FBQztJQUN6QyxDQUFDO0lBRUQ7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7T0FzQkc7SUFDSCxLQUFLLENBQUMsWUFBWSxDQUNkLENBQWdELEVBQ2hELENBQzZCO1FBQy9CLG9EQUFvRDtRQUNwRCx1Q0FBdUM7UUFDdkMsTUFBTSxjQUFjLEdBQUcsTUFBTSxJQUFJLENBQUMsbUJBQW1CLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDO1FBQzVELE1BQU0sTUFBTSxHQUFHLGNBQWMsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUNqQyxNQUFNLE9BQU8sR0FBRyxjQUFjLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDbEMsTUFBTSxhQUFhLEdBQUcsSUFBSSxDQUFDLGlCQUFpQixFQUFFLENBQUM7UUFDL0MsTUFBTSxNQUFNLEdBQUcsYUFBYSxDQUFDLE1BQU0sQ0FBQyxNQUFNLENBQUMsT0FBTyxDQUFDLENBQUMsQ0FBQztRQUNyRCxNQUFNLFVBQVUsR0FBYSxFQUFFLENBQUM7UUFDaEMsS0FBSyxNQUFNLElBQUksSUFBSSxNQUFNLEVBQUU7WUFDekIsTUFBTSxDQUFDLEdBQUcsTUFBTSxJQUFJLENBQUMsSUFBSSxFQUFFLENBQUM7WUFDNUIsVUFBVSxDQUFDLElBQUksQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQztTQUN2QjtRQUNELEdBQUcsQ0FBQyxPQUFPLENBQUMsTUFBTSxDQUFDLENBQUM7UUFDcEIsaUJBQWlCLENBQUMsY0FBYyxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDO1FBQ3hDLGlCQUFpQixDQUFDLGNBQWMsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQztRQUN4QyxPQUFPLGdCQUFnQixDQUFDLFVBQVUsQ0FBQyxDQUFDO0lBQ3RDLENBQUM7SUFFRDs7Ozs7Ozs7T0FRRztJQUNPLGVBQWUsQ0FBQyxNQUFzQjtRQUM5QyxNQUFNLFlBQVksR0FBa0IsRUFBRSxDQUFDO1FBRXZDLE1BQU0sYUFBYSxHQUFHLE1BQU0sSUFBSSxJQUFJLElBQUksTUFBTSxDQUFDLGFBQWEsQ0FBQztRQUM3RCxNQUFNLE9BQU8sR0FBRyxhQUFhLENBQUMsQ0FBQyxDQUFDLElBQUksQ0FBQyxnQkFBZ0IsQ0FBQyxDQUFDLENBQUMsSUFBSSxDQUFDLE9BQU8sQ0FBQztRQUNyRSxNQUFNLFlBQVksR0FBRyxJQUFJLENBQUMsVUFBVSxDQUFDLGFBQWEsQ0FBQyxDQUFDO1FBQ3BELEtBQUssSUFBSSxDQUFDLEdBQUcsQ0FBQyxFQUFFLENBQUMsR0FBRyxPQUFPLENBQUMsTUFBTSxFQUFFLEVBQUUsQ0FBQyxFQUFFO1lBQ3ZDLElBQUksYUFBYSxJQUFJLENBQUMsT0FBTyxDQUFDLENBQUMsQ0FBQyxDQUFDLFNBQVMsRUFBRTtnQkFDMUMseUNBQXlDO2dCQUN6QyxTQUFTO2FBQ1Y7WUFDRCxZQUFZLENBQUMsSUFBSSxDQUNiLEVBQUMsSUFBSSxFQUFFLE9BQU8sQ0FBQyxDQUFDLENBQUMsQ0FBQyxZQUFZLEVBQUUsTUFBTSxFQUFFLFlBQVksQ0FBQyxDQUFDLENBQUMsRUFBQyxDQUFDLENBQUM7U0FDL0Q7UUFDRCxPQUFPLFlBQVksQ0FBQztJQUN0QixDQUFDO0lBRUQ7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7O09BNkJHO0lBQ0gsSUFBSSxZQUFZLENBQUMsSUFBYTtRQUM1QixJQUFJLENBQUMsYUFBYSxHQUFHLElBQUksQ0FBQztJQUM1QixDQUFDO0lBRUQsSUFBSSxZQUFZO1FBQ2QsT0FBTyxJQUFJLENBQUMsYUFBYSxDQUFDO0lBQzVCLENBQUM7SUFFRCxJQUFJLFNBQVM7UUFDWCxPQUFPLElBQUksQ0FBQyxVQUFVLENBQUM7SUFDekIsQ0FBQztJQUVELElBQUksU0FBUyxDQUFDLFNBQW9CO1FBQ2hDLElBQUksSUFBSSxDQUFDLFVBQVUsS0FBSyxTQUFTLEVBQUU7WUFDakMsSUFBSSxDQUFDLFVBQVUsR0FBRyxTQUFTLENBQUM7WUFDNUIsSUFBSSxDQUFDLGdCQUFnQixHQUFHLEtBQUssQ0FBQztTQUMvQjtJQUNILENBQUM7SUFFUSxPQUFPO1FBQ2QsTUFBTSxNQUFNLEdBQUcsS0FBSyxDQUFDLE9BQU8sRUFBRSxDQUFDO1FBQy9CLElBQUksTUFBTSxDQUFDLG9CQUFvQixLQUFLLENBQUMsSUFBSSxJQUFJLENBQUMsU0FBUyxJQUFJLElBQUk7WUFDM0QsSUFBSSxDQUFDLGdCQUFnQixFQUFFO1lBQ3pCLE1BQU0sZ0NBQWdDLEdBQUcsR0FBRyxDQUFDLE1BQU0sRUFBRSxDQUFDLFVBQVUsQ0FBQztZQUNqRSxJQUFJLENBQUMsVUFBVSxDQUFDLE9BQU8sRUFBRSxDQUFDO1lBQzFCLE1BQU0sQ0FBQyxvQkFBb0I7Z0JBQ3ZCLGdDQUFnQyxHQUFHLEdBQUcsQ0FBQyxNQUFNLEVBQUUsQ0FBQyxVQUFVLENBQUM7U0FDaEU7UUFDRCxPQUFPLE1BQU0sQ0FBQztJQUNoQixDQUFDO0lBRU8sa0JBQWtCO1FBRXhCLElBQUksU0FDc0MsQ0FBQztRQUMzQyxJQUFJLE9BQU8sSUFBSSxDQUFDLElBQUksS0FBSyxRQUFRLEVBQUU7WUFDakMsU0FBUyxHQUFHLFdBQVcsQ0FBQyxJQUFJLENBQUMsSUFBSSxDQUFtQixDQUFDO1NBQ3REO2FBQU0sSUFBSSxLQUFLLENBQUMsT0FBTyxDQUFDLElBQUksQ0FBQyxJQUFJLENBQUMsRUFBRTtZQUNuQyxLQUFLLE1BQU0sSUFBSSxJQUFJLElBQUksQ0FBQyxJQUFJLEVBQUU7Z0JBQzVCLElBQUksT0FBTyxJQUFJLEtBQUssUUFBUSxFQUFFO29CQUM1QixNQUFNLElBQUksS0FBSyxDQUFDLG9EQUFvRCxDQUFDLENBQUM7aUJBQ3ZFO2FBQ0Y7WUFDRCxTQUFTLEdBQUksSUFBSSxDQUFDLElBQWlCLENBQUMsR0FBRyxDQUFDLElBQUksQ0FBQyxFQUFFLENBQUMsV0FBVyxDQUFDLElBQUksQ0FBQyxDQUM3QyxDQUFDO1NBQ3RCO2FBQU07WUFDTCxNQUFNLFdBQVcsR0FBRyxNQUFNLENBQUMsSUFBSSxDQUFDLElBQUksQ0FBQyxJQUFJLENBQUMsQ0FBQztZQUMzQyxTQUFTLEdBQUcsRUFBNEMsQ0FBQztZQUN6RCxNQUFNLE1BQU0sR0FDUixJQUFJLENBQUMsSUFBdUQsQ0FBQztZQUNqRSxLQUFLLE1BQU0sVUFBVSxJQUFJLFdBQVcsRUFBRTtnQkFDcEMsSUFBSSxPQUFPLE1BQU0sQ0FBQyxVQUFVLENBQUMsS0FBSyxRQUFRLEVBQUU7b0JBQzFDLFNBQVMsQ0FBQyxVQUFVLENBQUM7d0JBQ2pCLFdBQVcsQ0FBQyxNQUFNLENBQUMsVUFBVSxDQUFXLENBQW1CLENBQUM7aUJBQ2pFO3FCQUFNO29CQUNMLE1BQU0sSUFBSSxLQUFLLENBQUMsb0RBQW9ELENBQUMsQ0FBQztpQkFDdkU7YUFDRjtTQUNGO1FBQ0QsT0FBTyxTQUFTLENBQUM7SUFDbkIsQ0FBQztJQUVPLG9CQUFvQjtRQUUxQixJQUFJLE9BQU8sSUFBSSxDQUFDLE9BQU8sS0FBSyxRQUFRO1lBQ2hDLE9BQU8sSUFBSSxDQUFDLE9BQU8sS0FBSyxVQUFVLEVBQUU7WUFDdEMsT0FBTyxDQUFDLFdBQVcsQ0FBQyxPQUFPLENBQUMsbUJBQW1CLENBQUMsSUFBSSxDQUFDLE9BQU8sQ0FBQyxDQUFDLENBQUMsQ0FBQztTQUNqRTthQUFNLElBQUksS0FBSyxDQUFDLE9BQU8sQ0FBQyxJQUFJLENBQUMsT0FBTyxDQUFDLEVBQUU7WUFDdEMsT0FBTyxJQUFJLENBQUMsT0FBTyxDQUFDLEdBQUcsQ0FDbkIsTUFBTSxDQUFDLEVBQUUsQ0FBQyxXQUFXLENBQUMsT0FBTyxDQUFDLG1CQUFtQixDQUFDLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQztTQUNqRTthQUFNO1lBQ0wsTUFBTSxrQkFBa0IsR0FBdUMsRUFBRSxDQUFDO1lBQ2xFLEtBQUssTUFBTSxHQUFHLElBQUksSUFBSSxDQUFDLE9BQU8sRUFBRTtnQkFDOUIsa0JBQWtCLENBQUMsR0FBRyxDQUFDO29CQUNuQixXQUFXLENBQUMsT0FBTyxDQUFDLG1CQUFtQixDQUFDLElBQUksQ0FBQyxPQUFPLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQyxDQUFDO2FBQ2pFO1lBQ0QsT0FBTyxrQkFBa0IsQ0FBQztTQUMzQjtJQUNILENBQUM7SUFFUyxpQkFBaUI7UUFDekIsT0FBTztZQUNMLElBQUksRUFBRSxJQUFJLENBQUMsa0JBQWtCLEVBQUU7WUFDL0IsT0FBTyxFQUFFLElBQUksQ0FBQyxvQkFBb0IsRUFBRTtZQUNwQyxnQkFBZ0IsRUFBRTtnQkFDaEIsVUFBVSxFQUFFLElBQUksQ0FBQyxTQUFTLENBQUMsWUFBWSxFQUFFO2dCQUN6QyxNQUFNLEVBQUUsSUFBSSxDQUFDLFNBQVMsQ0FBQyxTQUFTLEVBQUU7YUFDVDtTQUM1QixDQUFDO1FBQ0YsMERBQTBEO1FBQzFELDBEQUEwRDtRQUMxRCxvREFBb0Q7SUFDdEQsQ0FBQztJQUVELGtCQUFrQixDQUFDLGNBQThCO1FBQy9DLElBQUksY0FBYyxDQUFDLGdCQUFnQixJQUFJLElBQUksRUFBRTtZQUMzQyxNQUFNLElBQUksS0FBSyxDQUFDLDhDQUE4QyxDQUFDLENBQUM7U0FDakU7UUFDRCxJQUFJLGNBQWMsQ0FBQyxZQUFZLElBQUksSUFBSSxFQUFFO1lBQ3ZDLE1BQU0sSUFBSSxLQUFLLENBQUMsNENBQTRDLENBQUMsQ0FBQztTQUMvRDtRQUNELElBQUksY0FBYyxDQUFDLGtCQUFrQixJQUFJLElBQUksRUFBRTtZQUM3QyxNQUFNLElBQUksS0FBSyxDQUFDLGtEQUFrRCxDQUFDLENBQUM7U0FDckU7UUFFRCxNQUFNLFFBQVEsR0FBRyxtQkFBbUIsQ0FBQyxjQUFjLENBQUMsZ0JBQWdCLENBQ3hDLENBQUM7UUFDN0IsTUFBTSxTQUFTLEdBQUcsV0FBVyxDQUFDLFFBQVEsQ0FBYyxDQUFDO1FBRXJELElBQUksSUFBSSxDQUFDO1FBQ1QsSUFBSSxPQUFPLGNBQWMsQ0FBQyxJQUFJLEtBQUssUUFBUSxFQUFFO1lBQzNDLElBQUksR0FBRyxXQUFXLENBQUMsY0FBYyxDQUFDLElBQUksQ0FBQyxDQUFDO1NBQ3pDO2FBQU0sSUFBSSxLQUFLLENBQUMsT0FBTyxDQUFDLGNBQWMsQ0FBQyxJQUFJLENBQUMsRUFBRTtZQUM3QyxJQUFJLEdBQUcsY0FBYyxDQUFDLElBQUksQ0FBQyxHQUFHLENBQUMsU0FBUyxDQUFDLEVBQUUsQ0FBQyxXQUFXLENBQUMsU0FBUyxDQUFDLENBQUMsQ0FBQztTQUNyRTthQUFNLElBQUksY0FBYyxDQUFDLElBQUksSUFBSSxJQUFJLEVBQUU7WUFDdEMsSUFBSSxHQUFHLEVBQTRDLENBQUM7WUFDcEQsS0FBSyxNQUFNLEdBQUcsSUFBSSxjQUFjLENBQUMsSUFBSSxFQUFFO2dCQUNyQyxJQUFJLENBQUMsR0FBRyxDQUFDLEdBQUcsV0FBVyxDQUFDLGNBQWMsQ0FBQyxJQUFJLENBQUMsR0FBRyxDQUFDLENBQW1CLENBQUM7YUFDckU7U0FDRjtRQUVELElBQUksT0FBTyxDQUFDO1FBQ1osSUFBSSxLQUFLLENBQUMsT0FBTyxDQUFDLGNBQWMsQ0FBQyxPQUFPLENBQUMsRUFBRTtZQUN6QyxPQUFPLEdBQUcsY0FBYyxDQUFDLE9BQU8sQ0FBQyxHQUFHLENBQUMsTUFBTSxDQUFDLEVBQUUsQ0FBQyxXQUFXLENBQUMsTUFBTSxDQUFDLENBQUMsQ0FBQztTQUNyRTthQUFNLElBQUksY0FBYyxDQUFDLE9BQU8sSUFBSSxJQUFJLEVBQUU7WUFDekMsT0FBTyxHQUFHLEVBQStDLENBQUM7WUFDMUQsS0FBSyxNQUFNLEdBQUcsSUFBSSxjQUFjLENBQUMsT0FBTyxFQUFFO2dCQUN4QyxPQUFPLENBQUMsR0FBRyxDQUFDLEdBQUcsV0FBVyxDQUFDLGNBQWMsQ0FBQyxPQUFPLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQzthQUN6RDtTQUNGO1FBRUQsSUFBSSxDQUFDLE9BQU8sQ0FBQyxFQUFDLElBQUksRUFBRSxPQUFPLEVBQUUsU0FBUyxFQUFDLENBQUMsQ0FBQztJQUMzQyxDQUFDO0lBRUQ7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7O09BZ0ZHO0lBQ0gsS0FBSyxDQUFDLElBQUksQ0FBQyxZQUFpQyxFQUFFLE1BQXNCO1FBRWxFLElBQUksT0FBTyxZQUFZLEtBQUssUUFBUSxFQUFFO1lBQ3BDLE1BQU0sUUFBUSxHQUFHLEVBQUUsQ0FBQyxlQUFlLENBQUMsWUFBWSxDQUFDLENBQUM7WUFDbEQsSUFBSSxRQUFRLENBQUMsTUFBTSxLQUFLLENBQUMsRUFBRTtnQkFDekIsTUFBTSxJQUFJLFVBQVUsQ0FDaEIsMENBQTBDLFlBQVksR0FBRyxDQUFDLENBQUM7YUFDaEU7aUJBQU0sSUFBSSxRQUFRLENBQUMsTUFBTSxHQUFHLENBQUMsRUFBRTtnQkFDOUIsTUFBTSxJQUFJLFVBQVUsQ0FDaEIsd0JBQXdCLFFBQVEsQ0FBQyxNQUFNLHNCQUFzQjtvQkFDN0QsUUFBUSxZQUFZLEdBQUcsQ0FBQyxDQUFDO2FBQzlCO1lBQ0QsWUFBWSxHQUFHLFFBQVEsQ0FBQyxDQUFDLENBQUMsQ0FBQztTQUM1QjtRQUNELElBQUksWUFBWSxDQUFDLElBQUksSUFBSSxJQUFJLEVBQUU7WUFDN0IsTUFBTSxJQUFJLFVBQVUsQ0FDaEIsMERBQTBEO2dCQUMxRCxzREFBc0QsQ0FBQyxDQUFDO1NBQzdEO1FBRUQsTUFBTSxrQkFBa0IsR0FDcEIsTUFBTSxFQUFFLENBQUMsYUFBYSxDQUFDLElBQUksQ0FBQyxlQUFlLENBQUMsTUFBTSxDQUFDLENBQUMsQ0FBQztRQUV6RCxNQUFNLFlBQVksR0FBRyxLQUFLLENBQUM7UUFDM0IsTUFBTSxTQUFTLEdBQU8sSUFBSSxDQUFDO1FBQzNCLE1BQU0sV0FBVyxHQUFHLElBQUksQ0FBQyxNQUFNLENBQUMsU0FBUyxFQUFFLFlBQVksQ0FBQyxDQUFDO1FBQ3pELE1BQU0sY0FBYyxHQUFzQjtZQUN4QyxhQUFhLEVBQUUsV0FBVztZQUMxQixNQUFNLEVBQUUsd0JBQXdCO1lBQ2hDLFdBQVcsRUFBRSw4QkFBOEIsT0FBTyxFQUFFO1lBQ3BELFdBQVcsRUFBRSxJQUFJO1NBQ2xCLENBQUM7UUFFRixNQUFNLGdCQUFnQixHQUFHLE1BQU0sSUFBSSxJQUFJLENBQUMsQ0FBQyxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsTUFBTSxDQUFDLGdCQUFnQixDQUFDO1FBQzFFLElBQUksZ0JBQWdCLElBQUksSUFBSSxDQUFDLFNBQVMsSUFBSSxJQUFJLEVBQUU7WUFDOUMsY0FBYyxDQUFDLGNBQWMsR0FBRyxJQUFJLENBQUMsaUJBQWlCLEVBQUUsQ0FBQztZQUN6RCxNQUFNLFVBQVUsR0FBRyxXQUFXLENBQUM7WUFDL0IsTUFBTSxFQUFDLElBQUksRUFBRSxtQkFBbUIsRUFBRSxLQUFLLEVBQUUsb0JBQW9CLEVBQUMsR0FDMUQsTUFBTSxFQUFFLENBQUMsYUFBYSxDQUFDLE1BQU0sSUFBSSxDQUFDLFNBQVMsQ0FBQyxVQUFVLEVBQUUsRUFBRSxVQUFVLENBQUMsQ0FBQztZQUMxRSxrQkFBa0IsQ0FBQyxLQUFLLENBQUMsSUFBSSxDQUFDLEdBQUcsb0JBQW9CLENBQUMsQ0FBQztZQUN2RCxrQkFBa0IsQ0FBQyxJQUFJLEdBQUcsRUFBRSxDQUFDLHVCQUF1QixDQUNoRCxDQUFDLGtCQUFrQixDQUFDLElBQUksRUFBRSxtQkFBbUIsQ0FBQyxDQUFDLENBQUM7U0FDckQ7UUFFRCxJQUFJLElBQUksQ0FBQyxtQkFBbUIsSUFBSSxJQUFJLEVBQUU7WUFDcEMsa0RBQWtEO1lBQ2xELE1BQU0sU0FBUyxHQUFHLElBQUksQ0FBQztZQUN2Qix3QkFBd0IsQ0FBQyxJQUFJLENBQUMsbUJBQW1CLEVBQUUsSUFBSSxDQUFDLElBQUksRUFBRSxTQUFTLENBQUMsQ0FBQztZQUN6RSxjQUFjLENBQUMsbUJBQW1CLEdBQUcsSUFBSSxDQUFDLG1CQUFtQixDQUFDO1NBQy9EO1FBRUQsY0FBYyxDQUFDLFVBQVUsR0FBRyxrQkFBa0IsQ0FBQyxJQUFJLENBQUM7UUFDcEQsY0FBYyxDQUFDLFdBQVcsR0FBRyxrQkFBa0IsQ0FBQyxLQUFLLENBQUM7UUFDdEQsT0FBTyxZQUFZLENBQUMsSUFBSSxDQUFDLGNBQWMsQ0FBQyxDQUFDO0lBQzNDLENBQUM7SUFFRDs7Ozs7OztPQU9HO0lBQ0gsc0JBQXNCLENBQUMsbUJBQXVCO1FBQzVDLHdCQUF3QixDQUFDLG1CQUFtQixFQUFFLElBQUksQ0FBQyxJQUFJLENBQUMsQ0FBQztRQUN6RCxJQUFJLENBQUMsbUJBQW1CLEdBQUcsbUJBQW1CLENBQUM7SUFDakQsQ0FBQztJQUVEOzs7Ozs7Ozs7O09BVUc7SUFDSCxzQkFBc0I7UUFDcEIsT0FBTyxJQUFJLENBQUMsbUJBQW1CLENBQUM7SUFDbEMsQ0FBQzs7QUF0ckRELG9FQUFvRTtBQUNwRSw0RUFBNEU7QUFDNUUsa0JBQWtCO0FBQ1gscUJBQVMsR0FBRyxPQUFPLENBQUM7U0FKaEIsV0FBVztBQXlyRHhCLGFBQWEsQ0FBQyxhQUFhLENBQUMsV0FBVyxDQUFDLENBQUM7QUFFekM7Ozs7O0dBS0c7QUFDSCxzREFBc0Q7QUFDdEQsTUFBYSxVQUFXLFNBQVEsV0FBVzs7QUFDekIsb0JBQVMsR0FBRyxZQUFZLENBQUM7U0FEOUIsVUFBVTtBQUd2QixhQUFhLENBQUMsYUFBYSxDQUFDLFVBQVUsQ0FBQyxDQUFDIiwic291cmNlc0NvbnRlbnQiOlsiLyoqXG4gKiBAbGljZW5zZVxuICogQ29weXJpZ2h0IDIwMTggR29vZ2xlIExMQ1xuICpcbiAqIFVzZSBvZiB0aGlzIHNvdXJjZSBjb2RlIGlzIGdvdmVybmVkIGJ5IGFuIE1JVC1zdHlsZVxuICogbGljZW5zZSB0aGF0IGNhbiBiZSBmb3VuZCBpbiB0aGUgTElDRU5TRSBmaWxlIG9yIGF0XG4gKiBodHRwczovL29wZW5zb3VyY2Uub3JnL2xpY2Vuc2VzL01JVC5cbiAqID09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09XG4gKi9cblxuLyogT3JpZ2luYWwgU291cmNlOiBlbmdpbmUvdHJhaW5pbmcucHkgKi9cblxuaW1wb3J0ICogYXMgdGZjIGZyb20gJ0B0ZW5zb3JmbG93L3RmanMtY29yZSc7XG5pbXBvcnQge2lvLCBNb2RlbFByZWRpY3RDb25maWcgYXMgTW9kZWxQcmVkaWN0QXJncywgTmFtZWRUZW5zb3JNYXAsIE9wdGltaXplciwgU2NhbGFyLCBzY2FsYXIsIHNlcmlhbGl6YXRpb24sIFRlbnNvciwgVGVuc29yMUQsIHRlbnNvcjFkLCB1dGlsfSBmcm9tICdAdGVuc29yZmxvdy90ZmpzLWNvcmUnO1xuXG5pbXBvcnQgKiBhcyBLIGZyb20gJy4uL2JhY2tlbmQvdGZqc19iYWNrZW5kJztcbmltcG9ydCB7QmFzZUNhbGxiYWNrLCBjb25maWd1cmVDYWxsYmFja3MsIEhpc3RvcnksIE1vZGVsTG9nZ2luZ1ZlcmJvc2l0eSwgc3RhbmRhcmRpemVDYWxsYmFja3N9IGZyb20gJy4uL2Jhc2VfY2FsbGJhY2tzJztcbmltcG9ydCB7bmFtZVNjb3BlfSBmcm9tICcuLi9jb21tb24nO1xuaW1wb3J0IHtOb3RJbXBsZW1lbnRlZEVycm9yLCBSdW50aW1lRXJyb3IsIFZhbHVlRXJyb3J9IGZyb20gJy4uL2Vycm9ycyc7XG5pbXBvcnQge1NoYXBlfSBmcm9tICcuLi9rZXJhc19mb3JtYXQvY29tbW9uJztcbmltcG9ydCB7TG9zc0lkZW50aWZpZXJ9IGZyb20gJy4uL2tlcmFzX2Zvcm1hdC9sb3NzX2NvbmZpZyc7XG5pbXBvcnQge09wdGltaXplclNlcmlhbGl6YXRpb259IGZyb20gJy4uL2tlcmFzX2Zvcm1hdC9vcHRpbWl6ZXJfY29uZmlnJztcbmltcG9ydCB7TWV0cmljc0lkZW50aWZpZXIsIFRyYWluaW5nQ29uZmlnfSBmcm9tICcuLi9rZXJhc19mb3JtYXQvdHJhaW5pbmdfY29uZmlnJztcbmltcG9ydCB7ZGVzZXJpYWxpemV9IGZyb20gJy4uL2xheWVycy9zZXJpYWxpemF0aW9uJztcbmltcG9ydCB7IGRpc3Bvc2VUZW5zb3JzSW5Mb2dzLCBVbnJlc29sdmVkTG9ncyB9IGZyb20gJy4uL2xvZ3MnO1xuaW1wb3J0ICogYXMgbG9zc2VzIGZyb20gJy4uL2xvc3Nlcyc7XG5pbXBvcnQgKiBhcyBNZXRyaWNzIGZyb20gJy4uL21ldHJpY3MnO1xuaW1wb3J0ICogYXMgb3B0aW1pemVycyBmcm9tICcuLi9vcHRpbWl6ZXJzJztcbmltcG9ydCB7TG9zc09yTWV0cmljRm4sIE5hbWVkVGVuc29yfSBmcm9tICcuLi90eXBlcyc7XG5pbXBvcnQge2NoZWNrVXNlckRlZmluZWRNZXRhZGF0YX0gZnJvbSAnLi4vdXNlcl9kZWZpbmVkX21ldGFkYXRhJztcbmltcG9ydCB7Y291bnQsIHB5TGlzdFJlcGVhdCwgc2luZ2xldG9uT3JBcnJheSwgdG9DYW1lbENhc2UsIHRvU25ha2VDYXNlLCB1bmlxdWV9IGZyb20gJy4uL3V0aWxzL2dlbmVyaWNfdXRpbHMnO1xuaW1wb3J0IHtwcmludFN1bW1hcnl9IGZyb20gJy4uL3V0aWxzL2xheWVyX3V0aWxzJztcbmltcG9ydCB7cmFuZ2V9IGZyb20gJy4uL3V0aWxzL21hdGhfdXRpbHMnO1xuaW1wb3J0IHtjb252ZXJ0UHl0aG9uaWNUb1RzfSBmcm9tICcuLi91dGlscy9zZXJpYWxpemF0aW9uX3V0aWxzJztcbmltcG9ydCB7TGF5ZXJWYXJpYWJsZX0gZnJvbSAnLi4vdmFyaWFibGVzJztcbmltcG9ydCB7dmVyc2lvbn0gZnJvbSAnLi4vdmVyc2lvbic7XG5cbmltcG9ydCB7Q29udGFpbmVyLCBDb250YWluZXJBcmdzfSBmcm9tICcuL2NvbnRhaW5lcic7XG5pbXBvcnQge0RhdGFzZXR9IGZyb20gJy4vZGF0YXNldF9zdHViJztcbmltcG9ydCB7ZXhlY3V0ZSwgRmVlZERpY3R9IGZyb20gJy4vZXhlY3V0b3InO1xuaW1wb3J0IHtEaXNwb3NlUmVzdWx0LCBTeW1ib2xpY1RlbnNvcn0gZnJvbSAnLi90b3BvbG9neSc7XG5pbXBvcnQge2V2YWx1YXRlRGF0YXNldCwgZml0RGF0YXNldCwgTW9kZWxFdmFsdWF0ZURhdGFzZXRBcmdzLCBNb2RlbEZpdERhdGFzZXRBcmdzfSBmcm9tICcuL3RyYWluaW5nX2RhdGFzZXQnO1xuaW1wb3J0IHtjaGVja0JhdGNoU2l6ZSwgZGlzcG9zZU5ld1RlbnNvcnMsIGVuc3VyZVRlbnNvcnNSYW5rMk9ySGlnaGVyLCBtYWtlQmF0Y2hlcywgTW9kZWxGaXRBcmdzLCBzbGljZUFycmF5cywgc2xpY2VBcnJheXNCeUluZGljZXN9IGZyb20gJy4vdHJhaW5pbmdfdGVuc29ycyc7XG5pbXBvcnQge0NsYXNzV2VpZ2h0LCBDbGFzc1dlaWdodE1hcCwgY29tcHV0ZVdlaWdodGVkTG9zcywgc3RhbmRhcmRpemVDbGFzc1dlaWdodHMsIHN0YW5kYXJkaXplV2VpZ2h0c30gZnJvbSAnLi90cmFpbmluZ191dGlscyc7XG5cbi8qKlxuICogSGVscGVyIGZ1bmN0aW9uIGZvciBwb2x5bW9ycGhpYyBpbnB1dCBkYXRhOiAxLiBzaW5nbGV0b24gVGVuc29yLlxuICovXG5leHBvcnQgZnVuY3Rpb24gaXNEYXRhVGVuc29yKHg6IFRlbnNvcnxUZW5zb3JbXXx7W2lucHV0TmFtZTogc3RyaW5nXTogVGVuc29yfXxcbiAgICAgICAgICAgICAgICAgICAgICAgICAgICAge1tpbnB1dE5hbWU6IHN0cmluZ106IFRlbnNvcltdfSk6IGJvb2xlYW4ge1xuICByZXR1cm4geCBpbnN0YW5jZW9mIFRlbnNvcjtcbn1cblxuLyoqXG4gKiBIZWxwZXIgZnVuY3Rpb24gZm9yIHBvbHltb3JwaGljIGlucHV0IGRhdGE6IDIuIEFycmF5IG9mIFRlbnNvci5cbiAqL1xuZXhwb3J0IGZ1bmN0aW9uIGlzRGF0YUFycmF5KHg6IFRlbnNvcnxUZW5zb3JbXXxcbiAgICAgICAgICAgICAgICAgICAgICAgICAgICB7W2lucHV0TmFtZTogc3RyaW5nXTogVGVuc29yfSk6IGJvb2xlYW4ge1xuICByZXR1cm4gQXJyYXkuaXNBcnJheSh4KTtcbn1cblxuLyoqXG4gKiBIZWxwZXIgZnVuY3Rpb24gZm9yIHBvbHltb3JwaGljIGlucHV0IGRhdGE6IDMuIFwiZGljdFwiIG9mIFRlbnNvci5cbiAqL1xuZXhwb3J0IGZ1bmN0aW9uIGlzRGF0YURpY3QoeDogVGVuc29yfFRlbnNvcltdfFxuICAgICAgICAgICAgICAgICAgICAgICAgICAge1tpbnB1dE5hbWU6IHN0cmluZ106IFRlbnNvcn0pOiBib29sZWFuIHtcbiAgcmV0dXJuICFpc0RhdGFUZW5zb3IoeCkgJiYgIWlzRGF0YUFycmF5KHgpO1xufVxuXG4vKipcbiAqIE5vcm1hbGl6ZXMgaW5wdXRzIGFuZCB0YXJnZXRzIHByb3ZpZGVkIGJ5IHVzZXJzLlxuICogQHBhcmFtIGRhdGEgVXNlci1wcm92aWRlZCBpbnB1dCBkYXRhIChwb2x5bW9ycGhpYykuXG4gKiBAcGFyYW0gbmFtZXMgQW4gQXJyYXkgb2YgZXhwZWN0ZWQgVGVuc29yIG5hbWVzLlxuICogQHBhcmFtIHNoYXBlcyBPcHRpb25hbCBBcnJheSBvZiBleHBlY3RlZCBUZW5zb3Igc2hhcGVzLlxuICogQHBhcmFtIGNoZWNrQmF0Y2hBeGlzIFdoZXRoZXIgdG8gY2hlY2sgdGhhdCB0aGUgYmF0Y2ggYXhpcyBvZiB0aGUgYXJyYXlzXG4gKiAgIG1hdGNoICB0aGUgZXhwZWN0ZWQgdmFsdWUgZm91bmQgaW4gYHNoYXBlc2AuXG4gKiBAcGFyYW0gZXhjZXB0aW9uUHJlZml4IFN0cmluZyBwcmVmaXggdXNlZCBmb3IgZXhjZXB0aW9uIGZvcm1hdHRpbmcuXG4gKiBAcmV0dXJucyBMaXN0IG9mIHN0YW5kYXJkaXplZCBpbnB1dCBUZW5zb3JzIChvbmUgVGVuc29yIHBlciBtb2RlbCBpbnB1dCkuXG4gKiBAdGhyb3dzIFZhbHVlRXJyb3I6IGluIGNhc2Ugb2YgaW1wcm9wZXJseSBmb3JtYXR0ZWQgdXNlciBkYXRhLlxuICovXG5leHBvcnQgZnVuY3Rpb24gc3RhbmRhcmRpemVJbnB1dERhdGEoXG4gICAgZGF0YTogVGVuc29yfFRlbnNvcltdfHtbaW5wdXROYW1lOiBzdHJpbmddOiBUZW5zb3J9LCBuYW1lczogc3RyaW5nW10sXG4gICAgc2hhcGVzPzogU2hhcGVbXSwgY2hlY2tCYXRjaEF4aXMgPSB0cnVlLCBleGNlcHRpb25QcmVmaXggPSAnJyk6IFRlbnNvcltdIHtcbiAgaWYgKG5hbWVzID09IG51bGwgfHwgbmFtZXMubGVuZ3RoID09PSAwKSB7XG4gICAgLy8gQ2hlY2sgZm9yIHRoZSBjYXNlIHdoZXJlIHRoZSBtb2RlbCBleHBlY3RlZCBubyBkYXRhLCBidXQgc29tZSBkYXRhIGdvdFxuICAgIC8vIHNlbnQuXG4gICAgaWYgKGRhdGEgIT0gbnVsbCkge1xuICAgICAgbGV0IGdvdFVuZXhwZWN0ZWREYXRhID0gZmFsc2U7XG4gICAgICBpZiAoaXNEYXRhQXJyYXkoZGF0YSkgJiYgKGRhdGEgYXMgVGVuc29yW10pLmxlbmd0aCA+IDApIHtcbiAgICAgICAgZ290VW5leHBlY3RlZERhdGEgPSB0cnVlO1xuICAgICAgfSBlbHNlIGlmIChpc0RhdGFEaWN0KGRhdGEpKSB7XG4gICAgICAgIGZvciAoY29uc3Qga2V5IGluIGRhdGEpIHtcbiAgICAgICAgICBpZiAoZGF0YS5oYXNPd25Qcm9wZXJ0eShrZXkpKSB7XG4gICAgICAgICAgICBnb3RVbmV4cGVjdGVkRGF0YSA9IHRydWU7XG4gICAgICAgICAgICBicmVhaztcbiAgICAgICAgICB9XG4gICAgICAgIH1cbiAgICAgIH0gZWxzZSB7XG4gICAgICAgIC8vIGBkYXRhYCBpcyBhIHNpbmdsZXRvbiBUZW5zb3IgaW4gdGhpcyBjYXNlLlxuICAgICAgICBnb3RVbmV4cGVjdGVkRGF0YSA9IHRydWU7XG4gICAgICB9XG4gICAgICBpZiAoZ290VW5leHBlY3RlZERhdGEpIHtcbiAgICAgICAgdGhyb3cgbmV3IFZhbHVlRXJyb3IoXG4gICAgICAgICAgICBgRXJyb3Igd2hlbiBjaGVja2luZyBtb2RlbCAke2V4Y2VwdGlvblByZWZpeH0gZXhwZWN0ZWQgbm8gZGF0YSwgYCArXG4gICAgICAgICAgICBgYnV0IGdvdCAke2RhdGF9YCk7XG4gICAgICB9XG4gICAgfVxuICAgIHJldHVybiBbXTtcbiAgfVxuICBpZiAoZGF0YSA9PSBudWxsKSB7XG4gICAgcmV0dXJuIG5hbWVzLm1hcChuYW1lID0+IG51bGwpO1xuICB9XG5cbiAgbGV0IGFycmF5czogVGVuc29yW107XG4gIGlmIChpc0RhdGFEaWN0KGRhdGEpKSB7XG4gICAgZGF0YSA9IGRhdGEgYXMge1tpbnB1dE5hbWU6IHN0cmluZ106IFRlbnNvcn07XG4gICAgYXJyYXlzID0gW107XG4gICAgZm9yIChjb25zdCBuYW1lIG9mIG5hbWVzKSB7XG4gICAgICBpZiAoZGF0YVtuYW1lXSA9PSBudWxsKSB7XG4gICAgICAgIHRocm93IG5ldyBWYWx1ZUVycm9yKFxuICAgICAgICAgICAgYE5vIGRhdGEgcHJvdmlkZWQgZm9yIFwiJHtuYW1lfVwiLiBOZWVkIGRhdGEgZm9yIGVhY2gga2V5IGluOiBgICtcbiAgICAgICAgICAgIGAke25hbWVzfWApO1xuICAgICAgfVxuICAgICAgYXJyYXlzLnB1c2goZGF0YVtuYW1lXSk7XG4gICAgfVxuICB9IGVsc2UgaWYgKGlzRGF0YUFycmF5KGRhdGEpKSB7XG4gICAgZGF0YSA9IGRhdGEgYXMgVGVuc29yW107XG4gICAgaWYgKGRhdGEubGVuZ3RoICE9PSBuYW1lcy5sZW5ndGgpIHtcbiAgICAgIHRocm93IG5ldyBWYWx1ZUVycm9yKFxuICAgICAgICAgIGBFcnJvciB3aGVuIGNoZWNraW5nIG1vZGVsICR7ZXhjZXB0aW9uUHJlZml4fTogdGhlIEFycmF5IG9mIGAgK1xuICAgICAgICAgIGBUZW5zb3JzIHRoYXQgeW91IGFyZSBwYXNzaW5nIHRvIHlvdXIgbW9kZWwgaXMgbm90IHRoZSBzaXplIHRoZSBgICtcbiAgICAgICAgICBgbW9kZWwgZXhwZWN0ZWQuIEV4cGVjdGVkIHRvIHNlZSAke25hbWVzLmxlbmd0aH0gVGVuc29yKHMpLCBidXQgYCArXG4gICAgICAgICAgYGluc3RlYWQgZ290IHRoZSBmb2xsb3dpbmcgbGlzdCBvZiBUZW5zb3Iocyk6ICR7ZGF0YX1gKTtcbiAgICB9XG4gICAgYXJyYXlzID0gZGF0YTtcbiAgfSBlbHNlIHtcbiAgICBkYXRhID0gZGF0YSBhcyBUZW5zb3I7XG4gICAgaWYgKG5hbWVzLmxlbmd0aCA+IDEpIHtcbiAgICAgIHRocm93IG5ldyBWYWx1ZUVycm9yKFxuICAgICAgICAgIGBUaGUgbW9kZWwgJHtleGNlcHRpb25QcmVmaXh9IGV4cGVjdHMgJHtuYW1lcy5sZW5ndGh9IFRlbnNvcihzKSwgYCArXG4gICAgICAgICAgYGJ1dCBvbmx5IHJlY2VpdmVkIG9uZSBUZW5zb3IuIEZvdW5kOiBUZW5zb3Igd2l0aCBzaGFwZSAke1xuICAgICAgICAgICAgICBkYXRhLnNoYXBlfWApO1xuICAgIH1cbiAgICBhcnJheXMgPSBbZGF0YV07XG4gIH1cblxuICBhcnJheXMgPSBlbnN1cmVUZW5zb3JzUmFuazJPckhpZ2hlcihhcnJheXMpO1xuXG4gIC8vIENoZWNrIHNoYXBlIGNvbXBhdGliaWxpdHkuXG4gIGlmIChzaGFwZXMgIT0gbnVsbCkge1xuICAgIGZvciAobGV0IGkgPSAwOyBpIDwgbmFtZXMubGVuZ3RoOyArK2kpIHtcbiAgICAgIGlmIChzaGFwZXNbaV0gPT0gbnVsbCkge1xuICAgICAgICBjb250aW51ZTtcbiAgICAgIH1cbiAgICAgIGNvbnN0IGFycmF5ID0gYXJyYXlzW2ldO1xuICAgICAgaWYgKGFycmF5LnNoYXBlLmxlbmd0aCAhPT0gc2hhcGVzW2ldLmxlbmd0aCkge1xuICAgICAgICB0aHJvdyBuZXcgVmFsdWVFcnJvcihcbiAgICAgICAgICAgIGBFcnJvciB3aGVuIGNoZWNraW5nICR7ZXhjZXB0aW9uUHJlZml4fTogZXhwZWN0ZWQgJHtuYW1lc1tpXX0gYCArXG4gICAgICAgICAgICBgdG8gaGF2ZSAke3NoYXBlc1tpXS5sZW5ndGh9IGRpbWVuc2lvbihzKS4gYnV0IGdvdCBhcnJheSB3aXRoIGAgK1xuICAgICAgICAgICAgYHNoYXBlICR7YXJyYXkuc2hhcGV9YCk7XG4gICAgICB9XG4gICAgICBmb3IgKGxldCBqID0gMDsgaiA8IHNoYXBlc1tpXS5sZW5ndGg7ICsraikge1xuICAgICAgICBpZiAoaiA9PT0gMCAmJiAhY2hlY2tCYXRjaEF4aXMpIHtcbiAgICAgICAgICAvLyBTa2lwIHRoZSBmaXJzdCAoYmF0Y2gpIGF4aXMuXG4gICAgICAgICAgY29udGludWU7XG4gICAgICAgIH1cbiAgICAgICAgY29uc3QgZGltID0gYXJyYXkuc2hhcGVbal07XG4gICAgICAgIGNvbnN0IHJlZkRpbSA9IHNoYXBlc1tpXVtqXTtcbiAgICAgICAgaWYgKHJlZkRpbSAhPSBudWxsICYmIHJlZkRpbSA+PSAwICYmIGRpbSAhPT0gcmVmRGltKSB7XG4gICAgICAgICAgdGhyb3cgbmV3IFZhbHVlRXJyb3IoXG4gICAgICAgICAgICAgIGAke2V4Y2VwdGlvblByZWZpeH0gZXhwZWN0ZWQgYSBiYXRjaCBvZiBlbGVtZW50cyB3aGVyZSBlYWNoIGAgK1xuICAgICAgICAgICAgICBgZXhhbXBsZSBoYXMgc2hhcGUgWyR7c2hhcGVzW2ldLnNsaWNlKDEsIHNoYXBlc1tpXS5sZW5ndGgpfV0gYCArXG4gICAgICAgICAgICAgIGAoaS5lLix0ZW5zb3Igc2hhcGUgWyosJHtcbiAgICAgICAgICAgICAgICAgIHNoYXBlc1tpXS5zbGljZSgxLCBzaGFwZXNbaV0ubGVuZ3RoKX1dKWAgK1xuICAgICAgICAgICAgICBgIGJ1dCB0aGUgJHtleGNlcHRpb25QcmVmaXh9IHJlY2VpdmVkIGFuIGlucHV0IHdpdGggJHtcbiAgICAgICAgICAgICAgICAgIGFycmF5LnNoYXBlWzBdfWAgK1xuICAgICAgICAgICAgICBgIGV4YW1wbGVzLCBlYWNoIHdpdGggc2hhcGUgWyR7XG4gICAgICAgICAgICAgICAgICBhcnJheS5zaGFwZS5zbGljZSgxLCBhcnJheS5zaGFwZS5sZW5ndGgpfV1gICtcbiAgICAgICAgICAgICAgYCAodGVuc29yIHNoYXBlIFske2FycmF5LnNoYXBlfV0pYCk7XG4gICAgICAgIH1cbiAgICAgIH1cbiAgICB9XG4gIH1cbiAgcmV0dXJuIGFycmF5cztcbn1cblxuLyoqXG4gKiBVc2VyIGlucHV0IHZhbGlkYXRpb24gZm9yIFRlbnNvcnMuXG4gKiBAcGFyYW0gaW5wdXRzIGBBcnJheWAgb2YgYHRmLlRlbnNvcmBzIGZvciBpbnB1dHMuXG4gKiBAcGFyYW0gdGFyZ2V0cyBgQXJyYXlgIG9mIGB0Zi5UZW5zb3JgcyBmb3IgdGFyZ2V0cy5cbiAqIEBwYXJhbSB3ZWlnaHRzIE9wdGlvbmFsIGBBcnJheWAgb2YgYHRmLlRlbnNvcmBzIGZvciBzYW1wbGUgd2VpZ2h0cy5cbiAqIEB0aHJvd3MgVmFsdWVFcnJvcjogaW4gY2FzZSBvZiBpbmNvcnJlY3RseSBmb3JtYXR0ZWQgZGF0YS5cbiAqL1xuZXhwb3J0IGZ1bmN0aW9uIGNoZWNrQXJyYXlMZW5ndGhzKFxuICAgIGlucHV0czogVGVuc29yW10sIHRhcmdldHM6IFRlbnNvcltdLCB3ZWlnaHRzPzogVGVuc29yW10pIHtcbiAgY29uc3Qgc2V0WCA9IHVuaXF1ZShpbnB1dHMubWFwKGlucHV0ID0+IGlucHV0LnNoYXBlWzBdKSk7XG4gIHNldFguc29ydCgpO1xuICBjb25zdCBzZXRZID0gdW5pcXVlKHRhcmdldHMubWFwKHRhcmdldCA9PiB0YXJnZXQuc2hhcGVbMF0pKTtcbiAgc2V0WS5zb3J0KCk7XG4gIC8vIFRPRE8oY2Fpcyk6IENoZWNrIGB3ZWlnaHRzYCBhcyB3ZWxsLlxuICBpZiAoc2V0WC5sZW5ndGggPiAxKSB7XG4gICAgdGhyb3cgbmV3IFZhbHVlRXJyb3IoXG4gICAgICAgIGBBbGwgaW5wdXQgVGVuc29ycyAoeCkgc2hvdWxkIGhhdmUgdGhlIHNhbWUgbnVtYmVyIG9mIHNhbXBsZXMuIGAgK1xuICAgICAgICBgR290IGFycmF5IHNoYXBlczogYCArXG4gICAgICAgIGAke0pTT04uc3RyaW5naWZ5KGlucHV0cy5tYXAoaW5wdXQgPT4gaW5wdXQuc2hhcGUpKX1gKTtcbiAgfVxuICBpZiAoc2V0WS5sZW5ndGggPiAxKSB7XG4gICAgdGhyb3cgbmV3IFZhbHVlRXJyb3IoXG4gICAgICAgIGBBbGwgdGFyZ2V0IFRlbnNvcnMgKHkpIHNob3VsZCBoYXZlIHRoZSBzYW1lIG51bWJlciBvZiBzYW1wbGVzLiBgICtcbiAgICAgICAgYEdvdCBhcnJheSBzaGFwZXM6IGAgK1xuICAgICAgICBgJHtKU09OLnN0cmluZ2lmeSh0YXJnZXRzLm1hcCh0YXJnZXQgPT4gdGFyZ2V0LnNoYXBlKSl9YCk7XG4gIH1cbiAgaWYgKHNldFgubGVuZ3RoID4gMCAmJiBzZXRZLmxlbmd0aCA+IDAgJiYgIXV0aWwuYXJyYXlzRXF1YWwoc2V0WCwgc2V0WSkpIHtcbiAgICB0aHJvdyBuZXcgVmFsdWVFcnJvcihcbiAgICAgICAgYElucHV0IFRlbnNvcnMgc2hvdWxkIGhhdmUgdGhlIHNhbWUgbnVtYmVyIG9mIHNhbXBsZXMgYXMgdGFyZ2V0IGAgK1xuICAgICAgICBgVGVuc29ycy4gRm91bmQgJHtzZXRYWzBdfSBpbnB1dCBzYW1wbGUocykgYW5kICR7c2V0WVswXX0gdGFyZ2V0IGAgK1xuICAgICAgICBgc2FtcGxlKHMpLmApO1xuICB9XG59XG5cbi8qKlxuICogVmFsaWRhdGlvbiBvbiB0aGUgY29tcGF0aWJpbGl0eSBvZiB0YXJnZXMgYW5kIGxvc3MgZnVuY3Rpb25zLlxuICpcbiAqIFRoaXMgaGVscHMgcHJldmVudCB1c2VycyBmcm9tIHVzaW5nIGxvc3MgZnVuY3Rpb25zIGluY29ycmVjdGx5LlxuICpcbiAqIEBwYXJhbSB0YXJnZXRzIGBBcnJheWAgb2YgYHRmLlRlbnNvcmBzIG9mIHRhcmdldHMuXG4gKiBAcGFyYW0gbG9zc0ZucyBgQXJyYXlgIG9mIGxvc3MgZnVuY3Rpb25zLlxuICogQHBhcmFtIG91dHB1dFNoYXBlcyBgQXJyYXlgIG9mIHNoYXBlcyBvZiBtb2RlbCBvdXRwdXRzLlxuICovXG5mdW5jdGlvbiBjaGVja0xvc3NBbmRUYXJnZXRDb21wYXRpYmlsaXR5KFxuICAgIHRhcmdldHM6IFRlbnNvcltdLCBsb3NzRm5zOiBMb3NzT3JNZXRyaWNGbltdLCBvdXRwdXRTaGFwZXM6IFNoYXBlW10pIHtcbiAgLy8gVE9ETyhjYWlzKTogRGVkaWNhdGVkIHRlc3QgY292ZXJhZ2U/XG4gIGNvbnN0IGtleUxvc3NlcyA9IFtcbiAgICBsb3NzZXMubWVhblNxdWFyZWRFcnJvciwgbG9zc2VzLmJpbmFyeUNyb3NzZW50cm9weSxcbiAgICBsb3NzZXMuY2F0ZWdvcmljYWxDcm9zc2VudHJvcHlcbiAgXTtcbiAgZm9yIChsZXQgaSA9IDA7IGkgPCB0YXJnZXRzLmxlbmd0aDsgKytpKSB7XG4gICAgY29uc3QgeSA9IHRhcmdldHNbaV07XG4gICAgY29uc3QgbG9zcyA9IGxvc3NGbnNbaV07XG4gICAgY29uc3Qgc2hhcGUgPSBvdXRwdXRTaGFwZXNbaV07XG4gICAgaWYgKGxvc3MgPT0gbnVsbCkge1xuICAgICAgY29udGludWU7XG4gICAgfVxuICAgIGlmIChsb3NzID09PSBsb3NzZXMuY2F0ZWdvcmljYWxDcm9zc2VudHJvcHkpIHtcbiAgICAgIGlmICh5LnNoYXBlW3kuc2hhcGUubGVuZ3RoIC0gMV0gPT09IDEpIHtcbiAgICAgICAgdGhyb3cgbmV3IFZhbHVlRXJyb3IoXG4gICAgICAgICAgICBgWW91IGFyZSBwYXNzaW5nIGEgdGFyZ2V0IGFycmF5IG9mIHNoYXBlICR7eS5zaGFwZX0gd2hpbGUgdXNpbmcgYCArXG4gICAgICAgICAgICBgYSBsb3NzICdjYXRlZ29yaWNhbF9jcm9zc2VudHJvcHknLiAnY2F0ZWdvcmljYWxfY3Jvc3NlbnRyb3B5J2AgK1xuICAgICAgICAgICAgYGV4cGVjdHMgdGFyZ2V0cyB0byBiZSBiaW5hcnkgbWF0cmljZXMgKDFzIGFuZCAwcykgb2Ygc2hhcGUgYCArXG4gICAgICAgICAgICBgW3NhbXBsZXMsIGNsYXNzZXNdLmApO1xuICAgICAgICAvLyBUT0RPKGNhaXMpOiBFeGFtcGxlIGNvZGUgaW4gZXJyb3IgbWVzc2FnZS5cbiAgICAgIH1cbiAgICB9XG4gICAgaWYgKGtleUxvc3Nlcy5pbmRleE9mKGxvc3MpICE9PSAtMSkge1xuICAgICAgY29uc3Qgc2xpY2VkWVNoYXBlID0geS5zaGFwZS5zbGljZSgxKTtcbiAgICAgIGNvbnN0IHNsaWNlZFNoYXBlID0gc2hhcGUuc2xpY2UoMSk7XG4gICAgICBmb3IgKGxldCBqID0gMDsgaiA8IHNsaWNlZFlTaGFwZS5sZW5ndGg7ICsraikge1xuICAgICAgICBjb25zdCB0YXJnZXREaW0gPSBzbGljZWRZU2hhcGVbal07XG4gICAgICAgIGNvbnN0IG91dERpbSA9IHNsaWNlZFNoYXBlW2pdO1xuICAgICAgICBpZiAob3V0RGltICE9IG51bGwgJiYgdGFyZ2V0RGltICE9PSBvdXREaW0pIHtcbiAgICAgICAgICB0aHJvdyBuZXcgVmFsdWVFcnJvcihcbiAgICAgICAgICAgICAgYEEgdGFyZ2V0IFRlbnNvciB3aXRoIHNoYXBlICR7eS5zaGFwZX0gd2FzIHBhc3NlZCBmb3IgYW4gYCArXG4gICAgICAgICAgICAgIGBvdXRwdXQgb2Ygc2hhcGUgJHtzaGFwZX0sIHdoaWxlIHVzaW5nIGEgbG9zcyBmdW5jdGlvbiB0aGF0IGAgK1xuICAgICAgICAgICAgICBgZXhwZWN0cyB0YXJnZXRzIHRvIGhhdmUgdGhlIHNhbWUgc2hhcGUgYXMgdGhlIG91dHB1dC5gKTtcbiAgICAgICAgfVxuICAgICAgfVxuICAgIH1cbiAgfVxufVxuXG4vKipcbiAqIENoZWNrIGlucHV0cyBwcm92aWRlZCBieSB0aGUgdXNlci5cbiAqXG4gKiBQb3J0aW5nIE5vdGU6IFRoaXMgY29ycmVzcG9uZHMgdG8gX3N0YW5kYXJkaXplX2lucHV0X2RhdGEoKSBpbiBQeXRob25cbiAqICAgS2VyYXMuIEJlY2F1c2Ugb2YgdGhlIHN0cm9uZyB0eXBpbmcgaW4gVEYuanMsIHdlIGRvIG5vdCBuZWVkIHRvIGNvbnZlcnRcbiAqICAgdGhlIGRhdGEuIFNwZWNpZmljYWxseTpcbiAqICAgMSkgaW4gUHlLZXJhcywgYGRhdGFgIGNhbiBiZSBgRGF0YUZyYW1lYCBpbnN0YW5jZXMgZnJvbSBwYW5kYXMsIGZvclxuICogICAgICBleGFtcGxlLiBXZSBkb24ndCBuZWVkIHRvIHdvcnJ5IGFib3V0IHRoYXQgaGVyZSBiZWNhdXNlIHRoZXJlIGlzIG5vXG4gKiAgICAgIHdpZGVseSBwb3B1bGFyIGphdmFzY3JpcHQvdHlwZXNkY3JpcHQgZXF1aXZhbGVudCBvZiBwYW5kYXMgKHNvIGZhcikuXG4gKiAgICAgIElmIG9uZSBiZWNvbWVzIGF2YWlsYWJsZSBpbiB0aGUgZnV0dXJlLCB3ZSBjYW4gYWRkIHN1cHBvcnQuXG4gKiAgIDIpIGluIFB5S2VyYXMsIGlucHV0cyBjYW4gYmUgUHl0aG9uIGRpY3QuIEJ1dCBoZXJlIHdlIGFyZSBzdGlwdWxhdGluZ1xuICogdGhhdCB0aGUgZGF0YSBpcyBlaXRoZXIgYSBzaW5nbGUgYHRmLlRlbnNvcmAgb3IgYW4gQXJyYXkgb2YgYHRmLlRlbnNvcmBzLiBXZVxuICogbWF5IGFkZCBzdXBwb3J0IGZvciBgT2JqZWN0YCBkYXRhIGlucHV0cyBpbiB0aGUgZnV0dXJlIHdoZW4gdGhlIG5lZWRcbiAqIGFyaXNlcy5cbiAqXG4gKiBJbnN0ZWFkLCB3ZSBwZXJmb3JtIGJhc2ljIGNoZWNrcyBmb3IgbnVtYmVyIG9mIHBhcmFtZXRlcnMgYW5kIHNoYXBlcy5cbiAqXG4gKiBAcGFyYW0gZGF0YTogVGhlIGlucHV0IGRhdGEuXG4gKiBAcGFyYW0gbmFtZXM6IE5hbWUgZm9yIHRoZSBpbnB1dHMsIGZyb20gdGhlIG1vZGVsLlxuICogQHBhcmFtIHNoYXBlczogRXhwZWN0ZWQgc2hhcGVzIGZvciB0aGUgaW5wdXQgZGF0YSwgZnJvbSB0aGUgbW9kZWwuXG4gKiBAcGFyYW0gY2hlY2tCYXRjaEF4aXM6IFdoZXRoZXIgdGhlIHNpemUgYWxvbmcgdGhlIGJhdGNoIGF4aXMgKGkuZS4sIHRoZVxuICogICBmaXJzdCBkaW1lbnNpb24pIHdpbGwgYmUgY2hlY2tlZCBmb3IgbWF0Y2hpbmcuXG4gKiBAcGFyYW0gZXhjZXB0aW9uUHJlZml4OiBFeGVjcHRpb24gcHJlZml4IG1lc3NhZ2UsIHVzZWQgaW4gZ2VuZXJhdGluZyBlcnJvclxuICogICBtZXNzYWdlcy5cbiAqIEB0aHJvd3MgVmFsdWVFcnJvcjogb24gaW5jb3JyZWN0IG51bWJlciBvZiBpbnB1dHMgb3IgbWlzbWF0Y2hlcyBpbiBzaGFwZXMuXG4gKi9cbmZ1bmN0aW9uIGNoZWNrSW5wdXREYXRhKFxuICAgIGRhdGE6IFRlbnNvcnxUZW5zb3JbXSwgbmFtZXM6IHN0cmluZ1tdLCBzaGFwZXM/OiBTaGFwZVtdLFxuICAgIGNoZWNrQmF0Y2hBeGlzID0gdHJ1ZSwgZXhjZXB0aW9uUHJlZml4ID0gJycpIHtcbiAgbGV0IGFycmF5czogVGVuc29yW107XG4gIGlmIChBcnJheS5pc0FycmF5KGRhdGEpKSB7XG4gICAgaWYgKGRhdGEubGVuZ3RoICE9PSBuYW1lcy5sZW5ndGgpIHtcbiAgICAgIHRocm93IG5ldyBWYWx1ZUVycm9yKFxuICAgICAgICAgIGBFcnJvciB3aGVuIGNoZWNraW5nIG1vZGVsICR7ZXhjZXB0aW9uUHJlZml4fTogdGhlIEFycmF5IG9mIGAgK1xuICAgICAgICAgIGBUZW5zb3JzIHRoYXQgeW91IGFyZSBwYXNzaW5nIHRvIHlvdXIgbW9kZWwgaXMgbm90IHRoZSBzaXplIHRoZSBgICtcbiAgICAgICAgICBgdGhlIG1vZGVsIGV4cGVjdGVkLiBFeHBlY3RlZCB0byBzZWUgJHtuYW1lcy5sZW5ndGh9IFRlbnNvcihzKSxgICtcbiAgICAgICAgICBgIGJ1dCBpbnN0ZWFkIGdvdCAke2RhdGEubGVuZ3RofSBUZW5zb3JzKHMpLmApO1xuICAgIH1cbiAgICBhcnJheXMgPSBkYXRhO1xuICB9IGVsc2Uge1xuICAgIGlmIChuYW1lcy5sZW5ndGggPiAxKSB7XG4gICAgICB0aHJvdyBuZXcgVmFsdWVFcnJvcihcbiAgICAgICAgICBgVGhlIG1vZGVsIGV4cGVjdHMgJHtuYW1lcy5sZW5ndGh9ICR7ZXhjZXB0aW9uUHJlZml4fSBUZW5zb3JzLCBgICtcbiAgICAgICAgICBgYnV0IG9ubHkgcmVjZWl2ZWQgb25lIFRlbnNvci4gRm91bmQ6IGFycmF5IHdpdGggc2hhcGUgYCArXG4gICAgICAgICAgYCR7SlNPTi5zdHJpbmdpZnkoZGF0YS5zaGFwZSl9LmApO1xuICAgIH1cbiAgICBhcnJheXMgPSBbZGF0YV07XG4gIH1cblxuICBpZiAoc2hhcGVzICE9IG51bGwpIHtcbiAgICBmb3IgKGxldCBpID0gMDsgaSA8IG5hbWVzLmxlbmd0aDsgKytpKSB7XG4gICAgICBpZiAoc2hhcGVzW2ldID09IG51bGwpIHtcbiAgICAgICAgY29udGludWU7XG4gICAgICB9XG4gICAgICBjb25zdCBhcnJheSA9IGFycmF5c1tpXTtcbiAgICAgIGlmIChhcnJheS5zaGFwZS5sZW5ndGggIT09IHNoYXBlc1tpXS5sZW5ndGgpIHtcbiAgICAgICAgdGhyb3cgbmV3IFZhbHVlRXJyb3IoXG4gICAgICAgICAgICBgRXJyb3Igd2hlbiBjaGVja2luZyAke2V4Y2VwdGlvblByZWZpeH06IGV4cGVjdGVkICR7bmFtZXNbaV19IGAgK1xuICAgICAgICAgICAgYHRvIGhhdmUgJHtzaGFwZXNbaV0ubGVuZ3RofSBkaW1lbnNpb24ocyksIGJ1dCBnb3QgYXJyYXkgd2l0aCBgICtcbiAgICAgICAgICAgIGBzaGFwZSAke0pTT04uc3RyaW5naWZ5KGFycmF5LnNoYXBlKX1gKTtcbiAgICAgIH1cbiAgICAgIGZvciAobGV0IGogPSAwOyBqIDwgc2hhcGVzW2ldLmxlbmd0aDsgKytqKSB7XG4gICAgICAgIGlmIChqID09PSAwICYmICFjaGVja0JhdGNoQXhpcykge1xuICAgICAgICAgIGNvbnRpbnVlO1xuICAgICAgICB9XG4gICAgICAgIGNvbnN0IGRpbSA9IGFycmF5LnNoYXBlW2pdO1xuICAgICAgICBjb25zdCByZWZEaW0gPSBzaGFwZXNbaV1bal07XG4gICAgICAgIGlmIChyZWZEaW0gIT0gbnVsbCkge1xuICAgICAgICAgIGlmIChyZWZEaW0gIT09IGRpbSkge1xuICAgICAgICAgICAgdGhyb3cgbmV3IFZhbHVlRXJyb3IoXG4gICAgICAgICAgICAgICAgYEVycm9yIHdoZW4gY2hlY2tpbmcgJHtleGNlcHRpb25QcmVmaXh9OiBleHBlY3RlZCBgICtcbiAgICAgICAgICAgICAgICBgJHtuYW1lc1tpXX0gdG8gaGF2ZSBzaGFwZSAke0pTT04uc3RyaW5naWZ5KHNoYXBlc1tpXSl9IGJ1dCBgICtcbiAgICAgICAgICAgICAgICBgZ290IGFycmF5IHdpdGggc2hhcGUgJHtKU09OLnN0cmluZ2lmeShhcnJheS5zaGFwZSl9LmApO1xuICAgICAgICAgIH1cbiAgICAgICAgfVxuICAgICAgfVxuICAgIH1cbiAgfVxufVxuXG4vKipcbiAqIE1hcHMgbWV0cmljIGZ1bmN0aW9ucyB0byBtb2RlbCBvdXRwdXRzLlxuICogQHBhcmFtIG1ldHJpY3MgQW4gc2hvcnRjdXQgc3RyaW5ncyBuYW1lLCBtZXRyaWMgZnVuY3Rpb24sIGBBcnJheWAgb3IgZGljdFxuICogICAoYE9iamVjdGApIG9mIG1ldHJpYyBmdW5jdGlvbnMuXG4gKiBAcGFyYW0gb3V0cHV0TmFtZXMgQW4gYEFycmF5YCBvZiB0aGUgbmFtZXMgb2YgbW9kZWwgb3V0cHV0cy5cbiAqIEByZXR1cm5zIEFuIGBBcnJheWAgKG9uZSBlbnRyeSBwZXIgbW9kZWwgb3V0cHV0KSBvZiBgQXJyYXlgIG9mIG1ldHJpY1xuICogICBmdW5jdGlvbnMuIEZvciBpbnN0YW5jZSwgaWYgdGhlIG1vZGVsIGhhcyAyIG91dHB1dHMsIGFuZCBmb3IgdGhlIGZpcnN0XG4gKiAgIG91dHB1dCB3ZSB3YW50IHRvIGNvbXB1dGUgYGJpbmFyeUFjY3VyYWN5YCBhbmQgYGJpbmFyeUNyb3NzZW50cm9weWAsXG4gKiAgIGFuZCBqdXN0IGBiaW5hcnlBY2N1cmFjeWAgZm9yIHRoZSBzZWNvbmQgb3V0cHV0LCB0aGUgYEFycmF5YCB3b3VsZCBsb29rXG4gKiAgIGxpa2U6XG4gKiAgICAgYFtbYmluYXJ5QWNjdXJhY3ksIGJpbmFyeUNyb3NzZW50cm9weV0sICBbYmluYXJ5QWNjdXJhY3ldXWBcbiAqIEB0aHJvd3MgVHlwZUVycm9yOiBpbmNvbXBhdGlibGUgbWV0cmljcyBmb3JtYXQuXG4gKi9cbmV4cG9ydCBmdW5jdGlvbiBjb2xsZWN0TWV0cmljcyhcbiAgICBtZXRyaWNzOiBzdHJpbmd8TG9zc09yTWV0cmljRm58QXJyYXk8c3RyaW5nfExvc3NPck1ldHJpY0ZuPnxcbiAgICB7W291dHB1dE5hbWU6IHN0cmluZ106IHN0cmluZyB8IExvc3NPck1ldHJpY0ZufSxcbiAgICBvdXRwdXROYW1lczogc3RyaW5nW10pOiBBcnJheTxBcnJheTxzdHJpbmd8TG9zc09yTWV0cmljRm4+PiB7XG4gIGlmIChtZXRyaWNzID09IG51bGwgfHwgQXJyYXkuaXNBcnJheShtZXRyaWNzKSAmJiBtZXRyaWNzLmxlbmd0aCA9PT0gMCkge1xuICAgIHJldHVybiBvdXRwdXROYW1lcy5tYXAobmFtZSA9PiBbXSk7XG4gIH1cblxuICBsZXQgd3JhcHBlZE1ldHJpY3M6IEFycmF5PHN0cmluZ3xMb3NzT3JNZXRyaWNGbj58XG4gICAgICB7W291dHB1dE5hbWU6IHN0cmluZ106IHN0cmluZyB8IExvc3NPck1ldHJpY0ZufTtcbiAgaWYgKHR5cGVvZiBtZXRyaWNzID09PSAnc3RyaW5nJyB8fCB0eXBlb2YgbWV0cmljcyA9PT0gJ2Z1bmN0aW9uJykge1xuICAgIHdyYXBwZWRNZXRyaWNzID0gW21ldHJpY3NdO1xuICB9IGVsc2UgaWYgKEFycmF5LmlzQXJyYXkobWV0cmljcykgfHwgdHlwZW9mIG1ldHJpY3MgPT09ICdvYmplY3QnKSB7XG4gICAgd3JhcHBlZE1ldHJpY3MgPSBtZXRyaWNzIGFzIEFycmF5PHN0cmluZ3xMb3NzT3JNZXRyaWNGbj58XG4gICAgICAgIHtbb3V0cHV0TmFtZTogc3RyaW5nXTogc3RyaW5nfSB8IHtbb3V0cHV0TmFtZTogc3RyaW5nXTogTG9zc09yTWV0cmljRm59O1xuICB9IGVsc2Uge1xuICAgIHRocm93IG5ldyBUeXBlRXJyb3IoXG4gICAgICAgICdUeXBlIG9mIG1ldHJpY3MgYXJndW1lbnQgbm90IHVuZGVyc3Rvb2QuIEV4cGVjdGVkIGFuIHN0cmluZywnICtcbiAgICAgICAgYGZ1bmN0aW9uLCBBcnJheSwgb3IgT2JqZWN0LCBmb3VuZDogJHttZXRyaWNzfWApO1xuICB9XG5cbiAgaWYgKEFycmF5LmlzQXJyYXkod3JhcHBlZE1ldHJpY3MpKSB7XG4gICAgLy8gV2UgdGhlbiBhcHBseSBhbGwgbWV0cmljcyB0byBhbGwgb3V0cHV0cy5cbiAgICByZXR1cm4gb3V0cHV0TmFtZXMubWFwKFxuICAgICAgICBuYW1lID0+IHdyYXBwZWRNZXRyaWNzIGFzIEFycmF5PHN0cmluZ3xMb3NzT3JNZXRyaWNGbj4pO1xuICB9IGVsc2Uge1xuICAgIC8vIEluIHRoaXMgY2FzZSwgbWV0cmljcyBpcyBhIGRpY3QuXG4gICAgY29uc3QgbmVzdGVkTWV0cmljczogQXJyYXk8QXJyYXk8c3RyaW5nfExvc3NPck1ldHJpY0ZuPj4gPSBbXTtcbiAgICBmb3IgKGNvbnN0IG5hbWUgb2Ygb3V0cHV0TmFtZXMpIHtcbiAgICAgIGxldCBvdXRwdXRNZXRyaWNzOiBzdHJpbmd8TG9zc09yTWV0cmljRm58QXJyYXk8c3RyaW5nfExvc3NPck1ldHJpY0ZuPiA9XG4gICAgICAgICAgd3JhcHBlZE1ldHJpY3MuaGFzT3duUHJvcGVydHkobmFtZSkgPyB3cmFwcGVkTWV0cmljc1tuYW1lXSA6IFtdO1xuICAgICAgaWYgKCFBcnJheS5pc0FycmF5KG91dHB1dE1ldHJpY3MpKSB7XG4gICAgICAgIG91dHB1dE1ldHJpY3MgPSBbb3V0cHV0TWV0cmljc107XG4gICAgICB9XG4gICAgICBuZXN0ZWRNZXRyaWNzLnB1c2gob3V0cHV0TWV0cmljcyk7XG4gICAgfVxuICAgIHJldHVybiBuZXN0ZWRNZXRyaWNzO1xuICB9XG59XG5cbmV4cG9ydCBpbnRlcmZhY2UgTW9kZWxFdmFsdWF0ZUFyZ3Mge1xuICAvKipcbiAgICogQmF0Y2ggc2l6ZSAoSW50ZWdlcikuIElmIHVuc3BlY2lmaWVkLCBpdCB3aWxsIGRlZmF1bHQgdG8gMzIuXG4gICAqL1xuICBiYXRjaFNpemU/OiBudW1iZXI7XG5cbiAgLyoqXG4gICAqIFZlcmJvc2l0eSBtb2RlLlxuICAgKi9cbiAgdmVyYm9zZT86IE1vZGVsTG9nZ2luZ1ZlcmJvc2l0eTtcblxuICAvKipcbiAgICogVGVuc29yIG9mIHdlaWdodHMgdG8gd2VpZ2h0IHRoZSBjb250cmlidXRpb24gb2YgZGlmZmVyZW50IHNhbXBsZXMgdG8gdGhlXG4gICAqIGxvc3MgYW5kIG1ldHJpY3MuXG4gICAqL1xuICBzYW1wbGVXZWlnaHQ/OiBUZW5zb3I7XG5cbiAgLyoqXG4gICAqIGludGVnZXI6IHRvdGFsIG51bWJlciBvZiBzdGVwcyAoYmF0Y2hlcyBvZiBzYW1wbGVzKVxuICAgKiBiZWZvcmUgZGVjbGFyaW5nIHRoZSBldmFsdWF0aW9uIHJvdW5kIGZpbmlzaGVkLiBJZ25vcmVkIHdpdGggdGhlIGRlZmF1bHRcbiAgICogdmFsdWUgb2YgYHVuZGVmaW5lZGAuXG4gICAqL1xuICBzdGVwcz86IG51bWJlcjtcbn1cblxuLyoqXG4gKiBDb25maWd1cmF0aW9uIGZvciBjYWxscyB0byBgTGF5ZXJzTW9kZWwuY29tcGlsZSgpYC5cbiAqL1xuZXhwb3J0IGludGVyZmFjZSBNb2RlbENvbXBpbGVBcmdzIHtcbiAgLyoqXG4gICAqIEFuIGluc3RhbmNlIG9mIGB0Zi50cmFpbi5PcHRpbWl6ZXJgIG9yIGEgc3RyaW5nIG5hbWUgZm9yIGFuIE9wdGltaXplci5cbiAgICovXG4gIG9wdGltaXplcjogc3RyaW5nfE9wdGltaXplcjtcblxuICAvKipcbiAgICogT2JqZWN0IGZ1bmN0aW9uKHMpIG9yIG5hbWUocykgb2Ygb2JqZWN0IGZ1bmN0aW9uKHMpLlxuICAgKiBJZiB0aGUgbW9kZWwgaGFzIG11bHRpcGxlIG91dHB1dHMsIHlvdSBjYW4gdXNlIGEgZGlmZmVyZW50IGxvc3NcbiAgICogb24gZWFjaCBvdXRwdXQgYnkgcGFzc2luZyBhIGRpY3Rpb25hcnkgb3IgYW4gQXJyYXkgb2YgbG9zc2VzLlxuICAgKiBUaGUgbG9zcyB2YWx1ZSB0aGF0IHdpbGwgYmUgbWluaW1pemVkIGJ5IHRoZSBtb2RlbCB3aWxsIHRoZW4gYmUgdGhlIHN1bVxuICAgKiBvZiBhbGwgaW5kaXZpZHVhbCBsb3NzZXMuXG4gICAqL1xuICBsb3NzOiBzdHJpbmd8c3RyaW5nW118e1tvdXRwdXROYW1lOiBzdHJpbmddOiBzdHJpbmd9fExvc3NPck1ldHJpY0ZufFxuICAgICAgTG9zc09yTWV0cmljRm5bXXx7W291dHB1dE5hbWU6IHN0cmluZ106IExvc3NPck1ldHJpY0ZufTtcblxuICAvKipcbiAgICogTGlzdCBvZiBtZXRyaWNzIHRvIGJlIGV2YWx1YXRlZCBieSB0aGUgbW9kZWwgZHVyaW5nIHRyYWluaW5nIGFuZCB0ZXN0aW5nLlxuICAgKiBUeXBpY2FsbHkgeW91IHdpbGwgdXNlIGBtZXRyaWNzPVsnYWNjdXJhY3knXWAuXG4gICAqIFRvIHNwZWNpZnkgZGlmZmVyZW50IG1ldHJpY3MgZm9yIGRpZmZlcmVudCBvdXRwdXRzIG9mIGEgbXVsdGktb3V0cHV0XG4gICAqIG1vZGVsLCB5b3UgY291bGQgYWxzbyBwYXNzIGEgZGljdGlvbmFyeS5cbiAgICovXG4gIG1ldHJpY3M/OiBzdHJpbmd8TG9zc09yTWV0cmljRm58QXJyYXk8c3RyaW5nfExvc3NPck1ldHJpY0ZuPnxcbiAgICAgIHtbb3V0cHV0TmFtZTogc3RyaW5nXTogc3RyaW5nIHwgTG9zc09yTWV0cmljRm59O1xuXG4gIC8vIFRPRE8oY2Fpcyk6IEFkZCBsb3NzV2VpZ2h0cywgc2FtcGxlV2VpZ2h0TW9kZSwgd2VpZ2h0ZWRNZXRyaWNzLCBhbmRcbiAgLy8gICB0YXJnZXRUZW5zb3JzLlxufVxuXG5jb25zdCBMQVlFUlNfTU9ERUxfRk9STUFUX05BTUUgPSAnbGF5ZXJzLW1vZGVsJztcblxuLyoqXG4gKiBBIGB0Zi5MYXllcnNNb2RlbGAgaXMgYSBkaXJlY3RlZCwgYWN5Y2xpYyBncmFwaCBvZiBgdGYuTGF5ZXJgcyBwbHVzIG1ldGhvZHNcbiAqIGZvciB0cmFpbmluZywgZXZhbHVhdGlvbiwgcHJlZGljdGlvbiBhbmQgc2F2aW5nLlxuICpcbiAqIGB0Zi5MYXllcnNNb2RlbGAgaXMgdGhlIGJhc2ljIHVuaXQgb2YgdHJhaW5pbmcsIGluZmVyZW5jZSBhbmQgZXZhbHVhdGlvbiBpblxuICogVGVuc29yRmxvdy5qcy4gVG8gY3JlYXRlIGEgYHRmLkxheWVyc01vZGVsYCwgdXNlIGB0Zi5MYXllcnNNb2RlbGAuXG4gKlxuICogU2VlIGFsc286XG4gKiAgIGB0Zi5TZXF1ZW50aWFsYCwgYHRmLmxvYWRMYXllcnNNb2RlbGAuXG4gKlxuICogQGRvYyB7aGVhZGluZzogJ01vZGVscycsIHN1YmhlYWRpbmc6ICdDbGFzc2VzJ31cbiAqL1xuZXhwb3J0IGNsYXNzIExheWVyc01vZGVsIGV4dGVuZHMgQ29udGFpbmVyIGltcGxlbWVudHMgdGZjLkluZmVyZW5jZU1vZGVsIHtcbiAgLy8gVGhlIGNsYXNzIG5hbWUgaXMgJ01vZGVsJyByYXRoZXIgdGhhbiAnTGF5ZXJzTW9kZWwnIGZvciBiYWNrd2FyZHNcbiAgLy8gY29tcGF0aWJpbGl0eSBzaW5jZSB0aGlzIGNsYXNzIG5hbWUgc2hvd3MgdXAgaW4gdGhlIHNlcmlhbGl6YXRpb24gZm9ybWF0LlxuICAvKiogQG5vY29sbGFwc2UgKi9cbiAgc3RhdGljIGNsYXNzTmFtZSA9ICdNb2RlbCc7XG4gIHByb3RlY3RlZCBvcHRpbWl6ZXJfOiBPcHRpbWl6ZXI7XG4gIC8vIFdoZXRoZXIgdGhlIG1vZGVsIGluc3RhbmNlIG93bnMgdGhlIG9wdGltaXplcjogYHRydWVgIGlmIGFuZCBvbmx5IGlmXG4gIC8vIGBvcHRpbWl6ZXJgIGlzIGNyZWF0ZWQgZnJvbSBhIHN0cmluZyBwYXJhbWV0ZXIgZHVyaW5nIGBjb21waWxlKClgIGNhbGwuXG4gIHByb3RlY3RlZCBpc09wdGltaXplck93bmVkOiBib29sZWFuO1xuXG4gIGxvc3M6IHN0cmluZ3xzdHJpbmdbXXx7W291dHB1dE5hbWU6IHN0cmluZ106IHN0cmluZ318TG9zc09yTWV0cmljRm58XG4gICAgICBMb3NzT3JNZXRyaWNGbltdfHtbb3V0cHV0TmFtZTogc3RyaW5nXTogTG9zc09yTWV0cmljRm59O1xuICBsb3NzRnVuY3Rpb25zOiBMb3NzT3JNZXRyaWNGbltdO1xuXG4gIC8vIFRPRE8oY2Fpcyk6IFRoZXNlIHByaXZhdGUgdmFyaWFibGVzIHNob3VsZCBwcm9iYWJseSBub3QgaGF2ZSB0aGUgc3RyaW5nXG4gIC8vICAgJ2ZlZWQnIGluIHRoZWlyIG5hbWVzLCBiZWNhdXNlIHdlIGFyZSBub3QgZGVhbGluZyB3aXRoIGEgc3ltYm9saWNcbiAgLy8gICBiYWNrZW5kLlxuICBwcml2YXRlIGZlZWRPdXRwdXRTaGFwZXM6IFNoYXBlW107XG4gIHByaXZhdGUgZmVlZExvc3NGbnM6IExvc3NPck1ldHJpY0ZuW107XG4gIHByaXZhdGUgY29sbGVjdGVkVHJhaW5hYmxlV2VpZ2h0czogTGF5ZXJWYXJpYWJsZVtdO1xuICBwcml2YXRlIHRlc3RGdW5jdGlvbjogKGRhdGE6IFRlbnNvcltdKSA9PiBTY2FsYXJbXTtcbiAgaGlzdG9yeTogSGlzdG9yeTtcblxuICAvLyBBIHB1YmxpYyBwcm9wZXJ0eSB0aGF0IGNhbiBiZSBzZXQgYnkgQ2FsbGJhY2tzIHRvIG9yZGVyIGVhcmx5IHN0b3BwaW5nXG4gIC8vIGR1cmluZyBgZml0KClgIGNhbGxzLlxuICBwcm90ZWN0ZWQgc3RvcFRyYWluaW5nXzogYm9vbGVhbjtcbiAgcHJvdGVjdGVkIGlzVHJhaW5pbmc6IGJvb2xlYW47XG5cbiAgbWV0cmljczogc3RyaW5nfExvc3NPck1ldHJpY0ZufEFycmF5PHN0cmluZ3xMb3NzT3JNZXRyaWNGbj58XG4gICAgICB7W291dHB1dE5hbWU6IHN0cmluZ106IHN0cmluZyB8IExvc3NPck1ldHJpY0ZufTtcbiAgbWV0cmljc05hbWVzOiBzdHJpbmdbXTtcbiAgLy8gUG9ydGluZyBOb3RlOiBgbWV0cmljc190ZW5zb3JzYCBpbiBQeUtlcmFzIGlzIGEgc3ltYm9saWMgdGVuc29yLiBCdXQgZ2l2ZW5cbiAgLy8gICB0aGUgaW1wZXJhdGl2ZSBuYXR1cmUgb2YgdGZqcy1jb3JlLCBgbWV0cmljc1RlbnNvcnNgIGlzIGFcbiAgLy8gICBUeXBlU2NyaXB0IGZ1bmN0aW9uIGhlcmUuXG4gIC8vICAgQWxzbyBub3RlIHRoYXQgZHVlIHRvIHRoZSBpbXBlcmF0aXZlIG5hdHVyZSBvZiB0ZmpzLWNvcmUsIGBtZXRyaWNzVGVuc29yYFxuICAvLyAgIGhlcmUgbmVlZHMgYW4gb3V0cHV0IGluZGV4IHRvIGtlZXAgdHJhY2sgb2Ygd2hpY2ggb3V0cHV0IG9mIHRoZVxuICAvLyAgIExheWVyc01vZGVsIGEgbWV0cmljIGJlbG9uZ3MgdG8uIFRoaXMgaXMgdW5saWtlIGBtZXRyaWNzX3RlbnNvcnNgIGluXG4gIC8vICAgUHlLZXJhcywgd2hpY2ggaXMgYSBgbGlzdGAgb2Ygc3ltYm9saWMgdGVuc29ycywgZWFjaCBvZiB3aGljaCBoYXNcbiAgLy8gICBpbXBsaWNpdCBcImtub3dsZWRnZVwiIG9mIHRoZSBvdXRwdXRzIGl0IGRlcGVuZHMgb24uXG4gIG1ldHJpY3NUZW5zb3JzOiBBcnJheTxbTG9zc09yTWV0cmljRm4sIG51bWJlcl0+O1xuXG4gIC8vIFVzZXIgZGVmaW5kIG1ldGFkYXRhIChpZiBhbnkpLlxuICBwcml2YXRlIHVzZXJEZWZpbmVkTWV0YWRhdGE6IHt9O1xuXG4gIGNvbnN0cnVjdG9yKGFyZ3M6IENvbnRhaW5lckFyZ3MpIHtcbiAgICBzdXBlcihhcmdzKTtcbiAgICB0aGlzLmlzVHJhaW5pbmcgPSBmYWxzZTtcbiAgfVxuXG4gIC8qKlxuICAgKiBQcmludCBhIHRleHQgc3VtbWFyeSBvZiB0aGUgbW9kZWwncyBsYXllcnMuXG4gICAqXG4gICAqIFRoZSBzdW1tYXJ5IGluY2x1ZGVzXG4gICAqIC0gTmFtZSBhbmQgdHlwZSBvZiBhbGwgbGF5ZXJzIHRoYXQgY29tcHJpc2UgdGhlIG1vZGVsLlxuICAgKiAtIE91dHB1dCBzaGFwZShzKSBvZiB0aGUgbGF5ZXJzXG4gICAqIC0gTnVtYmVyIG9mIHdlaWdodCBwYXJhbWV0ZXJzIG9mIGVhY2ggbGF5ZXJcbiAgICogLSBJZiB0aGUgbW9kZWwgaGFzIG5vbi1zZXF1ZW50aWFsLWxpa2UgdG9wb2xvZ3ksIHRoZSBpbnB1dHMgZWFjaCBsYXllclxuICAgKiAgIHJlY2VpdmVzXG4gICAqIC0gVGhlIHRvdGFsIG51bWJlciBvZiB0cmFpbmFibGUgYW5kIG5vbi10cmFpbmFibGUgcGFyYW1ldGVycyBvZiB0aGUgbW9kZWwuXG4gICAqXG4gICAqIGBgYGpzXG4gICAqIGNvbnN0IGlucHV0MSA9IHRmLmlucHV0KHtzaGFwZTogWzEwXX0pO1xuICAgKiBjb25zdCBpbnB1dDIgPSB0Zi5pbnB1dCh7c2hhcGU6IFsyMF19KTtcbiAgICogY29uc3QgZGVuc2UxID0gdGYubGF5ZXJzLmRlbnNlKHt1bml0czogNH0pLmFwcGx5KGlucHV0MSk7XG4gICAqIGNvbnN0IGRlbnNlMiA9IHRmLmxheWVycy5kZW5zZSh7dW5pdHM6IDh9KS5hcHBseShpbnB1dDIpO1xuICAgKiBjb25zdCBjb25jYXQgPSB0Zi5sYXllcnMuY29uY2F0ZW5hdGUoKS5hcHBseShbZGVuc2UxLCBkZW5zZTJdKTtcbiAgICogY29uc3Qgb3V0cHV0ID1cbiAgICogICAgIHRmLmxheWVycy5kZW5zZSh7dW5pdHM6IDMsIGFjdGl2YXRpb246ICdzb2Z0bWF4J30pLmFwcGx5KGNvbmNhdCk7XG4gICAqXG4gICAqIGNvbnN0IG1vZGVsID0gdGYubW9kZWwoe2lucHV0czogW2lucHV0MSwgaW5wdXQyXSwgb3V0cHV0czogb3V0cHV0fSk7XG4gICAqIG1vZGVsLnN1bW1hcnkoKTtcbiAgICogYGBgXG4gICAqXG4gICAqIEBwYXJhbSBsaW5lTGVuZ3RoIEN1c3RvbSBsaW5lIGxlbmd0aCwgaW4gbnVtYmVyIG9mIGNoYXJhY3RlcnMuXG4gICAqIEBwYXJhbSBwb3NpdGlvbnMgQ3VzdG9tIHdpZHRocyBvZiBlYWNoIG9mIHRoZSBjb2x1bW5zLCBhcyBlaXRoZXJcbiAgICogICBmcmFjdGlvbnMgb2YgYGxpbmVMZW5ndGhgIChlLmcuLCBgWzAuNSwgMC43NSwgMV1gKSBvciBhYnNvbHV0ZSBudW1iZXJcbiAgICogICBvZiBjaGFyYWN0ZXJzIChlLmcuLCBgWzMwLCA1MCwgNjVdYCkuIEVhY2ggbnVtYmVyIGNvcnJlc3BvbmRzIHRvXG4gICAqICAgcmlnaHQtbW9zdCAoaS5lLiwgZW5kaW5nKSBwb3NpdGlvbiBvZiBhIGNvbHVtbi5cbiAgICogQHBhcmFtIHByaW50Rm4gQ3VzdG9tIHByaW50IGZ1bmN0aW9uLiBDYW4gYmUgdXNlZCB0byByZXBsYWNlIHRoZSBkZWZhdWx0XG4gICAqICAgYGNvbnNvbGUubG9nYC4gRm9yIGV4YW1wbGUsIHlvdSBjYW4gdXNlIGB4ID0+IHt9YCB0byBtdXRlIHRoZSBwcmludGVkXG4gICAqICAgbWVzc2FnZXMgaW4gdGhlIGNvbnNvbGUuXG4gICAqXG4gICAqIEBkb2Mge2hlYWRpbmc6ICdNb2RlbHMnLCBzdWJoZWFkaW5nOiAnQ2xhc3Nlcyd9XG4gICAqL1xuICBzdW1tYXJ5KFxuICAgICAgbGluZUxlbmd0aD86IG51bWJlciwgcG9zaXRpb25zPzogbnVtYmVyW10sXG4gICAgICBwcmludEZuOlxuICAgICAgICAgIC8vIHRzbGludDpkaXNhYmxlLW5leHQtbGluZTpuby1hbnlcbiAgICAgIChtZXNzYWdlPzogYW55LCAuLi5vcHRpb25hbFBhcmFtczogYW55W10pID0+IHZvaWQgPSBjb25zb2xlLmxvZykge1xuICAgIGlmICghdGhpcy5idWlsdCkge1xuICAgICAgdGhyb3cgbmV3IFZhbHVlRXJyb3IoXG4gICAgICAgICAgYFRoaXMgbW9kZWwgaGFzIG5ldmVyIGJlZW4gY2FsbGVkLCB0aHVzIGl0cyB3ZWlnaHRzIGhhdmUgbm90IGJlZW4gYCArXG4gICAgICAgICAgYGNyZWF0ZWQgeWV0LiBTbyBubyBzdW1tYXJ5IGNhbiBiZSBkaXNwbGF5ZWQuIEJ1aWxkIHRoZSBtb2RlbCBgICtcbiAgICAgICAgICBgZmlyc3QgKGUuZy4sIGJ5IGNhbGxpbmcgaXQgb24gc29tZSB0ZXN0IGRhdGEpLmApO1xuICAgIH1cbiAgICBwcmludFN1bW1hcnkodGhpcywgbGluZUxlbmd0aCwgcG9zaXRpb25zLCBwcmludEZuKTtcbiAgfVxuXG4gIC8qKlxuICAgKiBDb25maWd1cmVzIGFuZCBwcmVwYXJlcyB0aGUgbW9kZWwgZm9yIHRyYWluaW5nIGFuZCBldmFsdWF0aW9uLiAgQ29tcGlsaW5nXG4gICAqIG91dGZpdHMgdGhlIG1vZGVsIHdpdGggYW4gb3B0aW1pemVyLCBsb3NzLCBhbmQvb3IgbWV0cmljcy4gIENhbGxpbmcgYGZpdGBcbiAgICogb3IgYGV2YWx1YXRlYCBvbiBhbiB1bi1jb21waWxlZCBtb2RlbCB3aWxsIHRocm93IGFuIGVycm9yLlxuICAgKlxuICAgKiBAcGFyYW0gYXJncyBhIGBNb2RlbENvbXBpbGVBcmdzYCBzcGVjaWZ5aW5nIHRoZSBsb3NzLCBvcHRpbWl6ZXIsIGFuZFxuICAgKiBtZXRyaWNzIHRvIGJlIHVzZWQgZm9yIGZpdHRpbmcgYW5kIGV2YWx1YXRpbmcgdGhpcyBtb2RlbC5cbiAgICpcbiAgICogQGRvYyB7aGVhZGluZzogJ01vZGVscycsIHN1YmhlYWRpbmc6ICdDbGFzc2VzJ31cbiAgICovXG4gIGNvbXBpbGUoYXJnczogTW9kZWxDb21waWxlQXJncyk6IHZvaWQge1xuICAgIGlmIChhcmdzLmxvc3MgPT0gbnVsbCkge1xuICAgICAgYXJncy5sb3NzID0gW107XG4gICAgfVxuICAgIHRoaXMubG9zcyA9IGFyZ3MubG9zcztcblxuICAgIGlmICh0eXBlb2YgYXJncy5vcHRpbWl6ZXIgPT09ICdzdHJpbmcnKSB7XG4gICAgICB0aGlzLm9wdGltaXplcl8gPSBvcHRpbWl6ZXJzLmdldE9wdGltaXplcihhcmdzLm9wdGltaXplcik7XG4gICAgICB0aGlzLmlzT3B0aW1pemVyT3duZWQgPSB0cnVlO1xuICAgIH0gZWxzZSB7XG4gICAgICBpZiAoIShhcmdzLm9wdGltaXplciBpbnN0YW5jZW9mIE9wdGltaXplcikpIHtcbiAgICAgICAgdGhyb3cgbmV3IFZhbHVlRXJyb3IoXG4gICAgICAgICAgICBgVXNlci1kZWZpbmVkIG9wdGltaXplciBtdXN0IGJlIGFuIGluc3RhbmNlIG9mIHRmLk9wdGltaXplci5gKTtcbiAgICAgIH1cbiAgICAgIHRoaXMub3B0aW1pemVyXyA9IGFyZ3Mub3B0aW1pemVyO1xuICAgICAgdGhpcy5pc09wdGltaXplck93bmVkID0gZmFsc2U7XG4gICAgfVxuXG4gICAgLy8gVE9ETyhjYWlzKTogQWRkIGxvc3NXZWlnaHRzLlxuICAgIC8vIFRPRE8oY2Fpcyk6IEFkZCBzYW1wbGVXZWlnaHRNb2RlLlxuXG4gICAgLy8gUHJlcGFyZSBsb3NzIGZ1bmN0aW9ucy5cbiAgICBsZXQgbG9zc0Z1bmN0aW9uczogTG9zc09yTWV0cmljRm5bXSA9IFtdO1xuICAgIGlmICghQXJyYXkuaXNBcnJheShhcmdzLmxvc3MpICYmIHR5cGVvZiBhcmdzLmxvc3MgIT09ICdzdHJpbmcnICYmXG4gICAgICAgIHR5cGVvZiBhcmdzLmxvc3MgIT09ICdmdW5jdGlvbicpIHtcbiAgICAgIGFyZ3MubG9zcyA9IGFyZ3MubG9zcyBhcyB7W291dHB1dE5hbWU6IHN0cmluZ106IHN0cmluZ307XG4gICAgICBmb3IgKGNvbnN0IG5hbWUgaW4gYXJncy5sb3NzKSB7XG4gICAgICAgIGlmICh0aGlzLm91dHB1dE5hbWVzLmluZGV4T2YobmFtZSkgPT09IC0xKSB7XG4gICAgICAgICAgdGhyb3cgbmV3IFZhbHVlRXJyb3IoXG4gICAgICAgICAgICAgIGBVbmtub3duIGVudHJ5IGluIGxvc3MgZGljdGlvbmFyeTogXCIke25hbWV9XCIuIGAgK1xuICAgICAgICAgICAgICBgT25seSBleHBlY3RlZCB0aGUgZm9sbG93aW5nIGtleXM6ICR7dGhpcy5vdXRwdXROYW1lc31gKTtcbiAgICAgICAgfVxuICAgICAgfVxuICAgICAgZm9yIChjb25zdCBuYW1lIG9mIHRoaXMub3V0cHV0TmFtZXMpIHtcbiAgICAgICAgaWYgKGFyZ3MubG9zc1tuYW1lXSA9PSBudWxsKSB7XG4gICAgICAgICAgY29uc29sZS53YXJuKFxuICAgICAgICAgICAgICBgT3V0cHV0IFwiJHtuYW1lfVwiIGlzIG1pc3NpbmcgZnJvbSBsb3NzIGRpY3Rpb25hcnkuIFdlIGFzc3VtZSBgICtcbiAgICAgICAgICAgICAgYHRoaXMgd2FzIGRvbmUgb24gcHVycG9zZSwgYW5kIHdlIHdpbGwgbm90IGJlIGV4cGVjdGluZyBkYXRhIGAgK1xuICAgICAgICAgICAgICBgdG8gYmUgcGFzc2VkIHRvICR7bmFtZX0gZHVyaW5nIHRyYWluaW5nYCk7XG4gICAgICAgIH1cbiAgICAgICAgbG9zc0Z1bmN0aW9ucy5wdXNoKGxvc3Nlcy5nZXQoYXJncy5sb3NzW25hbWVdKSk7XG4gICAgICB9XG4gICAgfSBlbHNlIGlmIChBcnJheS5pc0FycmF5KGFyZ3MubG9zcykpIHtcbiAgICAgIGlmIChhcmdzLmxvc3MubGVuZ3RoICE9PSB0aGlzLm91dHB1dHMubGVuZ3RoKSB7XG4gICAgICAgIHRocm93IG5ldyBWYWx1ZUVycm9yKFxuICAgICAgICAgICAgYFdoZW4gcGFzc2luZyBhbiBBcnJheSBhcyBsb3NzLCBpdCBzaG91bGQgaGF2ZSBvbmUgZW50cnkgcGVyIGAgK1xuICAgICAgICAgICAgYG1vZGVsIG91dHB1dC4gVGhlIG1vZGVsIGhhcyAke3RoaXMub3V0cHV0cy5sZW5ndGh9IG91dHB1dChzKSwgYCArXG4gICAgICAgICAgICBgYnV0IHlvdSBwYXNzZWQgbG9zcz0ke2FyZ3MubG9zc30uYCk7XG4gICAgICB9XG4gICAgICBjb25zdCB0aGVMb3NzZXMgPSBhcmdzLmxvc3MgYXMgQXJyYXk8c3RyaW5nfExvc3NPck1ldHJpY0ZuPjtcbiAgICAgIGxvc3NGdW5jdGlvbnMgPSB0aGVMb3NzZXMubWFwKGwgPT4gbG9zc2VzLmdldChsKSk7XG4gICAgfSBlbHNlIHtcbiAgICAgIGNvbnN0IGxvc3NGdW5jdGlvbiA9IGxvc3Nlcy5nZXQoYXJncy5sb3NzKTtcbiAgICAgIHRoaXMub3V0cHV0cy5mb3JFYWNoKF8gPT4ge1xuICAgICAgICBsb3NzRnVuY3Rpb25zLnB1c2gobG9zc0Z1bmN0aW9uKTtcbiAgICAgIH0pO1xuICAgIH1cblxuICAgIHRoaXMubG9zc0Z1bmN0aW9ucyA9IGxvc3NGdW5jdGlvbnM7XG5cbiAgICB0aGlzLmZlZWRPdXRwdXROYW1lcyA9IFtdO1xuICAgIHRoaXMuZmVlZE91dHB1dFNoYXBlcyA9IFtdO1xuICAgIHRoaXMuZmVlZExvc3NGbnMgPSBbXTtcbiAgICBmb3IgKGxldCBpID0gMDsgaSA8IHRoaXMub3V0cHV0cy5sZW5ndGg7ICsraSkge1xuICAgICAgLy8gVE9ETyhjYWlzKTogTG9naWMgZm9yIHNraXBwaW5nIHRhcmdldChzKS5cbiAgICAgIGNvbnN0IHNoYXBlID0gdGhpcy5pbnRlcm5hbE91dHB1dFNoYXBlc1tpXTtcbiAgICAgIGNvbnN0IG5hbWUgPSB0aGlzLm91dHB1dE5hbWVzW2ldO1xuICAgICAgdGhpcy5mZWVkT3V0cHV0TmFtZXMucHVzaChuYW1lKTtcbiAgICAgIHRoaXMuZmVlZE91dHB1dFNoYXBlcy5wdXNoKHNoYXBlKTtcbiAgICAgIHRoaXMuZmVlZExvc3NGbnMucHVzaCh0aGlzLmxvc3NGdW5jdGlvbnNbaV0pO1xuICAgIH1cblxuICAgIC8vIFRPRE8oY2Fpcyk6IEFkZCBsb2dpYyBmb3Igb3V0cHV0IG1hc2tzLlxuICAgIC8vIFRPRE8oY2Fpcyk6IEFkZCBsb2dpYyBmb3Igc2FtcGxlIHdlaWdodHMuXG4gICAgY29uc3Qgc2tpcFRhcmdldEluZGljZXM6IG51bWJlcltdID0gW107XG5cbiAgICAvLyBQcmVwYXJlIG1ldHJpY3MuXG4gICAgdGhpcy5tZXRyaWNzID0gYXJncy5tZXRyaWNzO1xuICAgIC8vIFRPRE8oY2Fpcyk6IEFkZCB3ZWlnaHRlZE1ldHJpY3MuXG4gICAgdGhpcy5tZXRyaWNzTmFtZXMgPSBbJ2xvc3MnXTtcbiAgICB0aGlzLm1ldHJpY3NUZW5zb3JzID0gW107XG5cbiAgICAvLyBDb21wdXRlIHRvdGFsIGxvc3MuXG4gICAgLy8gUG9ydGluZyBOb3RlOiBJbiBQeUtlcmFzLCBtZXRyaWNzX3RlbnNvcnMgYXJlIHN5bWJvbGljIHRlbnNvciBvYmplY3RzLlxuICAgIC8vICAgSGVyZSwgbWV0cmljc1RlbnNvcnMgYXJlIFR5cGVTY3JpcHQgZnVuY3Rpb25zLiBUaGlzIGRpZmZlcmVuY2UgaXMgZHVlXG4gICAgLy8gICB0byB0aGUgZGlmZmVyZW5jZSBpbiBzeW1ib2xpYy9pbXBlcmF0aXZlIHByb3BlcnR5IG9mIHRoZSBiYWNrZW5kcy5cbiAgICBuYW1lU2NvcGUoJ2xvc3MnLCAoKSA9PiB7XG4gICAgICBmb3IgKGxldCBpID0gMDsgaSA8IHRoaXMub3V0cHV0cy5sZW5ndGg7ICsraSkge1xuICAgICAgICBpZiAoc2tpcFRhcmdldEluZGljZXMuaW5kZXhPZihpKSAhPT0gLTEpIHtcbiAgICAgICAgICBjb250aW51ZTtcbiAgICAgICAgfVxuICAgICAgICAvLyBUT0RPKGNhaXMpOiBBZGQgd2VpZ2h0ZWRMb3NzLCBzYW1wbGVXZWlnaHQgYW5kIG1hc2suXG4gICAgICAgIC8vICAgVGhlIGZvbGxvd2luZyBsaW5lIHNob3VsZCBiZSB3ZWlnaHRlZExvc3NcbiAgICAgICAgY29uc3Qgd2VpZ2h0ZWRMb3NzID0gdGhpcy5sb3NzRnVuY3Rpb25zW2ldO1xuICAgICAgICBpZiAodGhpcy5vdXRwdXRzLmxlbmd0aCA+IDEpIHtcbiAgICAgICAgICB0aGlzLm1ldHJpY3NUZW5zb3JzLnB1c2goW3dlaWdodGVkTG9zcywgaV0pO1xuICAgICAgICAgIHRoaXMubWV0cmljc05hbWVzLnB1c2godGhpcy5vdXRwdXROYW1lc1tpXSArICdfbG9zcycpO1xuICAgICAgICB9XG4gICAgICB9XG5cbiAgICAgIC8vIFBvcnRpbmcgTm90ZTogRHVlIHRvIHRoZSBpbXBlcmF0aXZlIG5hdHVyZSBvZiB0aGUgYmFja2VuZCwgd2UgY2FsY3VsYXRlXG4gICAgICAvLyAgIHRoZSByZWd1bGFyaXplciBwZW5hbHRpZXMgaW4gdGhlIHRvdGFsTG9zc0Z1bmN0aW9uLCBpbnN0ZWFkIG9mIGhlcmUuXG4gICAgfSk7XG5cbiAgICBjb25zdCBuZXN0ZWRNZXRyaWNzID0gY29sbGVjdE1ldHJpY3MoYXJncy5tZXRyaWNzLCB0aGlzLm91dHB1dE5hbWVzKTtcbiAgICAvLyBUT0RPKGNhaXMpOiBBZGQgbmVzdGVkV2VpZ2h0ZWRNZXRyaWNzLlxuXG4gICAgLyoqXG4gICAgICogSGVscGVyIGZ1bmN0aW9uIHVzZWQgaW4gbG9vcCBiZWxvdy5cbiAgICAgKi9cbiAgICBjb25zdCBhcHBlbmRNZXRyaWMgPVxuICAgICAgICAob3V0cHV0SW5kZXg6IG51bWJlciwgbWV0cmljTmFtZTogc3RyaW5nLFxuICAgICAgICAgbWV0cmljVGVuc29yOiBMb3NzT3JNZXRyaWNGbikgPT4ge1xuICAgICAgICAgIGlmICh0aGlzLm91dHB1dE5hbWVzLmxlbmd0aCA+IDEpIHtcbiAgICAgICAgICAgIG1ldHJpY05hbWUgPSB0aGlzLm91dHB1dE5hbWVzW291dHB1dEluZGV4XSArICdfJyArIG1ldHJpY05hbWU7XG4gICAgICAgICAgfVxuICAgICAgICAgIHRoaXMubWV0cmljc05hbWVzLnB1c2gobWV0cmljTmFtZSk7XG4gICAgICAgICAgdGhpcy5tZXRyaWNzVGVuc29ycy5wdXNoKFttZXRyaWNUZW5zb3IsIG91dHB1dEluZGV4XSk7XG4gICAgICAgIH07XG5cbiAgICBuYW1lU2NvcGUoJ21ldHJpYycsICgpID0+IHtcbiAgICAgIGZvciAobGV0IGkgPSAwOyBpIDwgdGhpcy5vdXRwdXRzLmxlbmd0aDsgKytpKSB7XG4gICAgICAgIGlmIChza2lwVGFyZ2V0SW5kaWNlcy5pbmRleE9mKGkpICE9PSAtMSkge1xuICAgICAgICAgIGNvbnRpbnVlO1xuICAgICAgICB9XG4gICAgICAgIGNvbnN0IG91dHB1dE1ldHJpY3MgPSBuZXN0ZWRNZXRyaWNzW2ldO1xuICAgICAgICAvLyBUT0RPKGNhaXMpOiBBZGQgd2VpZ2h0cyBhbmQgb3V0cHV0V2VpZ2h0ZWRNZXRyaWNzLlxuXG4gICAgICAgIC8vIFRPRE8oY2Fpcyk6IEFkZCBvcHRpb25hbCBhcmcgYHdlaWdodHNgIHRvIHRoZSBmb2xsb3dpbmcgZnVuY3Rpb24uXG4gICAgICAgIGNvbnN0IGhhbmRsZU1ldHJpY3MgPSAobWV0cmljczogQXJyYXk8c3RyaW5nfExvc3NPck1ldHJpY0ZuPikgPT4ge1xuICAgICAgICAgIGNvbnN0IG1ldHJpY05hbWVQcmVmaXggPSAnJztcbiAgICAgICAgICBsZXQgbWV0cmljTmFtZTogc3RyaW5nO1xuICAgICAgICAgIGxldCBhY2NGbjogTG9zc09yTWV0cmljRm47XG4gICAgICAgICAgbGV0IHdlaWdodGVkTWV0cmljRm46IExvc3NPck1ldHJpY0ZuO1xuICAgICAgICAgIC8vICBUT0RPKGNhaXMpOiBVc2UgJ3dlaWdodHNfJyBmb3Igd2VpZ2h0ZWQgbWV0cmljcy5cblxuICAgICAgICAgIGZvciAoY29uc3QgbWV0cmljIG9mIG1ldHJpY3MpIHtcbiAgICAgICAgICAgIGlmICh0eXBlb2YgbWV0cmljID09PSAnc3RyaW5nJyAmJlxuICAgICAgICAgICAgICAgIFsnYWNjdXJhY3knLCAnYWNjJywgJ2Nyb3NzZW50cm9weScsICdjZSddLmluZGV4T2YobWV0cmljKSAhPT1cbiAgICAgICAgICAgICAgICAgICAgLTEpIHtcbiAgICAgICAgICAgICAgY29uc3Qgb3V0cHV0U2hhcGUgPSB0aGlzLmludGVybmFsT3V0cHV0U2hhcGVzW2ldO1xuXG4gICAgICAgICAgICAgIGlmIChvdXRwdXRTaGFwZVtvdXRwdXRTaGFwZS5sZW5ndGggLSAxXSA9PT0gMSB8fFxuICAgICAgICAgICAgICAgICAgdGhpcy5sb3NzRnVuY3Rpb25zW2ldID09PSBsb3NzZXMuYmluYXJ5Q3Jvc3NlbnRyb3B5KSB7XG4gICAgICAgICAgICAgICAgLy8gY2FzZTogYmluYXJ5IGFjY3VyYWN5L2Nyb3NzZW50cm9weS5cbiAgICAgICAgICAgICAgICBpZiAoWydhY2N1cmFjeScsICdhY2MnXS5pbmRleE9mKG1ldHJpYykgIT09IC0xKSB7XG4gICAgICAgICAgICAgICAgICBhY2NGbiA9IE1ldHJpY3MuYmluYXJ5QWNjdXJhY3k7XG4gICAgICAgICAgICAgICAgfSBlbHNlIGlmIChbJ2Nyb3NzZW50cm9weScsICdjZSddLmluZGV4T2YobWV0cmljKSAhPT0gLTEpIHtcbiAgICAgICAgICAgICAgICAgIGFjY0ZuID0gTWV0cmljcy5iaW5hcnlDcm9zc2VudHJvcHk7XG4gICAgICAgICAgICAgICAgfVxuICAgICAgICAgICAgICB9IGVsc2UgaWYgKFxuICAgICAgICAgICAgICAgICAgdGhpcy5sb3NzRnVuY3Rpb25zW2ldID09PVxuICAgICAgICAgICAgICAgICAgbG9zc2VzLnNwYXJzZUNhdGVnb3JpY2FsQ3Jvc3NlbnRyb3B5KSB7XG4gICAgICAgICAgICAgICAgLy8gY2FzZTogY2F0ZWdvcmljYWwgYWNjdXJhY3kgLyBjcm9zc2VudHJvcHkgd2l0aCBzcGFyc2VcbiAgICAgICAgICAgICAgICAvLyB0YXJnZXRzLlxuICAgICAgICAgICAgICAgIGlmIChbJ2FjY3VyYWN5JywgJ2FjYyddLmluZGV4T2YobWV0cmljKSAhPT0gLTEpIHtcbiAgICAgICAgICAgICAgICAgIGFjY0ZuID0gTWV0cmljcy5zcGFyc2VDYXRlZ29yaWNhbEFjY3VyYWN5O1xuICAgICAgICAgICAgICAgIH0gZWxzZSBpZiAoWydjcm9zc2VudHJvcHknLCAnY2UnXS5pbmRleE9mKG1ldHJpYykgIT09IC0xKSB7XG4gICAgICAgICAgICAgICAgICBhY2NGbiA9IE1ldHJpY3Muc3BhcnNlQ2F0ZWdvcmljYWxDcm9zc2VudHJvcHk7XG4gICAgICAgICAgICAgICAgfVxuICAgICAgICAgICAgICB9IGVsc2Uge1xuICAgICAgICAgICAgICAgIC8vIGNhc2U6IGNhdGVnb3JpY2FsIGFjY3VyYWN5IC8gY3Jvc3NlbnRyb3B5LlxuICAgICAgICAgICAgICAgIGlmIChbJ2FjY3VyYWN5JywgJ2FjYyddLmluZGV4T2YobWV0cmljKSAhPT0gLTEpIHtcbiAgICAgICAgICAgICAgICAgIGFjY0ZuID0gTWV0cmljcy5jYXRlZ29yaWNhbEFjY3VyYWN5O1xuICAgICAgICAgICAgICAgIH0gZWxzZSBpZiAoWydjcm9zc2VudHJvcHknLCAnY2UnXS5pbmRleE9mKG1ldHJpYykgIT09IC0xKSB7XG4gICAgICAgICAgICAgICAgICBhY2NGbiA9IE1ldHJpY3MuY2F0ZWdvcmljYWxDcm9zc2VudHJvcHk7XG4gICAgICAgICAgICAgICAgfVxuICAgICAgICAgICAgICB9XG4gICAgICAgICAgICAgIGxldCBzdWZmaXg6IHN0cmluZztcbiAgICAgICAgICAgICAgaWYgKFsnYWNjdXJhY3knLCAnYWNjJ10uaW5kZXhPZihtZXRyaWMpICE9PSAtMSkge1xuICAgICAgICAgICAgICAgIHN1ZmZpeCA9ICdhY2MnO1xuICAgICAgICAgICAgICB9IGVsc2UgaWYgKFsnY3Jvc3NlbnRyb3B5JywgJ2NlJ10uaW5kZXhPZihtZXRyaWMpICE9PSAtMSkge1xuICAgICAgICAgICAgICAgIHN1ZmZpeCA9ICdjZSc7XG4gICAgICAgICAgICAgIH1cbiAgICAgICAgICAgICAgLy8gVE9ETyhjYWlzKTogQWRkIHdlaWdodGluZyBhY3R1YWxseS5cbiAgICAgICAgICAgICAgd2VpZ2h0ZWRNZXRyaWNGbiA9IGFjY0ZuO1xuICAgICAgICAgICAgICBtZXRyaWNOYW1lID0gbWV0cmljTmFtZVByZWZpeCArIHN1ZmZpeDtcbiAgICAgICAgICAgIH0gZWxzZSB7XG4gICAgICAgICAgICAgIGNvbnN0IG1ldHJpY0ZuID0gTWV0cmljcy5nZXQobWV0cmljKTtcbiAgICAgICAgICAgICAgLy8gVE9ETyhjYWlzKTogQWRkIHdlaWdodGluZyBhY3R1YWxseS5cbiAgICAgICAgICAgICAgd2VpZ2h0ZWRNZXRyaWNGbiA9IG1ldHJpY0ZuO1xuICAgICAgICAgICAgICBtZXRyaWNOYW1lID1cbiAgICAgICAgICAgICAgICAgIG1ldHJpY05hbWVQcmVmaXggKyBNZXRyaWNzLmdldExvc3NPck1ldHJpY05hbWUobWV0cmljKTtcbiAgICAgICAgICAgIH1cblxuICAgICAgICAgICAgLy8gVE9ETyhjYWlzKTogQWRkIHdlaWdodGluZyBhbmQgbWFza2luZyB0byBtZXRyaWNSZXN1bHQuXG4gICAgICAgICAgICBsZXQgbWV0cmljUmVzdWx0OiBMb3NzT3JNZXRyaWNGbjtcbiAgICAgICAgICAgIG5hbWVTY29wZShtZXRyaWNOYW1lLCAoKSA9PiB7XG4gICAgICAgICAgICAgIG1ldHJpY1Jlc3VsdCA9IHdlaWdodGVkTWV0cmljRm47XG4gICAgICAgICAgICB9KTtcbiAgICAgICAgICAgIGFwcGVuZE1ldHJpYyhpLCBtZXRyaWNOYW1lLCBtZXRyaWNSZXN1bHQpO1xuICAgICAgICAgIH1cbiAgICAgICAgfTtcblxuICAgICAgICBoYW5kbGVNZXRyaWNzKG91dHB1dE1ldHJpY3MpO1xuICAgICAgICAvLyBUT0RPKGNhaXMpOiBDYWxsIGhhbmRsZU1ldHJpY3Mgd2l0aCB3ZWlnaHRzLlxuICAgICAgfVxuICAgIH0pO1xuXG4gICAgLy8gUG9ydGluZyBOb3RlczogR2l2ZW4gdGhlIGltcGVyYXRpdmUgYmFja2VuZCBvZiB0ZmpzLWNvcmUsXG4gICAgLy8gICB0aGVyZSBpcyBubyBuZWVkIGZvciBjb25zdHJ1Y3RpbmcgdGhlIHN5bWJvbGljIGdyYXBoIGFuZCBwbGFjZWhvbGRlcnMuXG4gICAgdGhpcy5jb2xsZWN0ZWRUcmFpbmFibGVXZWlnaHRzID0gdGhpcy50cmFpbmFibGVXZWlnaHRzO1xuICB9XG5cbiAgLyoqXG4gICAqIENoZWNrIHRyYWluYWJsZSB3ZWlnaHRzIGNvdW50IGNvbnNpc3RlbmN5LlxuICAgKlxuICAgKiBUaGlzIHdpbGwgcmFpc2UgYSB3YXJuaW5nIGlmIGB0aGlzLnRyYWluYWJsZVdlaWdodHNgIGFuZFxuICAgKiBgdGhpcy5jb2xsZWN0ZWRUcmFpbmFibGVXZWlnaHRzYCBhcmUgaW5jb25zaXN0ZW50IChpLmUuLCBoYXZlIGRpZmZlcmVudFxuICAgKiBudW1iZXJzIG9mIHBhcmFtZXRlcnMpLlxuICAgKiBJbmNvbnNpc3RlbmN5IHdpbGwgdHlwaWNhbGx5IGFyaXNlIHdoZW4gb25lIG1vZGlmaWVzIGBtb2RlbC50cmFpbmFibGVgXG4gICAqIHdpdGhvdXQgY2FsbGluZyBgbW9kZWwuY29tcGlsZSgpYCBhZ2Fpbi5cbiAgICovXG4gIHByb3RlY3RlZCBjaGVja1RyYWluYWJsZVdlaWdodHNDb25zaXN0ZW5jeSgpOiB2b2lkIHtcbiAgICBpZiAodGhpcy5jb2xsZWN0ZWRUcmFpbmFibGVXZWlnaHRzID09IG51bGwpIHtcbiAgICAgIHJldHVybjtcbiAgICB9XG4gICAgaWYgKHRoaXMudHJhaW5hYmxlV2VpZ2h0cy5sZW5ndGggIT09XG4gICAgICAgIHRoaXMuY29sbGVjdGVkVHJhaW5hYmxlV2VpZ2h0cy5sZW5ndGgpIHtcbiAgICAgIGNvbnNvbGUud2FybihcbiAgICAgICAgICAnRGlzY3JlcGFuY3kgYmV0d2VlbiB0cmFpbmFibGV3ZWlnaHRzIGFuZCBjb2xsZWN0ZWQgdHJhaW5hYmxlICcgK1xuICAgICAgICAgICd3ZWlnaHRzLiBEaWQgeW91IHNldCBgbW9kZWwudHJhaW5hYmxlYCB3aXRob3V0IGNhbGxpbmcgJyArXG4gICAgICAgICAgJ2Btb2RlbC5jb21waWxlKClgIGFmdGVyd2FyZHM/Jyk7XG4gICAgfVxuICB9XG5cbiAgLyoqXG4gICAqIFJldHVybnMgdGhlIGxvc3MgdmFsdWUgJiBtZXRyaWNzIHZhbHVlcyBmb3IgdGhlIG1vZGVsIGluIHRlc3QgbW9kZS5cbiAgICpcbiAgICogTG9zcyBhbmQgbWV0cmljcyBhcmUgc3BlY2lmaWVkIGR1cmluZyBgY29tcGlsZSgpYCwgd2hpY2ggbmVlZHMgdG8gaGFwcGVuXG4gICAqIGJlZm9yZSBjYWxscyB0byBgZXZhbHVhdGUoKWAuXG4gICAqXG4gICAqIENvbXB1dGF0aW9uIGlzIGRvbmUgaW4gYmF0Y2hlcy5cbiAgICpcbiAgICogYGBganNcbiAgICogY29uc3QgbW9kZWwgPSB0Zi5zZXF1ZW50aWFsKHtcbiAgICogICBsYXllcnM6IFt0Zi5sYXllcnMuZGVuc2Uoe3VuaXRzOiAxLCBpbnB1dFNoYXBlOiBbMTBdfSldXG4gICAqIH0pO1xuICAgKiBtb2RlbC5jb21waWxlKHtvcHRpbWl6ZXI6ICdzZ2QnLCBsb3NzOiAnbWVhblNxdWFyZWRFcnJvcid9KTtcbiAgICogY29uc3QgcmVzdWx0ID0gbW9kZWwuZXZhbHVhdGUoXG4gICAqICAgICB0Zi5vbmVzKFs4LCAxMF0pLCB0Zi5vbmVzKFs4LCAxXSksIHtiYXRjaFNpemU6IDR9KTtcbiAgICogcmVzdWx0LnByaW50KCk7XG4gICAqIGBgYFxuICAgKlxuICAgKiBAcGFyYW0geCBgdGYuVGVuc29yYCBvZiB0ZXN0IGRhdGEsIG9yIGFuIGBBcnJheWAgb2YgYHRmLlRlbnNvcmBzIGlmIHRoZVxuICAgKiBtb2RlbCBoYXMgbXVsdGlwbGUgaW5wdXRzLlxuICAgKiBAcGFyYW0geSBgdGYuVGVuc29yYCBvZiB0YXJnZXQgZGF0YSwgb3IgYW4gYEFycmF5YCBvZiBgdGYuVGVuc29yYHMgaWYgdGhlXG4gICAqIG1vZGVsIGhhcyBtdWx0aXBsZSBvdXRwdXRzLlxuICAgKiBAcGFyYW0gYXJncyBBIGBNb2RlbEV2YWx1YXRlQXJnc2AsIGNvbnRhaW5pbmcgb3B0aW9uYWwgZmllbGRzLlxuICAgKlxuICAgKiBAcmV0dXJuIGBTY2FsYXJgIHRlc3QgbG9zcyAoaWYgdGhlIG1vZGVsIGhhcyBhIHNpbmdsZSBvdXRwdXQgYW5kIG5vXG4gICAqICAgbWV0cmljcykgb3IgYEFycmF5YCBvZiBgU2NhbGFyYHMgKGlmIHRoZSBtb2RlbCBoYXMgbXVsdGlwbGUgb3V0cHV0c1xuICAgKiAgIGFuZC9vciBtZXRyaWNzKS4gVGhlIGF0dHJpYnV0ZSBgbW9kZWwubWV0cmljc05hbWVzYFxuICAgKiAgIHdpbGwgZ2l2ZSB5b3UgdGhlIGRpc3BsYXkgbGFiZWxzIGZvciB0aGUgc2NhbGFyIG91dHB1dHMuXG4gICAqXG4gICAqIEBkb2Mge2hlYWRpbmc6ICdNb2RlbHMnLCBzdWJoZWFkaW5nOiAnQ2xhc3Nlcyd9XG4gICAqL1xuICBldmFsdWF0ZShcbiAgICAgIHg6IFRlbnNvcnxUZW5zb3JbXSwgeTogVGVuc29yfFRlbnNvcltdLFxuICAgICAgYXJnczogTW9kZWxFdmFsdWF0ZUFyZ3MgPSB7fSk6IFNjYWxhcnxTY2FsYXJbXSB7XG4gICAgY29uc3QgYmF0Y2hTaXplID0gYXJncy5iYXRjaFNpemUgPT0gbnVsbCA/IDMyIDogYXJncy5iYXRjaFNpemU7XG4gICAgY2hlY2tCYXRjaFNpemUoYmF0Y2hTaXplKTtcblxuICAgIC8vIFRPRE8oY2Fpcyk6IFN0YW5kYXJkaXplIGBjb25maWcuc2FtcGxlV2VpZ2h0c2AgYXMgd2VsbC5cbiAgICAvLyBWYWxpZGF0ZSB1c2VyIGRhdGEuXG4gICAgY29uc3QgY2hlY2tCYXRjaEF4aXMgPSB0cnVlO1xuICAgIGNvbnN0IHN0YW5kYXJkaXplZE91dHMgPVxuICAgICAgICB0aGlzLnN0YW5kYXJkaXplVXNlckRhdGFYWSh4LCB5LCBjaGVja0JhdGNoQXhpcywgYmF0Y2hTaXplKTtcbiAgICB0cnkge1xuICAgICAgLy8gVE9ETyhjYWlzKTogSWYgdXNlcyBgdXNlTGVhcm5pbmdQaGFzZWAsIHNldCB0aGUgY29ycmVzcG9uZGluZyBlbGVtZW50XG4gICAgICAvLyBvZiB0aGUgaW5wdXQgdG8gMC5cbiAgICAgIGNvbnN0IGlucyA9IHN0YW5kYXJkaXplZE91dHNbMF0uY29uY2F0KHN0YW5kYXJkaXplZE91dHNbMV0pO1xuICAgICAgdGhpcy5tYWtlVGVzdEZ1bmN0aW9uKCk7XG4gICAgICBjb25zdCBmID0gdGhpcy50ZXN0RnVuY3Rpb247XG4gICAgICBjb25zdCB0ZXN0T3V0cyA9XG4gICAgICAgICAgdGhpcy50ZXN0TG9vcChmLCBpbnMsIGJhdGNoU2l6ZSwgYXJncy52ZXJib3NlLCBhcmdzLnN0ZXBzKTtcbiAgICAgIHJldHVybiBzaW5nbGV0b25PckFycmF5KHRlc3RPdXRzKTtcbiAgICB9IGZpbmFsbHkge1xuICAgICAgZGlzcG9zZU5ld1RlbnNvcnMoc3RhbmRhcmRpemVkT3V0c1swXSwgeCk7XG4gICAgICBkaXNwb3NlTmV3VGVuc29ycyhzdGFuZGFyZGl6ZWRPdXRzWzFdLCB5KTtcbiAgICB9XG4gIH1cblxuICAvLyBUT0RPKGNhaXMpOiBBZGQgY29kZSBzbmlwcGV0IGJlbG93IG9uY2UgcmVhbCBkYXRhc2V0IG9iamVjdHMgYXJlXG4gIC8vICAgYXZhaWxhYmxlLlxuICAvKipcbiAgICogRXZhbHVhdGUgbW9kZWwgdXNpbmcgYSBkYXRhc2V0IG9iamVjdC5cbiAgICpcbiAgICogTm90ZTogVW5saWtlIGBldmFsdWF0ZSgpYCwgdGhpcyBtZXRob2QgaXMgYXN5bmNocm9ub3VzIChgYXN5bmNgKS5cbiAgICpcbiAgICogQHBhcmFtIGRhdGFzZXQgQSBkYXRhc2V0IG9iamVjdC4gSXRzIGBpdGVyYXRvcigpYCBtZXRob2QgaXMgZXhwZWN0ZWRcbiAgICogICB0byBnZW5lcmF0ZSBhIGRhdGFzZXQgaXRlcmF0b3Igb2JqZWN0LCB0aGUgYG5leHQoKWAgbWV0aG9kIG9mIHdoaWNoXG4gICAqICAgaXMgZXhwZWN0ZWQgdG8gcHJvZHVjZSBkYXRhIGJhdGNoZXMgZm9yIGV2YWx1YXRpb24uIFRoZSByZXR1cm4gdmFsdWVcbiAgICogICBvZiB0aGUgYG5leHQoKWAgY2FsbCBvdWdodCB0byBjb250YWluIGEgYm9vbGVhbiBgZG9uZWAgZmllbGQgYW5kIGFcbiAgICogICBgdmFsdWVgIGZpZWxkLiBUaGUgYHZhbHVlYCBmaWVsZCBpcyBleHBlY3RlZCB0byBiZSBhbiBhcnJheSBvZiB0d29cbiAgICogICBgdGYuVGVuc29yYHMgb3IgYW4gYXJyYXkgb2YgdHdvIG5lc3RlZCBgdGYuVGVuc29yYCBzdHJ1Y3R1cmVzLiBUaGUgZm9ybWVyXG4gICAqICAgY2FzZSBpcyBmb3IgbW9kZWxzIHdpdGggZXhhY3RseSBvbmUgaW5wdXQgYW5kIG9uZSBvdXRwdXQgKGUuZy5cbiAgICogICBhIHNlcXVlbnRpYWwgbW9kZWwpLiBUaGUgbGF0dGVyIGNhc2UgaXMgZm9yIG1vZGVscyB3aXRoIG11bHRpcGxlXG4gICAqICAgaW5wdXRzIGFuZC9vciBtdWx0aXBsZSBvdXRwdXRzLiBPZiB0aGUgdHdvIGl0ZW1zIGluIHRoZSBhcnJheSwgdGhlXG4gICAqICAgZmlyc3QgaXMgdGhlIGlucHV0IGZlYXR1cmUocykgYW5kIHRoZSBzZWNvbmQgaXMgdGhlIG91dHB1dCB0YXJnZXQocykuXG4gICAqIEBwYXJhbSBhcmdzIEEgY29uZmlndXJhdGlvbiBvYmplY3QgZm9yIHRoZSBkYXRhc2V0LWJhc2VkIGV2YWx1YXRpb24uXG4gICAqIEByZXR1cm5zIExvc3MgYW5kIG1ldHJpYyB2YWx1ZXMgYXMgYW4gQXJyYXkgb2YgYFNjYWxhcmAgb2JqZWN0cy5cbiAgICpcbiAgICogQGRvYyB7aGVhZGluZzogJ01vZGVscycsIHN1YmhlYWRpbmc6ICdDbGFzc2VzJ31cbiAgICovXG4gIGFzeW5jIGV2YWx1YXRlRGF0YXNldChkYXRhc2V0OiBEYXRhc2V0PHt9PiwgYXJncz86IE1vZGVsRXZhbHVhdGVEYXRhc2V0QXJncyk6XG4gICAgICBQcm9taXNlPFNjYWxhcnxTY2FsYXJbXT4ge1xuICAgIHRoaXMubWFrZVRlc3RGdW5jdGlvbigpO1xuICAgIHJldHVybiBldmFsdWF0ZURhdGFzZXQodGhpcywgZGF0YXNldCwgYXJncyk7XG4gIH1cblxuICAvKipcbiAgICogR2V0IG51bWJlciBvZiBzYW1wbGVzIHByb3ZpZGVkIGZvciB0cmFpbmluZywgZXZhbHVhdGlvbiBvciBwcmVkaWN0aW9uLlxuICAgKlxuICAgKiBAcGFyYW0gaW5zIElucHV0IGB0Zi5UZW5zb3JgLlxuICAgKiBAcGFyYW0gYmF0Y2hTaXplIEludGVnZXIgYmF0Y2ggc2l6ZSwgb3B0aW9uYWwuXG4gICAqIEBwYXJhbSBzdGVwcyBUb3RhbCBudW1iZXIgb2Ygc3RlcHMgKGJhdGNoZXMgb2Ygc2FtcGxlcykgYmVmb3JlXG4gICAqIGRlY2xhcmluZyBsb29wIGZpbmlzaGVkLiBPcHRpb25hbC5cbiAgICogQHBhcmFtIHN0ZXBzTmFtZSBUaGUgcHVibGljIEFQSSdzIHBhcmFtZXRlciBuYW1lIGZvciBgc3RlcHNgLlxuICAgKiBAcmV0dXJucyBOdW1iZXIgb2Ygc2FtcGxlcyBwcm92aWRlZC5cbiAgICovXG4gIHByaXZhdGUgY2hlY2tOdW1TYW1wbGVzKFxuICAgICAgaW5zOiBUZW5zb3J8VGVuc29yW10sIGJhdGNoU2l6ZT86IG51bWJlciwgc3RlcHM/OiBudW1iZXIsXG4gICAgICBzdGVwc05hbWUgPSAnc3RlcHMnKTogbnVtYmVyIHtcbiAgICBsZXQgbnVtU2FtcGxlczogbnVtYmVyO1xuICAgIGlmIChzdGVwcyAhPSBudWxsKSB7XG4gICAgICBudW1TYW1wbGVzID0gbnVsbDtcbiAgICAgIGlmIChiYXRjaFNpemUgIT0gbnVsbCkge1xuICAgICAgICB0aHJvdyBuZXcgVmFsdWVFcnJvcihcbiAgICAgICAgICAgIGBJZiAke3N0ZXBzTmFtZX0gaXMgc2V0LCBiYXRjaFNpemUgbXVzdCBiZSBudWxsIG9yIHVuZGVmaW5lZC5gICtcbiAgICAgICAgICAgIGBHb3QgYmF0Y2hTaXplID0gJHtiYXRjaFNpemV9YCk7XG4gICAgICB9XG4gICAgfSBlbHNlIGlmIChpbnMgIT0gbnVsbCkge1xuICAgICAgaWYgKEFycmF5LmlzQXJyYXkoaW5zKSkge1xuICAgICAgICBudW1TYW1wbGVzID0gaW5zWzBdLnNoYXBlWzBdO1xuICAgICAgfSBlbHNlIHtcbiAgICAgICAgbnVtU2FtcGxlcyA9IGlucy5zaGFwZVswXTtcbiAgICAgIH1cbiAgICB9IGVsc2Uge1xuICAgICAgdGhyb3cgbmV3IFZhbHVlRXJyb3IoXG4gICAgICAgICAgYEVpdGhlciB0aGUgaW5wdXQgZGF0YSBzaG91bGQgaGF2ZSBhIGRlZmluZWQgc2hhcGUsIG9yIGAgK1xuICAgICAgICAgIGAke3N0ZXBzTmFtZX0gc2hvdWQgYmUgc3BlY2lmaWVkLmApO1xuICAgIH1cbiAgICByZXR1cm4gbnVtU2FtcGxlcztcbiAgfVxuXG4gIC8qKlxuICAgKiBFeGVjdXRlIGludGVybmFsIHRlbnNvcnMgb2YgdGhlIG1vZGVsIHdpdGggaW5wdXQgZGF0YSBmZWVkLlxuICAgKiBAcGFyYW0gaW5wdXRzIElucHV0IGRhdGEgZmVlZC4gTXVzdCBtYXRjaCB0aGUgaW5wdXRzIG9mIHRoZSBtb2RlbC5cbiAgICogQHBhcmFtIG91dHB1dHMgTmFtZXMgb2YgdGhlIG91dHB1dCB0ZW5zb3JzIHRvIGJlIGZldGNoZWQuIE11c3QgbWF0Y2hcbiAgICogICBuYW1lcyBvZiB0aGUgU3ltYm9saWNUZW5zb3JzIHRoYXQgYmVsb25nIHRvIHRoZSBncmFwaC5cbiAgICogQHJldHVybnMgRmV0Y2hlZCB2YWx1ZXMgZm9yIGBvdXRwdXRzYC5cbiAgICovXG4gIGV4ZWN1dGUoaW5wdXRzOiBUZW5zb3J8VGVuc29yW118TmFtZWRUZW5zb3JNYXAsIG91dHB1dHM6IHN0cmluZ3xzdHJpbmdbXSk6XG4gICAgICBUZW5zb3J8VGVuc29yW10ge1xuICAgIGlmIChBcnJheS5pc0FycmF5KG91dHB1dHMpICYmIG91dHB1dHMubGVuZ3RoID09PSAwKSB7XG4gICAgICB0aHJvdyBuZXcgVmFsdWVFcnJvcihcbiAgICAgICAgICAnYG91dHB1dHNgIGlzIGFuIGVtcHR5IEFycmF5LCB3aGljaCBpcyBub3QgYWxsb3dlZC4nKTtcbiAgICB9XG5cbiAgICBjb25zdCBvdXRwdXRzSXNBcnJheSA9IEFycmF5LmlzQXJyYXkob3V0cHV0cyk7XG4gICAgY29uc3Qgb3V0cHV0TmFtZXMgPVxuICAgICAgICAob3V0cHV0c0lzQXJyYXkgPyBvdXRwdXRzIDogW291dHB1dHNdKTtcbiAgICBjb25zdCBvdXRwdXRTeW1ib2xpY1RlbnNvcnMgPSB0aGlzLnJldHJpZXZlU3ltYm9saWNUZW5zb3JzKG91dHB1dE5hbWVzKTtcblxuICAgIC8vIEZvcm1hdCB0aGUgaW5wdXQgaW50byBhIEZlZWREaWN0LlxuICAgIGNvbnN0IGZlZWREaWN0ID0gbmV3IEZlZWREaWN0KCk7XG4gICAgaWYgKGlucHV0cyBpbnN0YW5jZW9mIFRlbnNvcikge1xuICAgICAgaW5wdXRzID0gW2lucHV0c107XG4gICAgfVxuICAgIGlmIChBcnJheS5pc0FycmF5KGlucHV0cykpIHtcbiAgICAgIGlmIChpbnB1dHMubGVuZ3RoICE9PSB0aGlzLmlucHV0cy5sZW5ndGgpIHtcbiAgICAgICAgdGhyb3cgbmV3IFZhbHVlRXJyb3IoXG4gICAgICAgICAgICBgVGhlIG51bWJlciBvZiBpbnB1dHMgcHJvdmlkZWQgKCR7aW5wdXRzLmxlbmd0aH0pIGAgK1xuICAgICAgICAgICAgYGRvZXMgbm90IG1hdGNoIHRoZSBudW1iZXIgb2YgaW5wdXRzIG9mIHRoaXMgbW9kZWwgYCArXG4gICAgICAgICAgICBgKCR7dGhpcy5pbnB1dHMubGVuZ3RofSkuYCk7XG4gICAgICB9XG4gICAgICBmb3IgKGxldCBpID0gMDsgaSA8IHRoaXMuaW5wdXRzLmxlbmd0aDsgKytpKSB7XG4gICAgICAgIGZlZWREaWN0LmFkZCh0aGlzLmlucHV0c1tpXSwgaW5wdXRzW2ldKTtcbiAgICAgIH1cbiAgICB9IGVsc2Uge1xuICAgICAgZm9yIChjb25zdCBpbnB1dCBvZiB0aGlzLmlucHV0cykge1xuICAgICAgICBjb25zdCB0ZW5zb3JWYWx1ZSA9IGlucHV0c1tpbnB1dC5uYW1lXTtcbiAgICAgICAgaWYgKHRlbnNvclZhbHVlID09IG51bGwpIHtcbiAgICAgICAgICB0aHJvdyBuZXcgVmFsdWVFcnJvcihcbiAgICAgICAgICAgICAgYE5vIHZhbHVlIGlzIHByb3ZpZGVkIGZvciB0aGUgbW9kZWwncyBpbnB1dCAke2lucHV0Lm5hbWV9YCk7XG4gICAgICAgIH1cbiAgICAgICAgZmVlZERpY3QuYWRkKGlucHV0LCB0ZW5zb3JWYWx1ZSk7XG4gICAgICB9XG4gICAgfVxuXG4gICAgLy8gUnVuIGV4ZWN1dGlvbi5cbiAgICBjb25zdCBleGVjdXRlT3V0cHV0cyA9IGV4ZWN1dGUob3V0cHV0U3ltYm9saWNUZW5zb3JzLCBmZWVkRGljdCkgYXMgVGVuc29yW107XG4gICAgcmV0dXJuIG91dHB1dHNJc0FycmF5ID8gZXhlY3V0ZU91dHB1dHMgOiBleGVjdXRlT3V0cHV0c1swXTtcbiAgfVxuXG4gIC8qKlxuICAgKiBSZXRyaWV2ZSB0aGUgbW9kZWwncyBpbnRlcm5hbCBzeW1ib2xpYyB0ZW5zb3JzIGZyb20gc3ltYm9saWMtdGVuc29yIG5hbWVzLlxuICAgKi9cbiAgcHJpdmF0ZSByZXRyaWV2ZVN5bWJvbGljVGVuc29ycyhzeW1ib2xpY1RlbnNvck5hbWVzOiBzdHJpbmdbXSk6XG4gICAgICBTeW1ib2xpY1RlbnNvcltdIHtcbiAgICBjb25zdCBvdXRwdXRTeW1ib2xpY1RlbnNvcnM6IFN5bWJvbGljVGVuc29yW10gPVxuICAgICAgICBweUxpc3RSZXBlYXQobnVsbCwgc3ltYm9saWNUZW5zb3JOYW1lcy5sZW5ndGgpO1xuICAgIGxldCBvdXRwdXRzUmVtYWluaW5nID0gc3ltYm9saWNUZW5zb3JOYW1lcy5sZW5ndGg7XG4gICAgZm9yIChjb25zdCBsYXllciBvZiB0aGlzLmxheWVycykge1xuICAgICAgY29uc3QgbGF5ZXJPdXRwdXRzOiBTeW1ib2xpY1RlbnNvcltdID1cbiAgICAgICAgICBBcnJheS5pc0FycmF5KGxheWVyLm91dHB1dCkgPyBsYXllci5vdXRwdXQgOiBbbGF5ZXIub3V0cHV0XTtcbiAgICAgIGNvbnN0IGxheWVyT3V0cHV0TmFtZXMgPSBsYXllck91dHB1dHMubWFwKG91dHB1dCA9PiBvdXRwdXQubmFtZSk7XG4gICAgICBmb3IgKGxldCBpID0gMDsgaSA8IHN5bWJvbGljVGVuc29yTmFtZXMubGVuZ3RoOyArK2kpIHtcbiAgICAgICAgY29uc3QgaW5kZXggPSBsYXllck91dHB1dE5hbWVzLmluZGV4T2Yoc3ltYm9saWNUZW5zb3JOYW1lc1tpXSk7XG4gICAgICAgIGlmIChpbmRleCAhPT0gLTEpIHtcbiAgICAgICAgICBvdXRwdXRTeW1ib2xpY1RlbnNvcnNbaV0gPSBsYXllck91dHB1dHNbaW5kZXhdO1xuICAgICAgICAgIG91dHB1dHNSZW1haW5pbmctLTtcbiAgICAgICAgfVxuICAgICAgICBpZiAob3V0cHV0c1JlbWFpbmluZyA9PT0gMCkge1xuICAgICAgICAgIGJyZWFrO1xuICAgICAgICB9XG4gICAgICB9XG4gICAgICBpZiAob3V0cHV0c1JlbWFpbmluZyA9PT0gMCkge1xuICAgICAgICBicmVhaztcbiAgICAgIH1cbiAgICB9XG5cbiAgICBpZiAob3V0cHV0c1JlbWFpbmluZyA+IDApIHtcbiAgICAgIGNvbnN0IHJlbWFpbmluZ05hbWVzOiBzdHJpbmdbXSA9IFtdO1xuICAgICAgb3V0cHV0U3ltYm9saWNUZW5zb3JzLmZvckVhY2goKHRlbnNvciwgaSkgPT4ge1xuICAgICAgICBpZiAodGVuc29yID09IG51bGwpIHtcbiAgICAgICAgICByZW1haW5pbmdOYW1lcy5wdXNoKHN5bWJvbGljVGVuc29yTmFtZXNbaV0pO1xuICAgICAgICB9XG4gICAgICB9KTtcbiAgICAgIHRocm93IG5ldyBWYWx1ZUVycm9yKFxuICAgICAgICAgIGBDYW5ub3QgZmluZCBTeW1ib2xpY1RlbnNvcnMgZm9yIG91dHB1dCBuYW1lKHMpOiBgICtcbiAgICAgICAgICBgJHtKU09OLnN0cmluZ2lmeShyZW1haW5pbmdOYW1lcyl9YCk7XG4gICAgfVxuICAgIHJldHVybiBvdXRwdXRTeW1ib2xpY1RlbnNvcnM7XG4gIH1cblxuICAvKipcbiAgICogSGVscGVyIG1ldGhvZCB0byBsb29wIG92ZXIgc29tZSBkYXRhIGluIGJhdGNoZXMuXG4gICAqXG4gICAqIFBvcnRpbmcgTm90ZTogTm90IHVzaW5nIHRoZSBmdW5jdGlvbmFsIGFwcHJvYWNoIGluIHRoZSBQeXRob24gZXF1aXZhbGVudFxuICAgKiAgIGR1ZSB0byB0aGUgaW1wZXJhdGl2ZSBiYWNrZW5kLlxuICAgKiBQb3J0aW5nIE5vdGU6IERvZXMgbm90IHN1cHBvcnQgc3RlcCBtb2RlIGN1cnJlbnRseS5cbiAgICpcbiAgICogQHBhcmFtIGluczogaW5wdXQgZGF0YVxuICAgKiBAcGFyYW0gYmF0Y2hTaXplOiBpbnRlZ2VyIGJhdGNoIHNpemUuXG4gICAqIEBwYXJhbSB2ZXJib3NlOiB2ZXJib3NpdHkgbW9kZWxcbiAgICogQHJldHVybnM6IFByZWRpY3Rpb25zIGFzIGB0Zi5UZW5zb3JgIChpZiBhIHNpbmdsZSBvdXRwdXQpIG9yIGFuIGBBcnJheWAgb2ZcbiAgICogICBgdGYuVGVuc29yYCAoaWYgbXVsdGlwZSBvdXRwdXRzKS5cbiAgICovXG4gIHByaXZhdGUgcHJlZGljdExvb3AoaW5zOiBUZW5zb3J8VGVuc29yW10sIGJhdGNoU2l6ZSA9IDMyLCB2ZXJib3NlID0gZmFsc2UpOlxuICAgICAgVGVuc29yfFRlbnNvcltdIHtcbiAgICByZXR1cm4gdGZjLnRpZHkoKCkgPT4ge1xuICAgICAgY29uc3QgbnVtU2FtcGxlcyA9IHRoaXMuY2hlY2tOdW1TYW1wbGVzKGlucyk7XG4gICAgICBpZiAodmVyYm9zZSkge1xuICAgICAgICB0aHJvdyBuZXcgTm90SW1wbGVtZW50ZWRFcnJvcihcbiAgICAgICAgICAgICdWZXJib3NlIHByZWRpY3RMb29wKCkgaXMgbm90IGltcGxlbWVudGVkIHlldC4nKTtcbiAgICAgIH1cblxuICAgICAgLy8gU2FtcGxlLWJhc2VkIHByZWRpY3Rpb25zLlxuICAgICAgLy8gUG9ydGluZyBOb3RlOiBUZW5zb3IgY3VycmVudGx5IGRvZXMgbm90IHN1cHBvcnQgc2xpY2VkIGFzc2lnbm1lbnRzIGFzXG4gICAgICAvLyAgIGluIG51bXB5LCBlLmcuLCB4WzE6M10gPSB5LiBUaGVyZWZvcmUgd2UgdXNlIGNvbmNhdGVuYXRpb24gd2hpbGVcbiAgICAgIC8vICAgaXRlcmF0aW5nIG92ZXIgdGhlIGJhdGNoZXMuXG5cbiAgICAgIGNvbnN0IGJhdGNoZXMgPSBtYWtlQmF0Y2hlcyhudW1TYW1wbGVzLCBiYXRjaFNpemUpO1xuICAgICAgY29uc3Qgb3V0c0JhdGNoZXM6IFRlbnNvcltdW10gPSB0aGlzLm91dHB1dHMubWFwKG91dHB1dCA9PiBbXSk7XG5cbiAgICAgIC8vIFRPRE8oY2Fpcyk6IENhbiB0aGUgc2NvcGUoKSBiZSBwdXNoZWQgZG93biBpbnNpZGUgdGhlIGZvciBsb29wP1xuICAgICAgZm9yIChsZXQgYmF0Y2hJbmRleCA9IDA7IGJhdGNoSW5kZXggPCBiYXRjaGVzLmxlbmd0aDsgKytiYXRjaEluZGV4KSB7XG4gICAgICAgIGNvbnN0IGJhdGNoT3V0cyA9IHRmYy50aWR5KCgpID0+IHtcbiAgICAgICAgICBjb25zdCBiYXRjaFN0YXJ0ID0gYmF0Y2hlc1tiYXRjaEluZGV4XVswXTtcbiAgICAgICAgICBjb25zdCBiYXRjaEVuZCA9IGJhdGNoZXNbYmF0Y2hJbmRleF1bMV07XG4gICAgICAgICAgLy8gVE9ETyhjYWlzKTogVGFrZSBjYXJlIG9mIHRoZSBjYXNlIG9mIHRoZSBsYXN0IGVsZW1lbnQgaXMgYSBmbGFnIGZvclxuICAgICAgICAgIC8vICAgdHJhaW5pbmcvdGVzdC5cbiAgICAgICAgICBjb25zdCBpbnNCYXRjaCA9IHNsaWNlQXJyYXlzKGlucywgYmF0Y2hTdGFydCwgYmF0Y2hFbmQpO1xuXG4gICAgICAgICAgLy8gQ29uc3RydWN0IHRoZSBmZWVkcyBmb3IgZXhlY3V0ZSgpO1xuICAgICAgICAgIGNvbnN0IGZlZWRzID0gW107XG4gICAgICAgICAgaWYgKEFycmF5LmlzQXJyYXkoaW5zQmF0Y2gpKSB7XG4gICAgICAgICAgICBmb3IgKGxldCBpID0gMDsgaSA8IGluc0JhdGNoLmxlbmd0aDsgKytpKSB7XG4gICAgICAgICAgICAgIGZlZWRzLnB1c2goe2tleTogdGhpcy5pbnB1dHNbaV0sIHZhbHVlOiBpbnNCYXRjaFtpXX0pO1xuICAgICAgICAgICAgfVxuICAgICAgICAgIH0gZWxzZSB7XG4gICAgICAgICAgICBmZWVkcy5wdXNoKHtrZXk6IHRoaXMuaW5wdXRzWzBdLCB2YWx1ZTogaW5zQmF0Y2h9KTtcbiAgICAgICAgICB9XG4gICAgICAgICAgY29uc3QgZmVlZERpY3QgPSBuZXcgRmVlZERpY3QoZmVlZHMpO1xuICAgICAgICAgIHJldHVybiBleGVjdXRlKHRoaXMub3V0cHV0cywgZmVlZERpY3QpIGFzIFRlbnNvcltdO1xuICAgICAgICB9KTtcbiAgICAgICAgYmF0Y2hPdXRzLmZvckVhY2goKGJhdGNoT3V0LCBpKSA9PiBvdXRzQmF0Y2hlc1tpXS5wdXNoKGJhdGNoT3V0KSk7XG4gICAgICB9XG4gICAgICByZXR1cm4gc2luZ2xldG9uT3JBcnJheShcbiAgICAgICAgICBvdXRzQmF0Y2hlcy5tYXAoYmF0Y2hlcyA9PiB0ZmMuY29uY2F0KGJhdGNoZXMsIDApKSk7XG4gICAgfSk7XG4gIH1cblxuICAvKipcbiAgICogR2VuZXJhdGVzIG91dHB1dCBwcmVkaWN0aW9ucyBmb3IgdGhlIGlucHV0IHNhbXBsZXMuXG4gICAqXG4gICAqIENvbXB1dGF0aW9uIGlzIGRvbmUgaW4gYmF0Y2hlcy5cbiAgICpcbiAgICogTm90ZTogdGhlIFwic3RlcFwiIG1vZGUgb2YgcHJlZGljdCgpIGlzIGN1cnJlbnRseSBub3Qgc3VwcG9ydGVkLlxuICAgKiAgIFRoaXMgaXMgYmVjYXVzZSB0aGUgVGVuc29yRmxvdy5qcyBjb3JlIGJhY2tlbmQgaXMgaW1wZXJhdGl2ZSBvbmx5LlxuICAgKlxuICAgKiBgYGBqc1xuICAgKiBjb25zdCBtb2RlbCA9IHRmLnNlcXVlbnRpYWwoe1xuICAgKiAgIGxheWVyczogW3RmLmxheWVycy5kZW5zZSh7dW5pdHM6IDEsIGlucHV0U2hhcGU6IFsxMF19KV1cbiAgICogfSk7XG4gICAqIG1vZGVsLnByZWRpY3QodGYub25lcyhbOCwgMTBdKSwge2JhdGNoU2l6ZTogNH0pLnByaW50KCk7XG4gICAqIGBgYFxuICAgKlxuICAgKiBAcGFyYW0geCBUaGUgaW5wdXQgZGF0YSwgYXMgYSBUZW5zb3IsIG9yIGFuIGBBcnJheWAgb2YgYHRmLlRlbnNvcmBzIGlmXG4gICAqICAgdGhlIG1vZGVsIGhhcyBtdWx0aXBsZSBpbnB1dHMuXG4gICAqIEBwYXJhbSBhcmdzIEEgYE1vZGVsUHJlZGljdEFyZ3NgIG9iamVjdCBjb250YWluaW5nIG9wdGlvbmFsIGZpZWxkcy5cbiAgICpcbiAgICogQHJldHVybiBQcmVkaWN0aW9uIHJlc3VsdHMgYXMgYSBgdGYuVGVuc29yYChzKS5cbiAgICpcbiAgICogQGV4Y2VwdGlvbiBWYWx1ZUVycm9yIEluIGNhc2Ugb2YgbWlzbWF0Y2ggYmV0d2VlbiB0aGUgcHJvdmlkZWQgaW5wdXQgZGF0YVxuICAgKiAgIGFuZCB0aGUgbW9kZWwncyBleHBlY3RhdGlvbnMsIG9yIGluIGNhc2UgYSBzdGF0ZWZ1bCBtb2RlbCByZWNlaXZlcyBhXG4gICAqICAgbnVtYmVyIG9mIHNhbXBsZXMgdGhhdCBpcyBub3QgYSBtdWx0aXBsZSBvZiB0aGUgYmF0Y2ggc2l6ZS5cbiAgICpcbiAgICogQGRvYyB7aGVhZGluZzogJ01vZGVscycsIHN1YmhlYWRpbmc6ICdDbGFzc2VzJ31cbiAgICovXG4gIHByZWRpY3QoeDogVGVuc29yfFRlbnNvcltdLCBhcmdzOiBNb2RlbFByZWRpY3RBcmdzID0ge30pOiBUZW5zb3J8VGVuc29yW10ge1xuICAgIGNvbnN0IHhzUmFuazJPckhpZ2hlciA9IGVuc3VyZVRlbnNvcnNSYW5rMk9ySGlnaGVyKHgpO1xuICAgIGNoZWNrSW5wdXREYXRhKFxuICAgICAgICB4c1JhbmsyT3JIaWdoZXIsIHRoaXMuaW5wdXROYW1lcywgdGhpcy5mZWVkSW5wdXRTaGFwZXMsIGZhbHNlKTtcbiAgICB0cnkge1xuICAgICAgLy8gVE9ETyhjYWlzKTogVGFrZSBjYXJlIG9mIHN0YXRlZnVsIG1vZGVscy5cbiAgICAgIC8vICAgaWYgKHRoaXMuc3RhdGVmdWwpIC4uLlxuICAgICAgLy8gVE9ETyhjYWlzKTogVGFrZSBjYXJlIG9mIHRoZSBsZWFybmluZ19waGFzZSBib29sZWFuIGZsYWcuXG4gICAgICAvLyAgIGlmICh0aGlzLnVzZUxlYXJuaW5nUGhhc2UpIC4uLlxuICAgICAgY29uc3QgYmF0Y2hTaXplID0gYXJncy5iYXRjaFNpemUgPT0gbnVsbCA/IDMyIDogYXJncy5iYXRjaFNpemU7XG4gICAgICBjaGVja0JhdGNoU2l6ZShiYXRjaFNpemUpO1xuICAgICAgcmV0dXJuIHRoaXMucHJlZGljdExvb3AoeHNSYW5rMk9ySGlnaGVyLCBiYXRjaFNpemUpO1xuICAgIH0gZmluYWxseSB7XG4gICAgICBkaXNwb3NlTmV3VGVuc29ycyh4c1JhbmsyT3JIaWdoZXIsIHgpO1xuICAgIH1cbiAgfVxuXG4gIC8qKlxuICAgKiBSZXR1cm5zIHByZWRpY3Rpb25zIGZvciBhIHNpbmdsZSBiYXRjaCBvZiBzYW1wbGVzLlxuICAgKlxuICAgKiBgYGBqc1xuICAgKiBjb25zdCBtb2RlbCA9IHRmLnNlcXVlbnRpYWwoe1xuICAgKiAgIGxheWVyczogW3RmLmxheWVycy5kZW5zZSh7dW5pdHM6IDEsIGlucHV0U2hhcGU6IFsxMF19KV1cbiAgICogfSk7XG4gICAqIG1vZGVsLnByZWRpY3RPbkJhdGNoKHRmLm9uZXMoWzgsIDEwXSkpLnByaW50KCk7XG4gICAqIGBgYFxuICAgKiBAcGFyYW0geDogSW5wdXQgc2FtcGxlcywgYXMgYSBUZW5zb3IgKGZvciBtb2RlbHMgd2l0aCBleGFjdGx5IG9uZVxuICAgKiAgIGlucHV0KSBvciBhbiBhcnJheSBvZiBUZW5zb3JzIChmb3IgbW9kZWxzIHdpdGggbW9yZSB0aGFuIG9uZSBpbnB1dCkuXG4gICAqIEByZXR1cm4gVGVuc29yKHMpIG9mIHByZWRpY3Rpb25zXG4gICAqXG4gICAqIEBkb2Mge2hlYWRpbmc6ICdNb2RlbHMnLCBzdWJoZWFkaW5nOiAnQ2xhc3Nlcyd9XG4gICAqL1xuICBwcmVkaWN0T25CYXRjaCh4OiBUZW5zb3J8VGVuc29yW10pOiBUZW5zb3J8VGVuc29yW10ge1xuICAgIGNoZWNrSW5wdXREYXRhKHgsIHRoaXMuaW5wdXROYW1lcywgdGhpcy5mZWVkSW5wdXRTaGFwZXMsIHRydWUpO1xuICAgIC8vIFRPRE8oY2Fpcyk6IFRha2UgY2FyZSBvZiB0aGUgbGVhcm5pbmdfcGhhc2UgYm9vbGVhbiBmbGFnLlxuICAgIC8vICAgaWYgKHRoaXMudXNlTGVhcm5pbmdQaGFzZSkgLi4uXG4gICAgY29uc3QgYmF0Y2hTaXplID0gKEFycmF5LmlzQXJyYXkoeCkgPyB4WzBdIDogeCkuc2hhcGVbMF07XG4gICAgcmV0dXJuIHRoaXMucHJlZGljdExvb3AoeCwgYmF0Y2hTaXplKTtcbiAgfVxuXG4gIHByb3RlY3RlZCBzdGFuZGFyZGl6ZVVzZXJEYXRhWFkoXG4gICAgICB4OiBUZW5zb3J8VGVuc29yW118e1tpbnB1dE5hbWU6IHN0cmluZ106IFRlbnNvcn0sXG4gICAgICB5OiBUZW5zb3J8VGVuc29yW118e1tpbnB1dE5hbWU6IHN0cmluZ106IFRlbnNvcn0sIGNoZWNrQmF0Y2hBeGlzID0gdHJ1ZSxcbiAgICAgIGJhdGNoU2l6ZT86IG51bWJlcik6IFtUZW5zb3JbXSwgVGVuc29yW11dIHtcbiAgICAvLyBUT0RPKGNhaXMpOiBBZGQgc2FtcGxlV2VpZ2h0LCBjbGFzc1dlaWdodFxuICAgIGlmICh0aGlzLm9wdGltaXplcl8gPT0gbnVsbCkge1xuICAgICAgdGhyb3cgbmV3IFJ1bnRpbWVFcnJvcihcbiAgICAgICAgICAnWW91IG11c3QgY29tcGlsZSBhIG1vZGVsIGJlZm9yZSB0cmFpbmluZy90ZXN0aW5nLiBVc2UgJyArXG4gICAgICAgICAgJ0xheWVyc01vZGVsLmNvbXBpbGUobW9kZWxDb21waWxlQXJncykuJyk7XG4gICAgfVxuICAgIGNvbnN0IG91dHB1dFNoYXBlczogU2hhcGVbXSA9IFtdO1xuICAgIGZvciAobGV0IGkgPSAwOyBpIDwgdGhpcy5mZWVkT3V0cHV0U2hhcGVzLmxlbmd0aDsgKytpKSB7XG4gICAgICBjb25zdCBvdXRwdXRTaGFwZSA9IHRoaXMuZmVlZE91dHB1dFNoYXBlc1tpXTtcbiAgICAgIGNvbnN0IGxvc3NGbiA9IHRoaXMuZmVlZExvc3NGbnNbaV07XG4gICAgICBpZiAobG9zc0ZuID09PSBsb3NzZXMuc3BhcnNlQ2F0ZWdvcmljYWxDcm9zc2VudHJvcHkpIHtcbiAgICAgICAgb3V0cHV0U2hhcGVzLnB1c2goXG4gICAgICAgICAgICBvdXRwdXRTaGFwZS5zbGljZSgwLCBvdXRwdXRTaGFwZS5sZW5ndGggLSAxKS5jb25jYXQoWzFdKSk7XG4gICAgICB9IGVsc2Uge1xuICAgICAgICAvLyBQb3J0aW5nIE5vdGU6IEJlY2F1c2Ugb2Ygc3Ryb25nIHR5cGluZyBgbG9zc0ZuYCBtdXN0IGJlIGEgZnVuY3Rpb24uXG4gICAgICAgIG91dHB1dFNoYXBlcy5wdXNoKG91dHB1dFNoYXBlKTtcbiAgICAgIH1cbiAgICB9XG4gICAgeCA9IHN0YW5kYXJkaXplSW5wdXREYXRhKFxuICAgICAgICB4LCB0aGlzLmZlZWRJbnB1dE5hbWVzLCB0aGlzLmZlZWRJbnB1dFNoYXBlcywgZmFsc2UsICdpbnB1dCcpO1xuICAgIHkgPSBzdGFuZGFyZGl6ZUlucHV0RGF0YShcbiAgICAgICAgeSwgdGhpcy5mZWVkT3V0cHV0TmFtZXMsIG91dHB1dFNoYXBlcywgZmFsc2UsICd0YXJnZXQnKTtcbiAgICAvLyBUT0RPKGNhaXMpOiBTdGFuZGFyZGl6ZSBzYW1wbGVXZWlnaHRzICYgY2xhc3NXZWlnaHRzLlxuICAgIGNoZWNrQXJyYXlMZW5ndGhzKHgsIHksIG51bGwpO1xuICAgIC8vIFRPRE8oY2Fpcyk6IENoZWNrIHNhbXBsZVdlaWdodHMgYXMgd2VsbC5cbiAgICBjaGVja0xvc3NBbmRUYXJnZXRDb21wYXRpYmlsaXR5KHksIHRoaXMuZmVlZExvc3NGbnMsIHRoaXMuZmVlZE91dHB1dFNoYXBlcyk7XG4gICAgaWYgKHRoaXMuc3RhdGVmdWwgJiYgYmF0Y2hTaXplICE9IG51bGwgJiYgYmF0Y2hTaXplID4gMCkge1xuICAgICAgaWYgKHhbMF0uc2hhcGVbMF0gJSBiYXRjaFNpemUgIT09IDApIHtcbiAgICAgICAgdGhyb3cgbmV3IFZhbHVlRXJyb3IoXG4gICAgICAgICAgICBgSW4gYSBzdGF0ZWZ1bCBuZXR3b3JrLCB5b3Ugc2hvdWxkIG9ubHkgcGFzcyBpbnB1dHMgd2l0aCBhIGAgK1xuICAgICAgICAgICAgYG51bWJlciBvZiBzYW1wbGVzIHRoYXQgaXMgZGl2aXNpYmxlIGJ5IHRoZSBiYXRjaCBzaXplIGAgK1xuICAgICAgICAgICAgYCR7YmF0Y2hTaXplfS4gRm91bmQ6ICR7eFswXS5zaGFwZVswXX0gc2FtcGxlKHMpLmApO1xuICAgICAgfVxuICAgIH1cbiAgICByZXR1cm4gW3gsIHldO1xuICB9XG5cbiAgcHJvdGVjdGVkIGFzeW5jIHN0YW5kYXJkaXplVXNlckRhdGEoXG4gICAgICB4OiBUZW5zb3J8VGVuc29yW118e1tpbnB1dE5hbWU6IHN0cmluZ106IFRlbnNvcn0sXG4gICAgICB5OiBUZW5zb3J8VGVuc29yW118e1tpbnB1dE5hbWU6IHN0cmluZ106IFRlbnNvcn0sXG4gICAgICBzYW1wbGVXZWlnaHQ/OiBUZW5zb3J8VGVuc29yW118e1tvdXRwdXROYW1lOiBzdHJpbmddOiBUZW5zb3J9LFxuICAgICAgY2xhc3NXZWlnaHQ/OiBDbGFzc1dlaWdodHxDbGFzc1dlaWdodFtdfENsYXNzV2VpZ2h0TWFwLFxuICAgICAgY2hlY2tCYXRjaEF4aXMgPSB0cnVlLFxuICAgICAgYmF0Y2hTaXplPzogbnVtYmVyKTogUHJvbWlzZTxbVGVuc29yW10sIFRlbnNvcltdLCBUZW5zb3JbXV0+IHtcbiAgICBjb25zdCBbc3RhbmRhcmRYcywgc3RhbmRhcmRZc10gPVxuICAgICAgICB0aGlzLnN0YW5kYXJkaXplVXNlckRhdGFYWSh4LCB5LCBjaGVja0JhdGNoQXhpcywgYmF0Y2hTaXplKTtcbiAgICAvLyBUT0RPKGNhaXMpOiBIYW5kbGUgc2FtcGxlV2VpZ2h0cy5cbiAgICBpZiAoc2FtcGxlV2VpZ2h0ICE9IG51bGwpIHtcbiAgICAgIHRocm93IG5ldyBFcnJvcignc2FtcGxlIHdlaWdodCBpcyBub3Qgc3VwcG9ydGVkIHlldC4nKTtcbiAgICB9XG5cbiAgICBsZXQgc3RhbmRhcmRTYW1wbGVXZWlnaHRzOiBUZW5zb3JbXSA9IG51bGw7XG4gICAgaWYgKGNsYXNzV2VpZ2h0ICE9IG51bGwpIHtcbiAgICAgIGNvbnN0IGNsYXNzV2VpZ2h0cyA9XG4gICAgICAgICAgc3RhbmRhcmRpemVDbGFzc1dlaWdodHMoY2xhc3NXZWlnaHQsIHRoaXMub3V0cHV0TmFtZXMpO1xuICAgICAgc3RhbmRhcmRTYW1wbGVXZWlnaHRzID0gW107XG4gICAgICBmb3IgKGxldCBpID0gMDsgaSA8IGNsYXNzV2VpZ2h0cy5sZW5ndGg7ICsraSkge1xuICAgICAgICBzdGFuZGFyZFNhbXBsZVdlaWdodHMucHVzaChcbiAgICAgICAgICAgIGF3YWl0IHN0YW5kYXJkaXplV2VpZ2h0cyhzdGFuZGFyZFlzW2ldLCBudWxsLCBjbGFzc1dlaWdodHNbaV0pKTtcbiAgICAgIH1cbiAgICB9XG5cbiAgICAvLyBUT0RPKGNhaXMpOiBEZWFsIHdpdGggdGhlIGNhc2Ugb2YgbW9kZWwuc3RhdGVmdWwgPT0gdHJ1ZS5cbiAgICByZXR1cm4gW3N0YW5kYXJkWHMsIHN0YW5kYXJkWXMsIHN0YW5kYXJkU2FtcGxlV2VpZ2h0c107XG4gIH1cblxuICAvKipcbiAgICogTG9vcCBvdmVyIHNvbWUgdGVzdCBkYXRhIGluIGJhdGNoZXMuXG4gICAqIEBwYXJhbSBmIEEgRnVuY3Rpb24gcmV0dXJuaW5nIGEgbGlzdCBvZiB0ZW5zb3JzLlxuICAgKiBAcGFyYW0gaW5zIEFycmF5IG9mIHRlbnNvcnMgdG8gYmUgZmVkIHRvIGBmYC5cbiAgICogQHBhcmFtIGJhdGNoU2l6ZSBJbnRlZ2VyIGJhdGNoIHNpemUgb3IgYG51bGxgIC8gYHVuZGVmaW5lZGAuXG4gICAqIEBwYXJhbSB2ZXJib3NlIHZlcmJvc2l0eSBtb2RlLlxuICAgKiBAcGFyYW0gc3RlcHMgVG90YWwgbnVtYmVyIG9mIHN0ZXBzIChiYXRjaGVzIG9mIHNhbXBsZXMpIGJlZm9yZVxuICAgKiBkZWNsYXJpbmcgdGVzdCBmaW5pc2hlZC4gSWdub3JlZCB3aXRoIHRoZSBkZWZhdWx0IHZhbHVlIG9mIGBudWxsYCAvXG4gICAqIGB1bmRlZmluZWRgLlxuICAgKiBAcmV0dXJucyBBcnJheSBvZiBTY2FsYXJzLlxuICAgKi9cbiAgcHJpdmF0ZSB0ZXN0TG9vcChcbiAgICAgIGY6IChkYXRhOiBUZW5zb3JbXSkgPT4gU2NhbGFyW10sIGluczogVGVuc29yW10sIGJhdGNoU2l6ZT86IG51bWJlcixcbiAgICAgIHZlcmJvc2UgPSAwLCBzdGVwcz86IG51bWJlcik6IFNjYWxhcltdIHtcbiAgICByZXR1cm4gdGZjLnRpZHkoKCkgPT4ge1xuICAgICAgY29uc3QgbnVtU2FtcGxlcyA9IHRoaXMuY2hlY2tOdW1TYW1wbGVzKGlucywgYmF0Y2hTaXplLCBzdGVwcywgJ3N0ZXBzJyk7XG4gICAgICBjb25zdCBvdXRzOiBTY2FsYXJbXSA9IFtdO1xuICAgICAgaWYgKHZlcmJvc2UgPiAwKSB7XG4gICAgICAgIHRocm93IG5ldyBOb3RJbXBsZW1lbnRlZEVycm9yKCdWZXJib3NlIG1vZGUgaXMgbm90IGltcGxlbWVudGVkIHlldC4nKTtcbiAgICAgIH1cbiAgICAgIC8vIFRPRE8oY2Fpcyk6IFVzZSBgaW5kaWNlc0ZvckNvbnZlcnNpb25Ub0RlbnNlJyB0byBwcmV2ZW50IHNsb3cgZG93bi5cbiAgICAgIGlmIChzdGVwcyAhPSBudWxsKSB7XG4gICAgICAgIHRocm93IG5ldyBOb3RJbXBsZW1lbnRlZEVycm9yKFxuICAgICAgICAgICAgJ3N0ZXBzIG1vZGUgaW4gdGVzdExvb3AoKSBpcyBub3QgaW1wbGVtZW50ZWQgeWV0Jyk7XG4gICAgICB9IGVsc2Uge1xuICAgICAgICBjb25zdCBiYXRjaGVzID0gbWFrZUJhdGNoZXMobnVtU2FtcGxlcywgYmF0Y2hTaXplKTtcbiAgICAgICAgY29uc3QgaW5kZXhBcnJheSA9IHRlbnNvcjFkKHJhbmdlKDAsIG51bVNhbXBsZXMpKTtcbiAgICAgICAgZm9yIChsZXQgYmF0Y2hJbmRleCA9IDA7IGJhdGNoSW5kZXggPCBiYXRjaGVzLmxlbmd0aDsgKytiYXRjaEluZGV4KSB7XG4gICAgICAgICAgY29uc3QgYmF0Y2hTdGFydCA9IGJhdGNoZXNbYmF0Y2hJbmRleF1bMF07XG4gICAgICAgICAgY29uc3QgYmF0Y2hFbmQgPSBiYXRjaGVzW2JhdGNoSW5kZXhdWzFdO1xuICAgICAgICAgIGNvbnN0IGJhdGNoSWRzID1cbiAgICAgICAgICAgICAgSy5zbGljZUFsb25nRmlyc3RBeGlzKFxuICAgICAgICAgICAgICAgICAgaW5kZXhBcnJheSwgYmF0Y2hTdGFydCwgYmF0Y2hFbmQgLSBiYXRjaFN0YXJ0KSBhcyBUZW5zb3IxRDtcbiAgICAgICAgICAvLyBUT0RPKGNhaXMpOiBJbiBpbnMsIHRyYWluIGZsYWcgY2FuIGJlIGEgbnVtYmVyLCBpbnN0ZWFkIG9mIGFuXG4gICAgICAgICAgLy8gICBUZW5zb3I/IERvIHdlIG5lZWQgdG8gaGFuZGxlIHRoaXMgaW4gdGZqcy1sYXllcnM/XG4gICAgICAgICAgY29uc3QgaW5zQmF0Y2ggPSBzbGljZUFycmF5c0J5SW5kaWNlcyhpbnMsIGJhdGNoSWRzKSBhcyBTY2FsYXJbXTtcbiAgICAgICAgICBjb25zdCBiYXRjaE91dHMgPSBmKGluc0JhdGNoKTtcbiAgICAgICAgICBpZiAoYmF0Y2hJbmRleCA9PT0gMCkge1xuICAgICAgICAgICAgZm9yIChsZXQgaSA9IDA7IGkgPCBiYXRjaE91dHMubGVuZ3RoOyArK2kpIHtcbiAgICAgICAgICAgICAgb3V0cy5wdXNoKHNjYWxhcigwKSk7XG4gICAgICAgICAgICB9XG4gICAgICAgICAgfVxuICAgICAgICAgIGZvciAobGV0IGkgPSAwOyBpIDwgYmF0Y2hPdXRzLmxlbmd0aDsgKytpKSB7XG4gICAgICAgICAgICBjb25zdCBiYXRjaE91dCA9IGJhdGNoT3V0c1tpXTtcbiAgICAgICAgICAgIG91dHNbaV0gPVxuICAgICAgICAgICAgICAgIHRmYy5hZGQob3V0c1tpXSwgdGZjLm11bChiYXRjaEVuZCAtIGJhdGNoU3RhcnQsIGJhdGNoT3V0KSk7XG4gICAgICAgICAgfVxuICAgICAgICB9XG4gICAgICAgIGZvciAobGV0IGkgPSAwOyBpIDwgb3V0cy5sZW5ndGg7ICsraSkge1xuICAgICAgICAgIG91dHNbaV0gPSB0ZmMuZGl2KG91dHNbaV0sIG51bVNhbXBsZXMpO1xuICAgICAgICB9XG4gICAgICB9XG4gICAgICByZXR1cm4gb3V0cztcbiAgICB9KTtcbiAgfVxuXG4gIHByb3RlY3RlZCBnZXREZWR1cGVkTWV0cmljc05hbWVzKCk6IHN0cmluZ1tdIHtcbiAgICBjb25zdCBvdXRMYWJlbHMgPSB0aGlzLm1ldHJpY3NOYW1lcztcbiAgICAvLyBSZW5hbWUgZHVwbGljYXRlZCBtZXRyaWNzIG5hbWVzIChjYW4gaGFwcGVuIHdpdGggYW4gb3V0cHV0IGxheWVyXG4gICAgLy8gc2hhcmVkIGFtb25nIG11bHRpcGxlIGRhdGFmbG93cykuXG4gICAgY29uc3QgZGVkdXBlZE91dExhYmVscyA9IFtdO1xuICAgIGZvciAobGV0IGkgPSAwOyBpIDwgb3V0TGFiZWxzLmxlbmd0aDsgKytpKSB7XG4gICAgICBjb25zdCBsYWJlbCA9IG91dExhYmVsc1tpXTtcbiAgICAgIGxldCBuZXdMYWJlbCA9IGxhYmVsO1xuICAgICAgaWYgKGNvdW50KG91dExhYmVscywgbGFiZWwpID4gMSkge1xuICAgICAgICBjb25zdCBkdXBJbmRleCA9IGNvdW50KG91dExhYmVscy5zbGljZSgwLCBpKSwgbGFiZWwpO1xuICAgICAgICBuZXdMYWJlbCArPSBgXyR7ZHVwSW5kZXh9YDtcbiAgICAgIH1cbiAgICAgIGRlZHVwZWRPdXRMYWJlbHMucHVzaChuZXdMYWJlbCk7XG4gICAgfVxuICAgIHJldHVybiBkZWR1cGVkT3V0TGFiZWxzO1xuICB9XG5cbiAgLyoqXG4gICAqIENyZWF0ZXMgYSBmdW5jdGlvbiB0aGF0IHBlcmZvcm1zIHRoZSBmb2xsb3dpbmcgYWN0aW9uczpcbiAgICpcbiAgICogMS4gY29tcHV0ZXMgdGhlIGxvc3Nlc1xuICAgKiAyLiBzdW1zIHRoZW0gdG8gZ2V0IHRoZSB0b3RhbCBsb3NzXG4gICAqIDMuIGNhbGwgdGhlIG9wdGltaXplciBjb21wdXRlcyB0aGUgZ3JhZGllbnRzIG9mIHRoZSBMYXllcnNNb2RlbCdzXG4gICAqICAgIHRyYWluYWJsZSB3ZWlnaHRzIHcuci50LiB0aGUgdG90YWwgbG9zcyBhbmQgdXBkYXRlIHRoZSB2YXJpYWJsZXNcbiAgICogNC4gY2FsY3VsYXRlcyB0aGUgbWV0cmljc1xuICAgKiA1LiByZXR1cm5zIHRoZSB2YWx1ZXMgb2YgdGhlIGxvc3NlcyBhbmQgbWV0cmljcy5cbiAgICovXG4gIHByb3RlY3RlZCBtYWtlVHJhaW5GdW5jdGlvbigpOiAoZGF0YTogVGVuc29yW10pID0+IFNjYWxhcltdIHtcbiAgICByZXR1cm4gKGRhdGE6IFRlbnNvcltdKSA9PiB7XG4gICAgICBjb25zdCBsb3NzVmFsdWVzOiBTY2FsYXJbXSA9IFtdO1xuXG4gICAgICBjb25zdCBpbnB1dHMgPSBkYXRhLnNsaWNlKDAsIHRoaXMuaW5wdXRzLmxlbmd0aCk7XG4gICAgICBjb25zdCB0YXJnZXRzID0gZGF0YS5zbGljZShcbiAgICAgICAgICB0aGlzLmlucHV0cy5sZW5ndGgsIHRoaXMuaW5wdXRzLmxlbmd0aCArIHRoaXMub3V0cHV0cy5sZW5ndGgpO1xuICAgICAgY29uc3Qgc2FtcGxlV2VpZ2h0cyA9IGRhdGEuc2xpY2UoXG4gICAgICAgICAgdGhpcy5pbnB1dHMubGVuZ3RoICsgdGhpcy5vdXRwdXRzLmxlbmd0aCxcbiAgICAgICAgICB0aGlzLmlucHV0cy5sZW5ndGggKyB0aGlzLm91dHB1dHMubGVuZ3RoICogMik7XG5cbiAgICAgIGNvbnN0IG1ldHJpY3NWYWx1ZXM6IFNjYWxhcltdID0gW107XG5cbiAgICAgIC8vIENyZWF0ZSBhIGZ1bmN0aW9uIHRoYXQgY29tcHV0ZXMgdGhlIHRvdGFsIGxvc3MgYmFzZWQgb24gdGhlXG4gICAgICAvLyBpbnB1dHMuIFRoaXMgZnVuY3Rpb24gaXMgdXNlZCBmb3Igb2J0YWluaW5nIGdyYWRpZW50cyB0aHJvdWdoXG4gICAgICAvLyBiYWNrcHJvcC5cbiAgICAgIGNvbnN0IHRvdGFsTG9zc0Z1bmN0aW9uID0gKCkgPT4ge1xuICAgICAgICBjb25zdCBmZWVkcyA9IFtdO1xuICAgICAgICBmb3IgKGxldCBpID0gMDsgaSA8IHRoaXMuaW5wdXRzLmxlbmd0aDsgKytpKSB7XG4gICAgICAgICAgZmVlZHMucHVzaCh7a2V5OiB0aGlzLmlucHV0c1tpXSwgdmFsdWU6IGlucHV0c1tpXX0pO1xuICAgICAgICB9XG4gICAgICAgIGNvbnN0IGZlZWREaWN0ID0gbmV3IEZlZWREaWN0KGZlZWRzKTtcbiAgICAgICAgY29uc3Qgb3V0cHV0cyA9XG4gICAgICAgICAgICBleGVjdXRlKHRoaXMub3V0cHV0cywgZmVlZERpY3QsIHsndHJhaW5pbmcnOiB0cnVlfSkgYXMgVGVuc29yW107XG4gICAgICAgIC8vIFRPRE8oY2Fpcyk6IFRha2UgY2FyZSBvZiB0aGUgY2FzZSBvZiBtdWx0aXBsZSBvdXRwdXRzIGZyb20gYVxuICAgICAgICAvLyAgIHNpbmdsZSBsYXllcj9cblxuICAgICAgICBsZXQgdG90YWxMb3NzOiBUZW5zb3I7XG4gICAgICAgIGZvciAobGV0IGkgPSAwOyBpIDwgdGhpcy5sb3NzRnVuY3Rpb25zLmxlbmd0aDsgKytpKSB7XG4gICAgICAgICAgY29uc3QgbG9zc0Z1bmN0aW9uID0gdGhpcy5sb3NzRnVuY3Rpb25zW2ldO1xuICAgICAgICAgIGxldCBsb3NzID0gbG9zc0Z1bmN0aW9uKHRhcmdldHNbaV0sIG91dHB1dHNbaV0pO1xuICAgICAgICAgIGlmIChzYW1wbGVXZWlnaHRzW2ldICE9IG51bGwpIHtcbiAgICAgICAgICAgIGxvc3MgPSBjb21wdXRlV2VpZ2h0ZWRMb3NzKGxvc3MsIHNhbXBsZVdlaWdodHNbaV0pO1xuICAgICAgICAgIH1cblxuICAgICAgICAgIC8vIFRPRE8oY2Fpcyk6IHB1c2ggU2NhbGFyIGluc3RlYWQuXG4gICAgICAgICAgY29uc3QgbWVhbkxvc3M6IFNjYWxhciA9IHRmYy5tZWFuKGxvc3MpO1xuICAgICAgICAgIC8vIFRPRE8oY2Fpcyk6IFVzZSBhIHNjb3BlKCkgaW5zdGVhZCwgdG8gYXZvaWQgb3duZXJzaGlwLlxuICAgICAgICAgIGxvc3NWYWx1ZXMucHVzaChtZWFuTG9zcyk7XG4gICAgICAgICAgaWYgKGkgPT09IDApIHtcbiAgICAgICAgICAgIHRvdGFsTG9zcyA9IGxvc3M7XG4gICAgICAgICAgfSBlbHNlIHtcbiAgICAgICAgICAgIHRvdGFsTG9zcyA9IHRmYy5hZGQodG90YWxMb3NzLCBsb3NzKTtcbiAgICAgICAgICB9XG4gICAgICAgIH1cblxuICAgICAgICAvLyBDb21wdXRlIHRoZSBtZXRyaWNzLlxuICAgICAgICAvLyBUT0RPKGNhaXMpOiBUaGVzZSBzaG91bGQgcHJvYmFibHkgYmUgY2FsY3VsYXRlZCBvdXRzaWRlXG4gICAgICAgIC8vICAgdG90YWxMb3NzRnVuY3Rpb24gdG8gYmVuZWZpdCBzcGVlZD9cbiAgICAgICAgZm9yIChsZXQgaSA9IDA7IGkgPCB0aGlzLm1ldHJpY3NUZW5zb3JzLmxlbmd0aDsgKytpKSB7XG4gICAgICAgICAgbGV0IHdlaWdodGVkTWV0cmljOiBTY2FsYXI7XG5cbiAgICAgICAgICBpZiAodGhpcy5vdXRwdXRzLmxlbmd0aCA+IDEgJiYgaSA8IHRoaXMub3V0cHV0cy5sZW5ndGgpIHtcbiAgICAgICAgICAgIHdlaWdodGVkTWV0cmljID0gbG9zc1ZhbHVlc1tpXTtcbiAgICAgICAgICB9IGVsc2Uge1xuICAgICAgICAgICAgY29uc3QgbWV0cmljID0gdGhpcy5tZXRyaWNzVGVuc29yc1tpXVswXTtcbiAgICAgICAgICAgIGNvbnN0IG91dHB1dEluZGV4ID0gdGhpcy5tZXRyaWNzVGVuc29yc1tpXVsxXTtcbiAgICAgICAgICAgIHdlaWdodGVkTWV0cmljID1cbiAgICAgICAgICAgICAgICB0ZmMubWVhbihtZXRyaWModGFyZ2V0c1tvdXRwdXRJbmRleF0sIG91dHB1dHNbb3V0cHV0SW5kZXhdKSk7XG4gICAgICAgICAgfVxuXG4gICAgICAgICAgdGZjLmtlZXAod2VpZ2h0ZWRNZXRyaWMpO1xuICAgICAgICAgIC8vIFRPRE8oY2Fpcyk6IFVzZSBhIHNjb3BlKCkgaW5zdGVhZCwgdG8gYXZvaWQgb3duZXJzaGlwLlxuICAgICAgICAgIG1ldHJpY3NWYWx1ZXMucHVzaCh3ZWlnaHRlZE1ldHJpYyk7XG4gICAgICAgIH1cblxuICAgICAgICB0b3RhbExvc3MgPSB0ZmMubWVhbih0b3RhbExvc3MpO1xuXG4gICAgICAgIC8vIEFkZCByZWd1bGFyaXplciBwZW5hbHRpZXMuXG4gICAgICAgIHRoaXMuY2FsY3VsYXRlTG9zc2VzKCkuZm9yRWFjaChyZWd1bGFyaXplckxvc3MgPT4ge1xuICAgICAgICAgIHRvdGFsTG9zcyA9IHRmYy5hZGQodG90YWxMb3NzLCByZWd1bGFyaXplckxvc3MpO1xuICAgICAgICB9KTtcblxuICAgICAgICByZXR1cm4gdG90YWxMb3NzIGFzIFNjYWxhcjtcbiAgICAgIH07XG5cbiAgICAgIGNvbnN0IHZhcmlhYmxlcyA9IHRoaXMuY29sbGVjdGVkVHJhaW5hYmxlV2VpZ2h0cy5tYXAoXG4gICAgICAgICAgcGFyYW0gPT4gcGFyYW0ucmVhZCgpIGFzIHRmYy5WYXJpYWJsZSk7XG4gICAgICBjb25zdCByZXR1cm5Db3N0ID0gdHJ1ZTtcbiAgICAgIGNvbnN0IHRvdGFsTG9zc1ZhbHVlID1cbiAgICAgICAgICB0aGlzLm9wdGltaXplcl8ubWluaW1pemUodG90YWxMb3NzRnVuY3Rpb24sIHJldHVybkNvc3QsIHZhcmlhYmxlcyk7XG5cbiAgICAgIHJldHVybiBbdG90YWxMb3NzVmFsdWVdLmNvbmNhdChtZXRyaWNzVmFsdWVzKTtcbiAgICB9O1xuICB9XG5cbiAgLyoqXG4gICAqIENyZWF0ZSBhIGZ1bmN0aW9uIHdoaWNoLCB3aGVuIGludm9rZWQgd2l0aCBhbiBhcnJheSBvZiBgdGYuVGVuc29yYHMgYXMgYVxuICAgKiBiYXRjaCBvZiBpbnB1dHMsIHJldHVybnMgdGhlIHByZXNwZWNpZmllZCBsb3NzIGFuZCBtZXRyaWNzIG9mIHRoZSBtb2RlbFxuICAgKiB1bmRlciB0aGUgYmF0Y2ggb2YgaW5wdXQgZGF0YS5cbiAgICovXG4gIHByaXZhdGUgbWFrZVRlc3RGdW5jdGlvbigpIHtcbiAgICB0aGlzLnRlc3RGdW5jdGlvbiA9IChkYXRhOiBUZW5zb3JbXSkgPT4ge1xuICAgICAgcmV0dXJuIHRmYy50aWR5KCgpID0+IHtcbiAgICAgICAgY29uc3QgdmFsT3V0cHV0czogU2NhbGFyW10gPSBbXTtcbiAgICAgICAgbGV0IHRvdGFsTG9zczogU2NhbGFyO1xuICAgICAgICBjb25zdCBpbnB1dHMgPSBkYXRhLnNsaWNlKDAsIHRoaXMuaW5wdXRzLmxlbmd0aCk7XG4gICAgICAgIGNvbnN0IHRhcmdldHMgPSBkYXRhLnNsaWNlKFxuICAgICAgICAgICAgdGhpcy5pbnB1dHMubGVuZ3RoLCB0aGlzLmlucHV0cy5sZW5ndGggKyB0aGlzLm91dHB1dHMubGVuZ3RoKTtcbiAgICAgICAgY29uc3QgZmVlZHMgPSBbXTtcbiAgICAgICAgZm9yIChsZXQgaSA9IDA7IGkgPCB0aGlzLmlucHV0cy5sZW5ndGg7ICsraSkge1xuICAgICAgICAgIGZlZWRzLnB1c2goe2tleTogdGhpcy5pbnB1dHNbaV0sIHZhbHVlOiBpbnB1dHNbaV19KTtcbiAgICAgICAgfVxuICAgICAgICBjb25zdCBmZWVkRGljdCA9IG5ldyBGZWVkRGljdChmZWVkcyk7XG4gICAgICAgIGNvbnN0IG91dHB1dHMgPSBleGVjdXRlKHRoaXMub3V0cHV0cywgZmVlZERpY3QpIGFzIFRlbnNvcltdO1xuICAgICAgICAvLyBDb21wdXRlIHRvdGFsIGxvc3MuXG4gICAgICAgIGZvciAobGV0IGkgPSAwOyBpIDwgdGhpcy5sb3NzRnVuY3Rpb25zLmxlbmd0aDsgKytpKSB7XG4gICAgICAgICAgY29uc3QgbG9zc0Z1bmN0aW9uID0gdGhpcy5sb3NzRnVuY3Rpb25zW2ldO1xuICAgICAgICAgIC8vIFRPRE8oY2Fpcyk6IEFkZCBzYW1wbGUgd2VpZ2h0aW5nIGFuZCByZXBsYWNlIHRoZSBzaW1wbGVcbiAgICAgICAgICAvLyBhdmVyYWdpbmcuXG4gICAgICAgICAgY29uc3QgbG9zczogU2NhbGFyID0gdGZjLm1lYW4obG9zc0Z1bmN0aW9uKHRhcmdldHNbaV0sIG91dHB1dHNbaV0pKTtcbiAgICAgICAgICBpZiAoaSA9PT0gMCkge1xuICAgICAgICAgICAgdG90YWxMb3NzID0gbG9zcztcbiAgICAgICAgICB9IGVsc2Uge1xuICAgICAgICAgICAgdG90YWxMb3NzID0gdGZjLmFkZCh0b3RhbExvc3MsIGxvc3MpO1xuICAgICAgICAgIH1cbiAgICAgICAgICB2YWxPdXRwdXRzLnB1c2godG90YWxMb3NzKTtcbiAgICAgICAgfVxuICAgICAgICAvLyBDb21wdXRlIHRoZSBtZXRyaWNzLlxuICAgICAgICBmb3IgKGxldCBpID0gMDsgaSA8IHRoaXMubWV0cmljc1RlbnNvcnMubGVuZ3RoOyArK2kpIHtcbiAgICAgICAgICBjb25zdCBtZXRyaWMgPSB0aGlzLm1ldHJpY3NUZW5zb3JzW2ldWzBdO1xuICAgICAgICAgIGNvbnN0IG91dHB1dEluZGV4ID0gdGhpcy5tZXRyaWNzVGVuc29yc1tpXVsxXTtcbiAgICAgICAgICAvLyBUT0RPKGNhaXMpOiBSZXBsYWNlIEsubWVhbigpIHdpdGggYSBwcm9wZXIgd2VpZ2h0aW5nIGZ1bmN0aW9uLlxuICAgICAgICAgIGNvbnN0IG1lYW5NZXRyaWMgPVxuICAgICAgICAgICAgICB0ZmMubWVhbihtZXRyaWModGFyZ2V0c1tvdXRwdXRJbmRleF0sIG91dHB1dHNbb3V0cHV0SW5kZXhdKSk7XG4gICAgICAgICAgdmFsT3V0cHV0cy5wdXNoKG1lYW5NZXRyaWMgYXMgU2NhbGFyKTtcbiAgICAgICAgfVxuICAgICAgICByZXR1cm4gdmFsT3V0cHV0cztcbiAgICAgIH0pO1xuICAgIH07XG4gIH1cblxuICAvKipcbiAgICogVHJhaW5zIHRoZSBtb2RlbCBmb3IgYSBmaXhlZCBudW1iZXIgb2YgZXBvY2hzIChpdGVyYXRpb25zIG9uIGFcbiAgICogZGF0YXNldCkuXG4gICAqXG4gICAqIGBgYGpzXG4gICAqIGNvbnN0IG1vZGVsID0gdGYuc2VxdWVudGlhbCh7XG4gICAqICAgICBsYXllcnM6IFt0Zi5sYXllcnMuZGVuc2Uoe3VuaXRzOiAxLCBpbnB1dFNoYXBlOiBbMTBdfSldXG4gICAqIH0pO1xuICAgKiBtb2RlbC5jb21waWxlKHtvcHRpbWl6ZXI6ICdzZ2QnLCBsb3NzOiAnbWVhblNxdWFyZWRFcnJvcid9KTtcbiAgICogZm9yIChsZXQgaSA9IDE7IGkgPCA1IDsgKytpKSB7XG4gICAqICAgY29uc3QgaCA9IGF3YWl0IG1vZGVsLmZpdCh0Zi5vbmVzKFs4LCAxMF0pLCB0Zi5vbmVzKFs4LCAxXSksIHtcbiAgICogICAgICAgYmF0Y2hTaXplOiA0LFxuICAgKiAgICAgICBlcG9jaHM6IDNcbiAgICogICB9KTtcbiAgICogICBjb25zb2xlLmxvZyhcIkxvc3MgYWZ0ZXIgRXBvY2ggXCIgKyBpICsgXCIgOiBcIiArIGguaGlzdG9yeS5sb3NzWzBdKTtcbiAgICogfVxuICAgKiBgYGBcbiAgICpcbiAgICogQHBhcmFtIHggYHRmLlRlbnNvcmAgb2YgdHJhaW5pbmcgZGF0YSwgb3IgYW4gYXJyYXkgb2YgYHRmLlRlbnNvcmBzIGlmIHRoZVxuICAgKiBtb2RlbCBoYXMgbXVsdGlwbGUgaW5wdXRzLiBJZiBhbGwgaW5wdXRzIGluIHRoZSBtb2RlbCBhcmUgbmFtZWQsIHlvdVxuICAgKiBjYW4gYWxzbyBwYXNzIGEgZGljdGlvbmFyeSBtYXBwaW5nIGlucHV0IG5hbWVzIHRvIGB0Zi5UZW5zb3Jgcy5cbiAgICogQHBhcmFtIHkgYHRmLlRlbnNvcmAgb2YgdGFyZ2V0IChsYWJlbCkgZGF0YSwgb3IgYW4gYXJyYXkgb2YgYHRmLlRlbnNvcmBzIGlmXG4gICAqIHRoZSBtb2RlbCBoYXMgbXVsdGlwbGUgb3V0cHV0cy4gSWYgYWxsIG91dHB1dHMgaW4gdGhlIG1vZGVsIGFyZSBuYW1lZCxcbiAgICogeW91IGNhbiBhbHNvIHBhc3MgYSBkaWN0aW9uYXJ5IG1hcHBpbmcgb3V0cHV0IG5hbWVzIHRvIGB0Zi5UZW5zb3Jgcy5cbiAgICogQHBhcmFtIGFyZ3MgQSBgTW9kZWxGaXRBcmdzYCwgY29udGFpbmluZyBvcHRpb25hbCBmaWVsZHMuXG4gICAqXG4gICAqIEByZXR1cm4gQSBgSGlzdG9yeWAgaW5zdGFuY2UuIEl0cyBgaGlzdG9yeWAgYXR0cmlidXRlIGNvbnRhaW5zIGFsbFxuICAgKiAgIGluZm9ybWF0aW9uIGNvbGxlY3RlZCBkdXJpbmcgdHJhaW5pbmcuXG4gICAqXG4gICAqIEBleGNlcHRpb24gVmFsdWVFcnJvciBJbiBjYXNlIG9mIG1pc21hdGNoIGJldHdlZW4gdGhlIHByb3ZpZGVkIGlucHV0XG4gICAqIGRhdGEgYW5kIHdoYXQgdGhlIG1vZGVsIGV4cGVjdHMuXG4gICAqXG4gICAqIEBkb2Mge2hlYWRpbmc6ICdNb2RlbHMnLCBzdWJoZWFkaW5nOiAnQ2xhc3Nlcyd9XG4gICAqL1xuICBhc3luYyBmaXQoXG4gICAgICB4OiBUZW5zb3J8VGVuc29yW118e1tpbnB1dE5hbWU6IHN0cmluZ106IFRlbnNvcn0sXG4gICAgICB5OiBUZW5zb3J8VGVuc29yW118e1tpbnB1dE5hbWU6IHN0cmluZ106IFRlbnNvcn0sXG4gICAgICBhcmdzOiBNb2RlbEZpdEFyZ3MgPSB7fSk6IFByb21pc2U8SGlzdG9yeT4ge1xuICAgIGlmICh0aGlzLmlzVHJhaW5pbmcpIHtcbiAgICAgIHRocm93IG5ldyBFcnJvcihcbiAgICAgICAgICAnQ2Fubm90IHN0YXJ0IHRyYWluaW5nIGJlY2F1c2UgYW5vdGhlciBmaXQoKSBjYWxsIGlzIG9uZ29pbmcuJyk7XG4gICAgfVxuICAgIHRoaXMuaXNUcmFpbmluZyA9IHRydWU7XG4gICAgbGV0IGlucHV0czogVGVuc29yW107XG4gICAgbGV0IHRhcmdldHM6IFRlbnNvcltdO1xuICAgIGxldCBvcmlnaW5hbElucHV0czogVGVuc29yW107XG4gICAgbGV0IG9yaWdpbmFsVGFyZ2V0czogVGVuc29yW107XG4gICAgbGV0IGlucHV0VmFsWDogVGVuc29yfFRlbnNvcltdO1xuICAgIGxldCBpbnB1dFZhbFk6IFRlbnNvcnxUZW5zb3JbXTtcbiAgICBsZXQgdmFsWDogVGVuc29yfFRlbnNvcltdO1xuICAgIGxldCB2YWxZOiBUZW5zb3J8VGVuc29yW107XG4gICAgbGV0IHNhbXBsZVdlaWdodHM6IFRlbnNvcltdO1xuICAgIHRyeSB7XG4gICAgICBjb25zdCBiYXRjaFNpemUgPSBhcmdzLmJhdGNoU2l6ZSA9PSBudWxsID8gMzIgOiBhcmdzLmJhdGNoU2l6ZTtcbiAgICAgIGNoZWNrQmF0Y2hTaXplKGJhdGNoU2l6ZSk7XG5cbiAgICAgIC8vIFZhbGlkYXRlIHVzZXIgZGF0YS5cbiAgICAgIC8vIFRPRE8oY2Fpcyk6IFN1cHBvcnQgc2FtcGxlV2VpZ2h0LlxuICAgICAgY29uc3QgY2hlY2tCYXRjaEF4aXMgPSBmYWxzZTtcbiAgICAgIGNvbnN0IHN0YW5kYXJkaXplZE91dHMgPVxuICAgICAgICAgIGF3YWl0IHRoaXMuc3RhbmRhcmRpemVVc2VyRGF0YShcbiAgICAgICAgICAgICAgeCwgeSwgYXJncy5zYW1wbGVXZWlnaHQsIGFyZ3MuY2xhc3NXZWlnaHQsIGNoZWNrQmF0Y2hBeGlzLFxuICAgICAgICAgICAgICBiYXRjaFNpemUpIGFzIFtUZW5zb3JbXSwgVGVuc29yW10sIFRlbnNvcltdXTtcbiAgICAgIGlucHV0cyA9IHN0YW5kYXJkaXplZE91dHNbMF07XG4gICAgICB0YXJnZXRzID0gc3RhbmRhcmRpemVkT3V0c1sxXTtcbiAgICAgIHNhbXBsZVdlaWdodHMgPSBzdGFuZGFyZGl6ZWRPdXRzWzJdO1xuXG4gICAgICAvLyBQcmVwYXJlIHZhbGlkYXRpb24gZGF0YS5cbiAgICAgIGxldCBkb1ZhbGlkYXRpb24gPSBmYWxzZTtcbiAgICAgIGxldCB2YWxJbnM6IFRlbnNvcltdO1xuICAgICAgaWYgKGFyZ3MudmFsaWRhdGlvbkRhdGEgIT0gbnVsbCAmJiBhcmdzLnZhbGlkYXRpb25EYXRhLmxlbmd0aCA+IDApIHtcbiAgICAgICAgZG9WYWxpZGF0aW9uID0gdHJ1ZTtcbiAgICAgICAgaWYgKGFyZ3MudmFsaWRhdGlvbkRhdGEubGVuZ3RoID09PSAyKSB7XG4gICAgICAgICAgLy8gY29uZmlnLnZhbGlkYXRpb25EYXRhIGNvbnNpc3RzIG9mIHZhbFggYW5kIHZhbFkuXG4gICAgICAgICAgaW5wdXRWYWxYID0gYXJncy52YWxpZGF0aW9uRGF0YVswXTtcbiAgICAgICAgICBpbnB1dFZhbFkgPSBhcmdzLnZhbGlkYXRpb25EYXRhWzFdO1xuICAgICAgICB9IGVsc2UgaWYgKGFyZ3MudmFsaWRhdGlvbkRhdGEubGVuZ3RoID09PSAzKSB7XG4gICAgICAgICAgdGhyb3cgbmV3IE5vdEltcGxlbWVudGVkRXJyb3IoXG4gICAgICAgICAgICAgICd2YWxpZGF0aW9uRGF0YSBpbmNsdWRpbmcgc2FtcGxlIHdlaWdodHMgaXMgbm90IHN1cHBvcnRlZCB5ZXQuJyk7XG4gICAgICAgIH0gZWxzZSB7XG4gICAgICAgICAgdGhyb3cgbmV3IFZhbHVlRXJyb3IoXG4gICAgICAgICAgICAgIGBXaGVuIHBhc3NpbmcgdmFsaWRhdGlvbiBkYXRhLCBpdCBtdXN0IGNvbnRhaW4gMiAodmFsWCwgdmFsWSkgYCArXG4gICAgICAgICAgICAgIGBvciAzICh2YWxYLCB2YWxZLCB2YWxTYW1wbGVXZWlnaHQpIGl0ZW1zOyBgICtcbiAgICAgICAgICAgICAgYCR7YXJncy52YWxpZGF0aW9uRGF0YX0gaXMgaW52YWxpZC5gKTtcbiAgICAgICAgfVxuXG4gICAgICAgIGNvbnN0IGNoZWNrQmF0Y2hBeGlzID0gdHJ1ZTtcbiAgICAgICAgY29uc3QgdmFsU3RhbmRhcmRpemVkID1cbiAgICAgICAgICAgIGF3YWl0IHRoaXMuc3RhbmRhcmRpemVVc2VyRGF0YShcbiAgICAgICAgICAgICAgICBpbnB1dFZhbFgsIGlucHV0VmFsWSwgbnVsbCwgLyoqIFVudXNlZCBzYW1wbGUgd2VpZ2h0cy4gKi9cbiAgICAgICAgICAgICAgICBudWxsLCAgICAgICAgICAgICAgICAgICAgICAgLyoqIFVudXNlZCBjbGFzcyB3ZWlnaHRzLiAqL1xuICAgICAgICAgICAgICAgIGNoZWNrQmF0Y2hBeGlzLCBiYXRjaFNpemUpIGFzIFtUZW5zb3JbXSwgVGVuc29yW10sIFRlbnNvcltdXTtcbiAgICAgICAgdmFsWCA9IHZhbFN0YW5kYXJkaXplZFswXTtcbiAgICAgICAgdmFsWSA9IHZhbFN0YW5kYXJkaXplZFsxXTtcbiAgICAgICAgdmFsSW5zID0gdmFsWC5jb25jYXQodmFsWSk7XG4gICAgICAgIC8vIFRPRE8oY2Fpcyk6IEFkZCB1c2VMZWFybmluZ1BoYXNlIGRhdGEgcHJvcGVybHkuXG4gICAgICB9IGVsc2UgaWYgKFxuICAgICAgICAgIGFyZ3MudmFsaWRhdGlvblNwbGl0ICE9IG51bGwgJiYgYXJncy52YWxpZGF0aW9uU3BsaXQgPiAwICYmXG4gICAgICAgICAgYXJncy52YWxpZGF0aW9uU3BsaXQgPCAxKSB7XG4gICAgICAgIGRvVmFsaWRhdGlvbiA9IHRydWU7XG4gICAgICAgIC8vIFBvcnRpbmcgTm90ZTogSW4gdGZqcy1sYXllcnMsIGlucHV0c1swXSBpcyBhbHdheXMgYSBUZW5zb3IuXG4gICAgICAgIGNvbnN0IHNwbGl0QXQgPVxuICAgICAgICAgICAgTWF0aC5mbG9vcihpbnB1dHNbMF0uc2hhcGVbMF0gKiAoMSAtIGFyZ3MudmFsaWRhdGlvblNwbGl0KSk7XG4gICAgICAgIGNvbnN0IG9yaWdpbmFsQmF0Y2hTaXplID0gaW5wdXRzWzBdLnNoYXBlWzBdO1xuICAgICAgICB2YWxYID0gc2xpY2VBcnJheXMoaW5wdXRzLCBzcGxpdEF0LCBvcmlnaW5hbEJhdGNoU2l6ZSkgYXMgVGVuc29yW107XG4gICAgICAgIG9yaWdpbmFsSW5wdXRzID0gaW5wdXRzO1xuICAgICAgICBpbnB1dHMgPSBzbGljZUFycmF5cyhpbnB1dHMsIDAsIHNwbGl0QXQpIGFzIFRlbnNvcltdO1xuICAgICAgICB2YWxZID0gc2xpY2VBcnJheXModGFyZ2V0cywgc3BsaXRBdCwgb3JpZ2luYWxCYXRjaFNpemUpIGFzIFRlbnNvcltdO1xuICAgICAgICBvcmlnaW5hbFRhcmdldHMgPSB0YXJnZXRzO1xuICAgICAgICB0YXJnZXRzID0gc2xpY2VBcnJheXModGFyZ2V0cywgMCwgc3BsaXRBdCkgYXMgVGVuc29yW107XG4gICAgICAgIC8vIFRPRE8oY2Fpcyk6IE9uY2Ugc2FtcGxlV2VpZ2h0cyBiZWNvbWVzIGF2YWlsYWJsZSwgc2xpY2UgaXQgdG8gZ2V0XG4gICAgICAgIC8vICAgdmFsU2FtcGxlV2VpZ2h0cy5cbiAgICAgICAgdmFsSW5zID0gdmFsWC5jb25jYXQodmFsWSk7XG5cbiAgICAgICAgLy8gVE9ETyhjYWlzKTogQWRkIHVzZUxlYXJuaW5nUGhhc2UgZGF0YSBwcm9wZXJseS5cbiAgICAgIH0gZWxzZSBpZiAoYXJncy52YWxpZGF0aW9uU3RlcHMgIT0gbnVsbCkge1xuICAgICAgICBkb1ZhbGlkYXRpb24gPSB0cnVlO1xuICAgICAgICAvLyBUT0RPKGNhaXMpOiBBZGQgdXNlTGVhcm5pbmdQaGFzZS5cbiAgICAgIH1cblxuICAgICAgY29uc3QgaW5zID0gaW5wdXRzLmNvbmNhdCh0YXJnZXRzKS5jb25jYXQoc2FtcGxlV2VpZ2h0cyk7XG5cbiAgICAgIHRoaXMuY2hlY2tUcmFpbmFibGVXZWlnaHRzQ29uc2lzdGVuY3koKTtcblxuICAgICAgLy8gVE9ETyhjYWlzKTogSGFuZGxlIHVzZV9sZWFybmluZ19waGFzZSBhbmQgbGVhcm5pbmdfcGhhc2U/XG5cbiAgICAgIC8vIFBvcnRpbmcgTm90ZTogSGVyZSB3ZSBzZWUgYSBrZXkgZGV2aWF0aW9uIG9mIHRmanMtbGF5ZXJzIGZyb21cbiAgICAgIC8vIEtlcmFzLlxuICAgICAgLy8gIER1ZSB0byB0aGUgaW1wZXJhdGl2ZSBuYXR1cmUgb2YgdGZqcy1sYXllcnMnIGJhY2tlbmQgKHRmanMtY29yZSksXG4gICAgICAvLyAgd2UgZG8gbm90IGNvbnN0cnVjdCBzeW1ib2xpYyBjb21wdXRhdGlvbiBncmFwaHMgdG8gZW1ib2R5IHRoZVxuICAgICAgLy8gIHRyYWluaW5nIHByb2Nlc3MuIEluc3RlYWQsIHdlIGRlZmluZSBhIGZ1bmN0aW9uIHRoYXQgcGVyZm9ybXMgdGhlXG4gICAgICAvLyAgdHJhaW5pbmcgYWN0aW9uLiBJbiBQeUtlcmFzLCB0aGUgZGF0YSAoaW5wdXRzIGFuZCB0YXJnZXRzKSBhcmUgZmVkXG4gICAgICAvLyAgdGhyb3VnaCBncmFwaCBwbGFjZWhvbGRlcnMuIEluIHRmanMtbGF5ZXJzLCB0aGUgZGF0YSBhcmUgZmVkIGFzXG4gICAgICAvLyAgZnVuY3Rpb24gYXJndW1lbnRzLiBTaW5jZSB0aGUgZnVuY3Rpb24gYXJlIGRlZmluZWQgYmVsb3cgaW4gdGhlXG4gICAgICAvLyAgc2NvcGUsIHdlIGRvbid0IGhhdmUgZXF1aXZhbGVudHMgb2YgUHlLZXJhcydzXG4gICAgICAvLyAgYF9tYWtlX3RyYWluX2Z1bmNpdG9uYC5cbiAgICAgIGNvbnN0IHRyYWluRnVuY3Rpb24gPSB0aGlzLm1ha2VUcmFpbkZ1bmN0aW9uKCk7XG4gICAgICBjb25zdCBvdXRMYWJlbHMgPSB0aGlzLmdldERlZHVwZWRNZXRyaWNzTmFtZXMoKTtcblxuICAgICAgbGV0IHZhbEZ1bmN0aW9uOiAoZGF0YTogVGVuc29yW10pID0+IFNjYWxhcltdO1xuICAgICAgbGV0IGNhbGxiYWNrTWV0cmljczogc3RyaW5nW107XG4gICAgICBpZiAoZG9WYWxpZGF0aW9uKSB7XG4gICAgICAgIHRoaXMubWFrZVRlc3RGdW5jdGlvbigpO1xuICAgICAgICB2YWxGdW5jdGlvbiA9IHRoaXMudGVzdEZ1bmN0aW9uO1xuICAgICAgICBjYWxsYmFja01ldHJpY3MgPVxuICAgICAgICAgICAgb3V0TGFiZWxzLnNsaWNlKCkuY29uY2F0KG91dExhYmVscy5tYXAobiA9PiAndmFsXycgKyBuKSk7XG4gICAgICB9IGVsc2Uge1xuICAgICAgICB2YWxGdW5jdGlvbiA9IG51bGw7XG4gICAgICAgIHZhbElucyA9IFtdO1xuICAgICAgICBjYWxsYmFja01ldHJpY3MgPSBvdXRMYWJlbHMuc2xpY2UoKTtcbiAgICAgIH1cblxuICAgICAgY29uc3QgY2FsbGJhY2tzID0gc3RhbmRhcmRpemVDYWxsYmFja3MoYXJncy5jYWxsYmFja3MsIGFyZ3MueWllbGRFdmVyeSk7XG4gICAgICBjb25zdCBvdXQgPSBhd2FpdCB0aGlzLmZpdExvb3AoXG4gICAgICAgICAgdHJhaW5GdW5jdGlvbiwgaW5zLCBvdXRMYWJlbHMsIGJhdGNoU2l6ZSwgYXJncy5lcG9jaHMsXG4gICAgICAgICAgYXJncy52ZXJib3NlLCBjYWxsYmFja3MsIHZhbEZ1bmN0aW9uLCB2YWxJbnMsIGFyZ3Muc2h1ZmZsZSxcbiAgICAgICAgICBjYWxsYmFja01ldHJpY3MsIGFyZ3MuaW5pdGlhbEVwb2NoLCBudWxsLCBudWxsKTtcbiAgICAgIHJldHVybiBvdXQ7XG4gICAgfSBmaW5hbGx5IHtcbiAgICAgIHRoaXMuaXNUcmFpbmluZyA9IGZhbHNlO1xuICAgICAgLy8gTWVtb3J5IGNsZWFuIHVwLlxuICAgICAgZGlzcG9zZU5ld1RlbnNvcnMoaW5wdXRzLCB4KTtcbiAgICAgIGRpc3Bvc2VOZXdUZW5zb3JzKHRhcmdldHMsIHkpO1xuICAgICAgZGlzcG9zZU5ld1RlbnNvcnMob3JpZ2luYWxJbnB1dHMsIHgpO1xuICAgICAgZGlzcG9zZU5ld1RlbnNvcnMob3JpZ2luYWxUYXJnZXRzLCB5KTtcbiAgICAgIGRpc3Bvc2VOZXdUZW5zb3JzKHZhbFggYXMgVGVuc29yW10sIGlucHV0VmFsWCk7XG4gICAgICBkaXNwb3NlTmV3VGVuc29ycyh2YWxZIGFzIFRlbnNvcltdLCBpbnB1dFZhbFkpO1xuICAgICAgaWYgKHNhbXBsZVdlaWdodHMgIT0gbnVsbCkge1xuICAgICAgICB0ZmMuZGlzcG9zZShzYW1wbGVXZWlnaHRzKTtcbiAgICAgIH1cbiAgICB9XG4gICAgLy8gVE9ETyhjYWlzKTogQWRkIHZhbHVlIHRvIG91dExhYmVscy5cbiAgfVxuXG4gIC8qKlxuICAgKiBBYnN0cmFjdCBmaXQgZnVuY3Rpb24gZm9yIGBmKGlucylgLlxuICAgKiBAcGFyYW0gZiBBIEZ1bmN0aW9uIHJldHVybmluZyBhIGxpc3Qgb2YgdGVuc29ycy4gRm9yIHRyYWluaW5nLCB0aGlzXG4gICAqICAgZnVuY3Rpb24gaXMgZXhwZWN0ZWQgdG8gcGVyZm9ybSB0aGUgdXBkYXRlcyB0byB0aGUgdmFyaWFibGVzLlxuICAgKiBAcGFyYW0gaW5zIExpc3Qgb2YgdGVuc29ycyB0byBiZSBmZWQgdG8gYGZgLlxuICAgKiBAcGFyYW0gb3V0TGFiZWxzIExpc3Qgb2Ygc3RyaW5ncywgZGlzcGxheSBuYW1lcyBvZiB0aGUgb3V0cHV0cyBvZiBgZmAuXG4gICAqIEBwYXJhbSBiYXRjaFNpemUgSW50ZWdlciBiYXRjaCBzaXplIG9yIGA9PSBudWxsYCBpZiB1bmtub3duLiBEZWZhdWx0IDogMzIuXG4gICAqIEBwYXJhbSBlcG9jaHMgTnVtYmVyIG9mIHRpbWVzIHRvIGl0ZXJhdGUgb3ZlciB0aGUgZGF0YS4gRGVmYXVsdCA6IDEuXG4gICAqIEBwYXJhbSB2ZXJib3NlIFZlcmJvc2l0eSBtb2RlOiAwLCAxLCBvciAyLiBEZWZhdWx0OiAxLlxuICAgKiBAcGFyYW0gY2FsbGJhY2tzIExpc3Qgb2YgY2FsbGJhY2tzIHRvIGJlIGNhbGxlZCBkdXJpbmcgdHJhaW5pbmcuXG4gICAqIEBwYXJhbSB2YWxGIEZ1bmN0aW9uIHRvIGNhbGwgZm9yIHZhbGlkYXRpb24uXG4gICAqIEBwYXJhbSB2YWxJbnMgTGlzdCBvZiB0ZW5zb3JzIHRvIGJlIGZlZCB0byBgdmFsRmAuXG4gICAqIEBwYXJhbSBzaHVmZmxlIFdoZXRoZXIgdG8gc2h1ZmZsZSB0aGUgZGF0YSBhdCB0aGUgYmVnaW5uaW5nIG9mIGV2ZXJ5XG4gICAqIGVwb2NoLiBEZWZhdWx0IDogdHJ1ZS5cbiAgICogQHBhcmFtIGNhbGxiYWNrTWV0cmljcyBMaXN0IG9mIHN0cmluZ3MsIHRoZSBkaXNwbGF5IG5hbWVzIG9mIHRoZSBtZXRyaWNzXG4gICAqICAgcGFzc2VkIHRvIHRoZSBjYWxsYmFja3MuIFRoZXkgc2hvdWxkIGJlIHRoZSBjb25jYXRlbmF0aW9uIG9mIHRoZVxuICAgKiAgIGRpc3BsYXkgbmFtZXMgb2YgdGhlIG91dHB1dHMgb2YgYGZgIGFuZCB0aGUgbGlzdCBvZiBkaXNwbGF5IG5hbWVzXG4gICAqICAgb2YgdGhlIG91dHB1dHMgb2YgYHZhbEZgLlxuICAgKiBAcGFyYW0gaW5pdGlhbEVwb2NoIEVwb2NoIGF0IHdoaWNoIHRvIHN0YXJ0IHRyYWluaW5nICh1c2VmdWwgZm9yXG4gICAqICAgcmVzdW1pbmcgYSBwcmV2aW91cyB0cmFpbmluZyBydW4pLiBEZWZhdWx0IDogMC5cbiAgICogQHBhcmFtIHN0ZXBzUGVyRXBvY2ggVG90YWwgbnVtYmVyIG9mIHN0ZXBzIChiYXRjaGVzIG9uIHNhbXBsZXMpIGJlZm9yZVxuICAgKiAgIGRlY2xhcmluZyBvbmUgZXBvY2ggZmluaXNoZWQgYW5kIHN0YXJ0aW5nIHRoZSBuZXh0IGVwb2NoLiBJZ25vcmVkIHdpdGhcbiAgICogICB0aGUgZGVmYXVsdCB2YWx1ZSBvZiBgdW5kZWZpbmVkYCBvciBgbnVsbGAuXG4gICAqIEBwYXJhbSB2YWxpZGF0aW9uU3RlcHMgTnVtYmVyIG9mIHN0ZXBzIHRvIHJ1biB2YWxpZGF0aW9uIGZvciAob25seSBpZlxuICAgKiAgIGRvaW5nIHZhbGlkYXRpb24gZnJvbSBkYXRhIHRlbnNvcnMpLiBOb3QgYXBwbGljYWJsZSBmb3IgdGZqcy1sYXllcnMuXG4gICAqIEByZXR1cm5zIEEgYEhpc3RvcnlgIG9iamVjdC5cbiAgICovXG4gIGFzeW5jIGZpdExvb3AoXG4gICAgICBmOiAoZGF0YTogVGVuc29yW10pID0+IFNjYWxhcltdLCBpbnM6IFRlbnNvcltdLCBvdXRMYWJlbHM/OlxuICAgICAgc3RyaW5nW10sIGJhdGNoU2l6ZT86IG51bWJlciwgZXBvY2hzPzogbnVtYmVyLCB2ZXJib3NlPzogbnVtYmVyLFxuICAgICAgY2FsbGJhY2tzPzogQmFzZUNhbGxiYWNrW10sIHZhbEY/OiAoZGF0YTogVGVuc29yW10pID0+IFNjYWxhcltdLCB2YWxJbnM/OlxuICAgICAgVGVuc29yW10sIHNodWZmbGU/OiBib29sZWFufHN0cmluZywgY2FsbGJhY2tNZXRyaWNzPzogc3RyaW5nW10sXG4gICAgICBpbml0aWFsRXBvY2g/OiBudW1iZXIsIHN0ZXBzUGVyRXBvY2g/OiBudW1iZXIsIHZhbGlkYXRpb25TdGVwcz86IG51bWJlcik6XG4gICAgICBQcm9taXNlPEhpc3Rvcnk+IHtcbiAgICBpZiAoYmF0Y2hTaXplID09IG51bGwpIHtcbiAgICAgIGJhdGNoU2l6ZSA9IDMyO1xuICAgIH1cbiAgICBpZiAoZXBvY2hzID09IG51bGwpIHtcbiAgICAgIGVwb2NocyA9IDE7XG4gICAgfVxuICAgIGlmIChzaHVmZmxlID09IG51bGwpIHtcbiAgICAgIHNodWZmbGUgPSB0cnVlO1xuICAgIH1cbiAgICBpZiAoaW5pdGlhbEVwb2NoID09IG51bGwpIHtcbiAgICAgIGluaXRpYWxFcG9jaCA9IDA7XG4gICAgfVxuXG4gICAgLy8gVE9ETyhjYWlzKTogQ2hhbmdlIGNvbnN0IHRvIGxldCBiZWxvdyB3aGVuIGltcGxlbWVudGluZyB2YWxpZGF0aW9uLlxuICAgIGxldCBkb1ZhbGlkYXRpb24gPSBmYWxzZTtcbiAgICBpZiAodmFsRiAhPSBudWxsICYmIHZhbElucyAhPSBudWxsKSB7XG4gICAgICBkb1ZhbGlkYXRpb24gPSB0cnVlO1xuICAgICAgLy8gVE9ETyhjYWlzKTogdmVyYm9zZSBtZXNzYWdlLlxuICAgIH1cbiAgICBpZiAodmFsaWRhdGlvblN0ZXBzICE9IG51bGwpIHtcbiAgICAgIGRvVmFsaWRhdGlvbiA9IHRydWU7XG4gICAgICBpZiAoc3RlcHNQZXJFcG9jaCA9PSBudWxsKSB7XG4gICAgICAgIHRocm93IG5ldyBWYWx1ZUVycm9yKFxuICAgICAgICAgICAgJ0NhbiBvbmx5IHVzZSBgdmFsaWRhdGlvblN0ZXBzYCB3aGVuIGRvaW5nIHN0ZXAtd2lzZSB0cmFpbmluZywgJyArXG4gICAgICAgICAgICAnaS5lLiwgYHN0ZXBzUGVyRXBvY2hgIG11c3QgYmUgc2V0LicpO1xuICAgICAgfVxuICAgIH1cblxuICAgIGNvbnN0IG51bVRyYWluU2FtcGxlcyA9XG4gICAgICAgIHRoaXMuY2hlY2tOdW1TYW1wbGVzKGlucywgYmF0Y2hTaXplLCBzdGVwc1BlckVwb2NoLCAnc3RlcHNfcGVyX2Vwb2NoJyk7XG4gICAgbGV0IGluZGV4QXJyYXk6IG51bWJlcltdO1xuICAgIGlmIChudW1UcmFpblNhbXBsZXMgIT0gbnVsbCkge1xuICAgICAgaW5kZXhBcnJheSA9IHJhbmdlKDAsIG51bVRyYWluU2FtcGxlcyk7XG4gICAgfVxuXG4gICAgaWYgKHZlcmJvc2UgPT0gbnVsbCkge1xuICAgICAgdmVyYm9zZSA9IDE7XG4gICAgfVxuXG4gICAgY29uc3Qge2NhbGxiYWNrTGlzdCwgaGlzdG9yeX0gPSBjb25maWd1cmVDYWxsYmFja3MoXG4gICAgICAgIGNhbGxiYWNrcywgdmVyYm9zZSwgZXBvY2hzLCBpbml0aWFsRXBvY2gsIG51bVRyYWluU2FtcGxlcyxcbiAgICAgICAgc3RlcHNQZXJFcG9jaCwgYmF0Y2hTaXplLCBkb1ZhbGlkYXRpb24sIGNhbGxiYWNrTWV0cmljcyk7XG4gICAgY2FsbGJhY2tMaXN0LnNldE1vZGVsKHRoaXMpO1xuICAgIHRoaXMuaGlzdG9yeSA9IGhpc3Rvcnk7XG4gICAgYXdhaXQgY2FsbGJhY2tMaXN0Lm9uVHJhaW5CZWdpbigpO1xuICAgIHRoaXMuc3RvcFRyYWluaW5nXyA9IGZhbHNlO1xuICAgIC8vIFRPRE8oY2Fpcyk6IFRha2UgY2FyZSBvZiBjYWxsYmFja3MudmFsaWRhdGlvbl9kYXRhIGFzIGluIFB5S2VyYXMuXG4gICAgLy8gVE9ETyhjYWlzKTogUHJlLWNvbnZlcnQgZmVlZHMgZm9yIHBlcmZvcm1hbmNlIGFzIGluIFB5S2VyYXMuXG5cbiAgICBmb3IgKGxldCBlcG9jaCA9IGluaXRpYWxFcG9jaDsgZXBvY2ggPCBlcG9jaHM7ICsrZXBvY2gpIHtcbiAgICAgIGF3YWl0IGNhbGxiYWNrTGlzdC5vbkVwb2NoQmVnaW4oZXBvY2gpO1xuICAgICAgY29uc3QgZXBvY2hMb2dzOiBVbnJlc29sdmVkTG9ncyA9IHt9O1xuICAgICAgaWYgKHN0ZXBzUGVyRXBvY2ggIT0gbnVsbCkge1xuICAgICAgICB0aHJvdyBuZXcgTm90SW1wbGVtZW50ZWRFcnJvcihcbiAgICAgICAgICAgICdzdGVwc1BlckVwb2NoIG1vZGUgaXMgbm90IGltcGxlbWVudGVkIHlldC4nKTtcbiAgICAgIH0gZWxzZSB7XG4gICAgICAgIGlmIChzaHVmZmxlID09PSAnYmF0Y2gnKSB7XG4gICAgICAgICAgdGhyb3cgbmV3IE5vdEltcGxlbWVudGVkRXJyb3IoJ2JhdGNoIHNodWZmbGluZyBpcyBub3QgaW1wbGVtbmV0ZWQnXG4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgKyAnIHlldCcpO1xuICAgICAgICB9IGVsc2UgaWYgKHNodWZmbGUpIHtcbiAgICAgICAgICB1dGlsLnNodWZmbGUoaW5kZXhBcnJheSk7XG4gICAgICAgIH1cbiAgICAgICAgLy8gQ29udmVydCB0aGUgcG90ZW50aWFsbHkgc2h1ZmZsZWQgaW5kaWNlcyB0byBUZW5zb3IxRCwgdG8gYXZvaWQgdGhlXG4gICAgICAgIC8vIGNvc3Qgb2YgcmVwZWF0ZWQgY3JlYXRpb24gb2YgQXJyYXkxRHMgbGF0ZXIgb24uXG4gICAgICAgIGNvbnN0IGVwb2NoSW5kZXhBcnJheTFEID0gdGVuc29yMWQoaW5kZXhBcnJheSk7XG5cbiAgICAgICAgY29uc3QgYmF0Y2hlcyA9IG1ha2VCYXRjaGVzKG51bVRyYWluU2FtcGxlcywgYmF0Y2hTaXplKTtcbiAgICAgICAgZm9yIChsZXQgYmF0Y2hJbmRleCA9IDA7IGJhdGNoSW5kZXggPCBiYXRjaGVzLmxlbmd0aDsgKytiYXRjaEluZGV4KSB7XG4gICAgICAgICAgY29uc3QgYmF0Y2hMb2dzOiBVbnJlc29sdmVkTG9ncyA9IHt9O1xuICAgICAgICAgIGF3YWl0IGNhbGxiYWNrTGlzdC5vbkJhdGNoQmVnaW4oYmF0Y2hJbmRleCwgYmF0Y2hMb2dzKTtcblxuICAgICAgICAgIHRmYy50aWR5KCgpID0+IHtcbiAgICAgICAgICAgIGNvbnN0IGJhdGNoU3RhcnQgPSBiYXRjaGVzW2JhdGNoSW5kZXhdWzBdO1xuICAgICAgICAgICAgY29uc3QgYmF0Y2hFbmQgPSBiYXRjaGVzW2JhdGNoSW5kZXhdWzFdO1xuICAgICAgICAgICAgY29uc3QgYmF0Y2hJZHMgPSBLLnNsaWNlQWxvbmdGaXJzdEF4aXMoXG4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBlcG9jaEluZGV4QXJyYXkxRCwgYmF0Y2hTdGFydCxcbiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGJhdGNoRW5kIC0gYmF0Y2hTdGFydCkgYXMgVGVuc29yMUQ7XG4gICAgICAgICAgICBiYXRjaExvZ3NbJ2JhdGNoJ10gPSBiYXRjaEluZGV4O1xuICAgICAgICAgICAgYmF0Y2hMb2dzWydzaXplJ10gPSBiYXRjaEVuZCAtIGJhdGNoU3RhcnQ7XG5cbiAgICAgICAgICAgIC8vIFRPRE8oY2Fpcyk6IEluIGlucywgdHJhaW4gZmxhZyBjYW4gYmUgYSBudW1iZXIsIGluc3RlYWQgb2YgYW5cbiAgICAgICAgICAgIC8vICAgVGVuc29yPyBEbyB3ZSBuZWVkIHRvIGhhbmRsZSB0aGlzIGluIHRmanMtbGF5ZXJzP1xuICAgICAgICAgICAgY29uc3QgaW5zQmF0Y2ggPSBzbGljZUFycmF5c0J5SW5kaWNlcyhpbnMsIGJhdGNoSWRzKSBhcyBUZW5zb3JbXTtcbiAgICAgICAgICAgIGNvbnN0IG91dHMgPSBmKGluc0JhdGNoKTtcbiAgICAgICAgICAgIGZvciAobGV0IGkgPSAwOyBpIDwgb3V0TGFiZWxzLmxlbmd0aDsgKytpKSB7XG4gICAgICAgICAgICAgIGNvbnN0IGxhYmVsID0gb3V0TGFiZWxzW2ldO1xuICAgICAgICAgICAgICBjb25zdCBvdXQgPSBvdXRzW2ldO1xuICAgICAgICAgICAgICBiYXRjaExvZ3NbbGFiZWxdID0gb3V0O1xuICAgICAgICAgICAgICB0ZmMua2VlcChvdXQpO1xuICAgICAgICAgICAgICAvLyBUT0RPKGNhaXMpOiBVc2Ugc2NvcGUoKSB0byBhdm9pZCBvd25lcnNoaXAuXG4gICAgICAgICAgICB9XG5cbiAgICAgICAgICAgIGlmIChiYXRjaEluZGV4ID09PSBiYXRjaGVzLmxlbmd0aCAtIDEpIHsgIC8vIExhc3QgYmF0Y2guXG4gICAgICAgICAgICAgIGlmIChkb1ZhbGlkYXRpb24pIHtcbiAgICAgICAgICAgICAgICBjb25zdCB2YWxPdXRzID0gdGhpcy50ZXN0TG9vcCh2YWxGLCB2YWxJbnMsIGJhdGNoU2l6ZSk7XG4gICAgICAgICAgICAgICAgLy8gUG9ydGluZyBOb3RlczogSW4gdGZqcy1sYXllcnMsIHZhbE91dHMgaXMgYWx3YXlzIGFuIEFycmF5LlxuICAgICAgICAgICAgICAgIGZvciAobGV0IGkgPSAwOyBpIDwgb3V0TGFiZWxzLmxlbmd0aDsgKytpKSB7XG4gICAgICAgICAgICAgICAgICBjb25zdCBsYWJlbCA9IG91dExhYmVsc1tpXTtcbiAgICAgICAgICAgICAgICAgIGNvbnN0IG91dCA9IHZhbE91dHNbaV07XG4gICAgICAgICAgICAgICAgICB0ZmMua2VlcChvdXQpO1xuICAgICAgICAgICAgICAgICAgLy8gVE9ETyhjYWlzKTogVXNlIHNjb3BlKCkgdG8gYXZvaWQgb3duZXJzaGlwLlxuICAgICAgICAgICAgICAgICAgZXBvY2hMb2dzWyd2YWxfJyArIGxhYmVsXSA9IG91dDtcbiAgICAgICAgICAgICAgICB9XG4gICAgICAgICAgICAgIH1cbiAgICAgICAgICAgIH1cbiAgICAgICAgICB9KTtcblxuICAgICAgICAgIGF3YWl0IGNhbGxiYWNrTGlzdC5vbkJhdGNoRW5kKGJhdGNoSW5kZXgsIGJhdGNoTG9ncyk7XG4gICAgICAgICAgZGlzcG9zZVRlbnNvcnNJbkxvZ3MoYmF0Y2hMb2dzKTtcblxuICAgICAgICAgIGlmICh0aGlzLnN0b3BUcmFpbmluZ18pIHtcbiAgICAgICAgICAgIGJyZWFrO1xuICAgICAgICAgIH1cbiAgICAgICAgICAvLyBUT0RPKGNhaXMpOiByZXR1cm4gb3V0cyBhcyBsaXN0IG9mIFRlbnNvci5cbiAgICAgICAgfVxuXG4gICAgICAgIGVwb2NoSW5kZXhBcnJheTFELmRpc3Bvc2UoKTtcbiAgICAgIH1cbiAgICAgIC8vIFRPRE8oY2Fpcyk6IFJ1biB2YWxpZGF0aW9uIGF0IHRoZSBlbmQgb2YgdGhlIGVwb2NoLlxuICAgICAgYXdhaXQgY2FsbGJhY2tMaXN0Lm9uRXBvY2hFbmQoZXBvY2gsIGVwb2NoTG9ncyk7XG4gICAgICBpZiAodGhpcy5zdG9wVHJhaW5pbmdfKSB7XG4gICAgICAgIGJyZWFrO1xuICAgICAgfVxuICAgIH1cbiAgICBhd2FpdCBjYWxsYmFja0xpc3Qub25UcmFpbkVuZCgpO1xuXG4gICAgYXdhaXQgdGhpcy5oaXN0b3J5LnN5bmNEYXRhKCk7XG4gICAgcmV0dXJuIHRoaXMuaGlzdG9yeTtcbiAgfVxuXG4gIC8vIFRPRE8oY2Fpcyk6IEFkZCBjb2RlIHNuaXBwZXQgYmVsb3cgd2hlbiBpdCdzIHBvc3NpYmxlIHRvIGluc3RhbnRpYXRlXG4gIC8vICAgYWN0dWFsIGRhdGFzZXQgb2JqZWN0cy5cbiAgLyoqXG4gICAqIFRyYWlucyB0aGUgbW9kZWwgdXNpbmcgYSBkYXRhc2V0IG9iamVjdC5cbiAgICpcbiAgICogQHBhcmFtIGRhdGFzZXQgQSBkYXRhc2V0IG9iamVjdC4gSXRzIGBpdGVyYXRvcigpYCBtZXRob2QgaXMgZXhwZWN0ZWRcbiAgICogICB0byBnZW5lcmF0ZSBhIGRhdGFzZXQgaXRlcmF0b3Igb2JqZWN0LCB0aGUgYG5leHQoKWAgbWV0aG9kIG9mIHdoaWNoXG4gICAqICAgaXMgZXhwZWN0ZWQgdG8gcHJvZHVjZSBkYXRhIGJhdGNoZXMgZm9yIHRyYWluaW5nLiBUaGUgcmV0dXJuIHZhbHVlXG4gICAqICAgb2YgdGhlIGBuZXh0KClgIGNhbGwgb3VnaHQgdG8gY29udGFpbiBhIGJvb2xlYW4gYGRvbmVgIGZpZWxkIGFuZCBhXG4gICAqICAgYHZhbHVlYCBmaWVsZC4gVGhlIGB2YWx1ZWAgZmllbGQgaXMgZXhwZWN0ZWQgdG8gYmUgYW4gYXJyYXkgb2YgdHdvXG4gICAqICAgYHRmLlRlbnNvcmBzIG9yIGFuIGFycmF5IG9mIHR3byBuZXN0ZWQgYHRmLlRlbnNvcmAgc3RydWN0dXJlcy4gVGhlIGZvcm1lclxuICAgKiAgIGNhc2UgaXMgZm9yIG1vZGVscyB3aXRoIGV4YWN0bHkgb25lIGlucHV0IGFuZCBvbmUgb3V0cHV0IChlLmcuXG4gICAqICAgYSBzZXF1ZW50aWFsIG1vZGVsKS4gVGhlIGxhdHRlciBjYXNlIGlzIGZvciBtb2RlbHMgd2l0aCBtdWx0aXBsZVxuICAgKiAgIGlucHV0cyBhbmQvb3IgbXVsdGlwbGUgb3V0cHV0cy5cbiAgICogICBPZiB0aGUgdHdvIGl0ZW1zIGluIHRoZSBhcnJheSwgdGhlIGZpcnN0IGlzIHRoZSBpbnB1dCBmZWF0dXJlKHMpIGFuZFxuICAgKiAgIHRoZSBzZWNvbmQgaXMgdGhlIG91dHB1dCB0YXJnZXQocykuXG4gICAqIEBwYXJhbSBhcmdzIEEgYE1vZGVsRml0RGF0YXNldEFyZ3NgLCBjb250YWluaW5nIG9wdGlvbmFsIGZpZWxkcy5cbiAgICpcbiAgICogQHJldHVybiBBIGBIaXN0b3J5YCBpbnN0YW5jZS4gSXRzIGBoaXN0b3J5YCBhdHRyaWJ1dGUgY29udGFpbnMgYWxsXG4gICAqICAgaW5mb3JtYXRpb24gY29sbGVjdGVkIGR1cmluZyB0cmFpbmluZy5cbiAgICpcbiAgICogQGRvYyB7aGVhZGluZzogJ01vZGVscycsIHN1YmhlYWRpbmc6ICdDbGFzc2VzJ31cbiAgICovXG4gIGFzeW5jIGZpdERhdGFzZXQ8VD4oZGF0YXNldDogRGF0YXNldDxUPiwgYXJnczogTW9kZWxGaXREYXRhc2V0QXJnczxUPik6XG4gICAgICBQcm9taXNlPEhpc3Rvcnk+IHtcbiAgICByZXR1cm4gZml0RGF0YXNldCh0aGlzLCBkYXRhc2V0LCBhcmdzKTtcbiAgfVxuXG4gIC8qKlxuICAgKiBSdW5zIGEgc2luZ2xlIGdyYWRpZW50IHVwZGF0ZSBvbiBhIHNpbmdsZSBiYXRjaCBvZiBkYXRhLlxuICAgKlxuICAgKiBUaGlzIG1ldGhvZCBkaWZmZXJzIGZyb20gYGZpdCgpYCBhbmQgYGZpdERhdGFzZXQoKWAgaW4gdGhlIGZvbGxvd2luZ1xuICAgKiByZWdhcmRzOlxuICAgKiAgIC0gSXQgb3BlcmF0ZXMgb24gZXhhY3RseSBvbmUgYmF0Y2ggb2YgZGF0YS5cbiAgICogICAtIEl0IHJldHVybnMgb25seSB0aGUgbG9zcyBhbmQgbWV0cmljIHZhbHVlcywgaW5zdGVhZCBvZlxuICAgKiAgICAgcmV0dXJuaW5nIHRoZSBiYXRjaC1ieS1iYXRjaCBsb3NzIGFuZCBtZXRyaWMgdmFsdWVzLlxuICAgKiAgIC0gSXQgZG9lc24ndCBzdXBwb3J0IGZpbmUtZ3JhaW5lZCBvcHRpb25zIHN1Y2ggYXMgdmVyYm9zaXR5IGFuZFxuICAgKiAgICAgY2FsbGJhY2tzLlxuICAgKlxuICAgKiBAcGFyYW0geCBJbnB1dCBkYXRhLiBJdCBjb3VsZCBiZSBvbmUgb2YgdGhlIGZvbGxvd2luZzpcbiAgICogICAtIEEgYHRmLlRlbnNvcmAsIG9yIGFuIEFycmF5IG9mIGB0Zi5UZW5zb3JgcyAoaW4gY2FzZSB0aGUgbW9kZWwgaGFzXG4gICAqICAgICBtdWx0aXBsZSBpbnB1dHMpLlxuICAgKiAgIC0gQW4gT2JqZWN0IG1hcHBpbmcgaW5wdXQgbmFtZXMgdG8gY29ycmVzcG9uZGluZyBgdGYuVGVuc29yYCAoaWYgdGhlXG4gICAqICAgICBtb2RlbCBoYXMgbmFtZWQgaW5wdXRzKS5cbiAgICogQHBhcmFtIHkgVGFyZ2V0IGRhdGEuIEl0IGNvdWxkIGJlIGVpdGhlciBhIGB0Zi5UZW5zb3JgIG9yIG11bHRpcGxlXG4gICAqICAgYHRmLlRlbnNvcmBzLiBJdCBzaG91bGQgYmUgY29uc2lzdGVudCB3aXRoIGB4YC5cbiAgICogQHJldHVybnMgVHJhaW5pbmcgbG9zcyBvciBsb3NzZXMgKGluIGNhc2UgdGhlIG1vZGVsIGhhc1xuICAgKiAgIG11bHRpcGxlIG91dHB1dHMpLCBhbG9uZyB3aXRoIG1ldHJpY3MgKGlmIGFueSksIGFzIG51bWJlcnMuXG4gICAqXG4gICAqIEBkb2Mge2hlYWRpbmc6ICdNb2RlbHMnLCBzdWJoZWFkaW5nOiAnQ2xhc3Nlcyd9XG4gICAqL1xuICBhc3luYyB0cmFpbk9uQmF0Y2goXG4gICAgICB4OiBUZW5zb3J8VGVuc29yW118e1tpbnB1dE5hbWU6IHN0cmluZ106IFRlbnNvcn0sXG4gICAgICB5OiBUZW5zb3J8VGVuc29yW118XG4gICAgICB7W2lucHV0TmFtZTogc3RyaW5nXTogVGVuc29yfSk6IFByb21pc2U8bnVtYmVyfG51bWJlcltdPiB7XG4gICAgLy8gVE9ETyhjYWlzKTogU3VwcG9ydCBzYW1wbGVXZWlnaHQgYW5kIGNsYXNzV2VpZ2h0LlxuICAgIC8vIFRPRE8oY2Fpcyk6IFN1cHBvcnQgRGF0YXNldCBvYmplY3RzLlxuICAgIGNvbnN0IHN0YW5kYXJkaXplT3V0ID0gYXdhaXQgdGhpcy5zdGFuZGFyZGl6ZVVzZXJEYXRhKHgsIHkpO1xuICAgIGNvbnN0IGlucHV0cyA9IHN0YW5kYXJkaXplT3V0WzBdO1xuICAgIGNvbnN0IHRhcmdldHMgPSBzdGFuZGFyZGl6ZU91dFsxXTtcbiAgICBjb25zdCB0cmFpbkZ1bmN0aW9uID0gdGhpcy5tYWtlVHJhaW5GdW5jdGlvbigpO1xuICAgIGNvbnN0IGxvc3NlcyA9IHRyYWluRnVuY3Rpb24oaW5wdXRzLmNvbmNhdCh0YXJnZXRzKSk7XG4gICAgY29uc3QgbG9zc1ZhbHVlczogbnVtYmVyW10gPSBbXTtcbiAgICBmb3IgKGNvbnN0IGxvc3Mgb2YgbG9zc2VzKSB7XG4gICAgICBjb25zdCB2ID0gYXdhaXQgbG9zcy5kYXRhKCk7XG4gICAgICBsb3NzVmFsdWVzLnB1c2godlswXSk7XG4gICAgfVxuICAgIHRmYy5kaXNwb3NlKGxvc3Nlcyk7XG4gICAgZGlzcG9zZU5ld1RlbnNvcnMoc3RhbmRhcmRpemVPdXRbMF0sIHgpO1xuICAgIGRpc3Bvc2VOZXdUZW5zb3JzKHN0YW5kYXJkaXplT3V0WzFdLCB5KTtcbiAgICByZXR1cm4gc2luZ2xldG9uT3JBcnJheShsb3NzVmFsdWVzKTtcbiAgfVxuXG4gIC8qKlxuICAgKiBFeHRyYWN0IHdlaWdodCB2YWx1ZXMgb2YgdGhlIG1vZGVsLlxuICAgKlxuICAgKiBAcGFyYW0gY29uZmlnOiBBbiBpbnN0YW5jZSBvZiBgaW8uU2F2ZUNvbmZpZ2AsIHdoaWNoIHNwZWNpZmllc1xuICAgKiBtb2RlbC1zYXZpbmcgb3B0aW9ucyBzdWNoIGFzIHdoZXRoZXIgb25seSB0cmFpbmFibGUgd2VpZ2h0cyBhcmUgdG8gYmVcbiAgICogc2F2ZWQuXG4gICAqIEByZXR1cm5zIEEgYE5hbWVkVGVuc29yTWFwYCBtYXBwaW5nIG9yaWdpbmFsIHdlaWdodCBuYW1lcyAoaS5lLixcbiAgICogICBub24tdW5pcXVlaWZpZWQgd2VpZ2h0IG5hbWVzKSB0byB0aGVpciB2YWx1ZXMuXG4gICAqL1xuICBwcm90ZWN0ZWQgZ2V0TmFtZWRXZWlnaHRzKGNvbmZpZz86IGlvLlNhdmVDb25maWcpOiBOYW1lZFRlbnNvcltdIHtcbiAgICBjb25zdCBuYW1lZFdlaWdodHM6IE5hbWVkVGVuc29yW10gPSBbXTtcblxuICAgIGNvbnN0IHRyYWluYWJsZU9ubHkgPSBjb25maWcgIT0gbnVsbCAmJiBjb25maWcudHJhaW5hYmxlT25seTtcbiAgICBjb25zdCB3ZWlnaHRzID0gdHJhaW5hYmxlT25seSA/IHRoaXMudHJhaW5hYmxlV2VpZ2h0cyA6IHRoaXMud2VpZ2h0cztcbiAgICBjb25zdCB3ZWlnaHRWYWx1ZXMgPSB0aGlzLmdldFdlaWdodHModHJhaW5hYmxlT25seSk7XG4gICAgZm9yIChsZXQgaSA9IDA7IGkgPCB3ZWlnaHRzLmxlbmd0aDsgKytpKSB7XG4gICAgICBpZiAodHJhaW5hYmxlT25seSAmJiAhd2VpZ2h0c1tpXS50cmFpbmFibGUpIHtcbiAgICAgICAgLy8gT3B0aW9uYWxseSBza2lwIG5vbi10cmFpbmFibGUgd2VpZ2h0cy5cbiAgICAgICAgY29udGludWU7XG4gICAgICB9XG4gICAgICBuYW1lZFdlaWdodHMucHVzaChcbiAgICAgICAgICB7bmFtZTogd2VpZ2h0c1tpXS5vcmlnaW5hbE5hbWUsIHRlbnNvcjogd2VpZ2h0VmFsdWVzW2ldfSk7XG4gICAgfVxuICAgIHJldHVybiBuYW1lZFdlaWdodHM7XG4gIH1cblxuICAvKipcbiAgICogU2V0dGVyIHVzZWQgZm9yIGZvcmNlIHN0b3BwaW5nIG9mIExheWVyc01vZGVsLmZpdCgpIChpLmUuLCB0cmFpbmluZykuXG4gICAqXG4gICAqIEV4YW1wbGU6XG4gICAqXG4gICAqIGBgYGpzXG4gICAqIGNvbnN0IGlucHV0ID0gdGYuaW5wdXQoe3NoYXBlOiBbMTBdfSk7XG4gICAqIGNvbnN0IG91dHB1dCA9IHRmLmxheWVycy5kZW5zZSh7dW5pdHM6IDF9KS5hcHBseShpbnB1dCk7XG4gICAqIGNvbnN0IG1vZGVsID0gdGYubW9kZWwoe2lucHV0czogW2lucHV0XSwgb3V0cHV0czogW291dHB1dF19KTtcbiAgICogbW9kZWwuY29tcGlsZSh7bG9zczogJ21lYW5TcXVhcmVkRXJyb3InLCBvcHRpbWl6ZXI6ICdzZ2QnfSk7XG4gICAqIGNvbnN0IHhzID0gdGYub25lcyhbOCwgMTBdKTtcbiAgICogY29uc3QgeXMgPSB0Zi56ZXJvcyhbOCwgMV0pO1xuICAgKlxuICAgKiBjb25zdCBoaXN0b3J5ID0gYXdhaXQgbW9kZWwuZml0KHhzLCB5cywge1xuICAgKiAgIGVwb2NoczogMTAsXG4gICAqICAgY2FsbGJhY2tzOiB7XG4gICAqICAgICBvbkVwb2NoRW5kOiBhc3luYyAoZXBvY2gsIGxvZ3MpID0+IHtcbiAgICogICAgICAgaWYgKGVwb2NoID09PSAyKSB7XG4gICAqICAgICAgICAgbW9kZWwuc3RvcFRyYWluaW5nID0gdHJ1ZTtcbiAgICogICAgICAgfVxuICAgKiAgICAgfVxuICAgKiAgIH1cbiAgICogfSk7XG4gICAqXG4gICAqIC8vIFRoZXJlIHNob3VsZCBiZSBvbmx5IDMgdmFsdWVzIGluIHRoZSBsb3NzIGFycmF5LCBpbnN0ZWFkIG9mIDEwXG4gICAqIHZhbHVlcyxcbiAgICogLy8gZHVlIHRvIHRoZSBzdG9wcGluZyBhZnRlciAzIGVwb2Nocy5cbiAgICogY29uc29sZS5sb2coaGlzdG9yeS5oaXN0b3J5Lmxvc3MpO1xuICAgKiBgYGBcbiAgICovXG4gIHNldCBzdG9wVHJhaW5pbmcoc3RvcDogYm9vbGVhbikge1xuICAgIHRoaXMuc3RvcFRyYWluaW5nXyA9IHN0b3A7XG4gIH1cblxuICBnZXQgc3RvcFRyYWluaW5nKCk6IGJvb2xlYW4ge1xuICAgIHJldHVybiB0aGlzLnN0b3BUcmFpbmluZ187XG4gIH1cblxuICBnZXQgb3B0aW1pemVyKCk6IE9wdGltaXplciB7XG4gICAgcmV0dXJuIHRoaXMub3B0aW1pemVyXztcbiAgfVxuXG4gIHNldCBvcHRpbWl6ZXIob3B0aW1pemVyOiBPcHRpbWl6ZXIpIHtcbiAgICBpZiAodGhpcy5vcHRpbWl6ZXJfICE9PSBvcHRpbWl6ZXIpIHtcbiAgICAgIHRoaXMub3B0aW1pemVyXyA9IG9wdGltaXplcjtcbiAgICAgIHRoaXMuaXNPcHRpbWl6ZXJPd25lZCA9IGZhbHNlO1xuICAgIH1cbiAgfVxuXG4gIG92ZXJyaWRlIGRpc3Bvc2UoKTogRGlzcG9zZVJlc3VsdCB7XG4gICAgY29uc3QgcmVzdWx0ID0gc3VwZXIuZGlzcG9zZSgpO1xuICAgIGlmIChyZXN1bHQucmVmQ291bnRBZnRlckRpc3Bvc2UgPT09IDAgJiYgdGhpcy5vcHRpbWl6ZXIgIT0gbnVsbCAmJlxuICAgICAgICB0aGlzLmlzT3B0aW1pemVyT3duZWQpIHtcbiAgICAgIGNvbnN0IG51bVRlbnNvcnNCZWZvcmVPcHRtaXplckRpc3Bvc2FsID0gdGZjLm1lbW9yeSgpLm51bVRlbnNvcnM7XG4gICAgICB0aGlzLm9wdGltaXplcl8uZGlzcG9zZSgpO1xuICAgICAgcmVzdWx0Lm51bURpc3Bvc2VkVmFyaWFibGVzICs9XG4gICAgICAgICAgbnVtVGVuc29yc0JlZm9yZU9wdG1pemVyRGlzcG9zYWwgLSB0ZmMubWVtb3J5KCkubnVtVGVuc29ycztcbiAgICB9XG4gICAgcmV0dXJuIHJlc3VsdDtcbiAgfVxuXG4gIHByaXZhdGUgZ2V0TG9zc0lkZW50aWZpZXJzKCk6IExvc3NJZGVudGlmaWVyfExvc3NJZGVudGlmaWVyW118XG4gICAgICB7W291dHB1dE5hbWU6IHN0cmluZ106IExvc3NJZGVudGlmaWVyfSB7XG4gICAgbGV0IGxvc3NOYW1lczogTG9zc0lkZW50aWZpZXJ8TG9zc0lkZW50aWZpZXJbXXxcbiAgICAgICAge1tvdXRwdXROYW1lOiBzdHJpbmddOiBMb3NzSWRlbnRpZmllcn07XG4gICAgaWYgKHR5cGVvZiB0aGlzLmxvc3MgPT09ICdzdHJpbmcnKSB7XG4gICAgICBsb3NzTmFtZXMgPSB0b1NuYWtlQ2FzZSh0aGlzLmxvc3MpIGFzIExvc3NJZGVudGlmaWVyO1xuICAgIH0gZWxzZSBpZiAoQXJyYXkuaXNBcnJheSh0aGlzLmxvc3MpKSB7XG4gICAgICBmb3IgKGNvbnN0IGxvc3Mgb2YgdGhpcy5sb3NzKSB7XG4gICAgICAgIGlmICh0eXBlb2YgbG9zcyAhPT0gJ3N0cmluZycpIHtcbiAgICAgICAgICB0aHJvdyBuZXcgRXJyb3IoJ1NlcmlhbGl6YXRpb24gb2Ygbm9uLXN0cmluZyBsb3NzIGlzIG5vdCBzdXBwb3J0ZWQuJyk7XG4gICAgICAgIH1cbiAgICAgIH1cbiAgICAgIGxvc3NOYW1lcyA9ICh0aGlzLmxvc3MgYXMgc3RyaW5nW10pLm1hcChuYW1lID0+IHRvU25ha2VDYXNlKG5hbWUpKSBhc1xuICAgICAgICAgIExvc3NJZGVudGlmaWVyW107XG4gICAgfSBlbHNlIHtcbiAgICAgIGNvbnN0IG91dHB1dE5hbWVzID0gT2JqZWN0LmtleXModGhpcy5sb3NzKTtcbiAgICAgIGxvc3NOYW1lcyA9IHt9IGFzIHtbb3V0cHV0TmFtZTogc3RyaW5nXTogTG9zc0lkZW50aWZpZXJ9O1xuICAgICAgY29uc3QgbG9zc2VzID1cbiAgICAgICAgICB0aGlzLmxvc3MgYXMge1tvdXRwdXROYW1lOiBzdHJpbmddOiBMb3NzT3JNZXRyaWNGbiB8IHN0cmluZ307XG4gICAgICBmb3IgKGNvbnN0IG91dHB1dE5hbWUgb2Ygb3V0cHV0TmFtZXMpIHtcbiAgICAgICAgaWYgKHR5cGVvZiBsb3NzZXNbb3V0cHV0TmFtZV0gPT09ICdzdHJpbmcnKSB7XG4gICAgICAgICAgbG9zc05hbWVzW291dHB1dE5hbWVdID1cbiAgICAgICAgICAgICAgdG9TbmFrZUNhc2UobG9zc2VzW291dHB1dE5hbWVdIGFzIHN0cmluZykgYXMgTG9zc0lkZW50aWZpZXI7XG4gICAgICAgIH0gZWxzZSB7XG4gICAgICAgICAgdGhyb3cgbmV3IEVycm9yKCdTZXJpYWxpemF0aW9uIG9mIG5vbi1zdHJpbmcgbG9zcyBpcyBub3Qgc3VwcG9ydGVkLicpO1xuICAgICAgICB9XG4gICAgICB9XG4gICAgfVxuICAgIHJldHVybiBsb3NzTmFtZXM7XG4gIH1cblxuICBwcml2YXRlIGdldE1ldHJpY0lkZW50aWZpZXJzKCk6IE1ldHJpY3NJZGVudGlmaWVyW118XG4gICAgICB7W2tleTogc3RyaW5nXTogTWV0cmljc0lkZW50aWZpZXJ9IHtcbiAgICBpZiAodHlwZW9mIHRoaXMubWV0cmljcyA9PT0gJ3N0cmluZycgfHxcbiAgICAgICAgdHlwZW9mIHRoaXMubWV0cmljcyA9PT0gJ2Z1bmN0aW9uJykge1xuICAgICAgcmV0dXJuIFt0b1NuYWtlQ2FzZShNZXRyaWNzLmdldExvc3NPck1ldHJpY05hbWUodGhpcy5tZXRyaWNzKSldO1xuICAgIH0gZWxzZSBpZiAoQXJyYXkuaXNBcnJheSh0aGlzLm1ldHJpY3MpKSB7XG4gICAgICByZXR1cm4gdGhpcy5tZXRyaWNzLm1hcChcbiAgICAgICAgICBtZXRyaWMgPT4gdG9TbmFrZUNhc2UoTWV0cmljcy5nZXRMb3NzT3JNZXRyaWNOYW1lKG1ldHJpYykpKTtcbiAgICB9IGVsc2Uge1xuICAgICAgY29uc3QgbWV0cmljc0lkZW50aWZpZXJzOiB7W2tleTogc3RyaW5nXTogTWV0cmljc0lkZW50aWZpZXJ9ID0ge307XG4gICAgICBmb3IgKGNvbnN0IGtleSBpbiB0aGlzLm1ldHJpY3MpIHtcbiAgICAgICAgbWV0cmljc0lkZW50aWZpZXJzW2tleV0gPVxuICAgICAgICAgICAgdG9TbmFrZUNhc2UoTWV0cmljcy5nZXRMb3NzT3JNZXRyaWNOYW1lKHRoaXMubWV0cmljc1trZXldKSk7XG4gICAgICB9XG4gICAgICByZXR1cm4gbWV0cmljc0lkZW50aWZpZXJzO1xuICAgIH1cbiAgfVxuXG4gIHByb3RlY3RlZCBnZXRUcmFpbmluZ0NvbmZpZygpOiBUcmFpbmluZ0NvbmZpZyB7XG4gICAgcmV0dXJuIHtcbiAgICAgIGxvc3M6IHRoaXMuZ2V0TG9zc0lkZW50aWZpZXJzKCksXG4gICAgICBtZXRyaWNzOiB0aGlzLmdldE1ldHJpY0lkZW50aWZpZXJzKCksXG4gICAgICBvcHRpbWl6ZXJfY29uZmlnOiB7XG4gICAgICAgIGNsYXNzX25hbWU6IHRoaXMub3B0aW1pemVyLmdldENsYXNzTmFtZSgpLFxuICAgICAgICBjb25maWc6IHRoaXMub3B0aW1pemVyLmdldENvbmZpZygpXG4gICAgICB9IGFzIE9wdGltaXplclNlcmlhbGl6YXRpb25cbiAgICB9O1xuICAgIC8vIFRPRE8oY2Fpcyk6IEFkZCB3ZWlnaHRfbWV0cmljcyB3aGVuIHRoZXkgYXJlIHN1cHBvcnRlZC5cbiAgICAvLyBUT0RPKGNhaXMpOiBBZGQgc2FtcGxlX3dlaWdodF9tb2RlIHdoZW4gaXQncyBzdXBwb3J0ZWQuXG4gICAgLy8gVE9ETyhjYWlzKTogQWRkIGxvc3Nfd2VpZ2h0cyB3aGVuIGl0J3Mgc3VwcG9ydGVkLlxuICB9XG5cbiAgbG9hZFRyYWluaW5nQ29uZmlnKHRyYWluaW5nQ29uZmlnOiBUcmFpbmluZ0NvbmZpZykge1xuICAgIGlmICh0cmFpbmluZ0NvbmZpZy53ZWlnaHRlZF9tZXRyaWNzICE9IG51bGwpIHtcbiAgICAgIHRocm93IG5ldyBFcnJvcignTG9hZGluZyB3ZWlnaHRfbWV0cmljcyBpcyBub3Qgc3VwcG9ydGVkIHlldC4nKTtcbiAgICB9XG4gICAgaWYgKHRyYWluaW5nQ29uZmlnLmxvc3Nfd2VpZ2h0cyAhPSBudWxsKSB7XG4gICAgICB0aHJvdyBuZXcgRXJyb3IoJ0xvYWRpbmcgbG9zc193ZWlnaHRzIGlzIG5vdCBzdXBwb3J0ZWQgeWV0LicpO1xuICAgIH1cbiAgICBpZiAodHJhaW5pbmdDb25maWcuc2FtcGxlX3dlaWdodF9tb2RlICE9IG51bGwpIHtcbiAgICAgIHRocm93IG5ldyBFcnJvcignTG9hZGluZyBzYW1wbGVfd2VpZ2h0X21vZGUgaXMgbm90IHN1cHBvcnRlZCB5ZXQuJyk7XG4gICAgfVxuXG4gICAgY29uc3QgdHNDb25maWcgPSBjb252ZXJ0UHl0aG9uaWNUb1RzKHRyYWluaW5nQ29uZmlnLm9wdGltaXplcl9jb25maWcpIGFzXG4gICAgICAgIHNlcmlhbGl6YXRpb24uQ29uZmlnRGljdDtcbiAgICBjb25zdCBvcHRpbWl6ZXIgPSBkZXNlcmlhbGl6ZSh0c0NvbmZpZykgYXMgT3B0aW1pemVyO1xuXG4gICAgbGV0IGxvc3M7XG4gICAgaWYgKHR5cGVvZiB0cmFpbmluZ0NvbmZpZy5sb3NzID09PSAnc3RyaW5nJykge1xuICAgICAgbG9zcyA9IHRvQ2FtZWxDYXNlKHRyYWluaW5nQ29uZmlnLmxvc3MpO1xuICAgIH0gZWxzZSBpZiAoQXJyYXkuaXNBcnJheSh0cmFpbmluZ0NvbmZpZy5sb3NzKSkge1xuICAgICAgbG9zcyA9IHRyYWluaW5nQ29uZmlnLmxvc3MubWFwKGxvc3NFbnRyeSA9PiB0b0NhbWVsQ2FzZShsb3NzRW50cnkpKTtcbiAgICB9IGVsc2UgaWYgKHRyYWluaW5nQ29uZmlnLmxvc3MgIT0gbnVsbCkge1xuICAgICAgbG9zcyA9IHt9IGFzIHtbb3V0cHV0TmFtZTogc3RyaW5nXTogTG9zc0lkZW50aWZpZXJ9O1xuICAgICAgZm9yIChjb25zdCBrZXkgaW4gdHJhaW5pbmdDb25maWcubG9zcykge1xuICAgICAgICBsb3NzW2tleV0gPSB0b0NhbWVsQ2FzZSh0cmFpbmluZ0NvbmZpZy5sb3NzW2tleV0pIGFzIExvc3NJZGVudGlmaWVyO1xuICAgICAgfVxuICAgIH1cblxuICAgIGxldCBtZXRyaWNzO1xuICAgIGlmIChBcnJheS5pc0FycmF5KHRyYWluaW5nQ29uZmlnLm1ldHJpY3MpKSB7XG4gICAgICBtZXRyaWNzID0gdHJhaW5pbmdDb25maWcubWV0cmljcy5tYXAobWV0cmljID0+IHRvQ2FtZWxDYXNlKG1ldHJpYykpO1xuICAgIH0gZWxzZSBpZiAodHJhaW5pbmdDb25maWcubWV0cmljcyAhPSBudWxsKSB7XG4gICAgICBtZXRyaWNzID0ge30gYXMge1tvdXRwdXROYW1lOiBzdHJpbmddOiBNZXRyaWNzSWRlbnRpZmllcn07XG4gICAgICBmb3IgKGNvbnN0IGtleSBpbiB0cmFpbmluZ0NvbmZpZy5tZXRyaWNzKSB7XG4gICAgICAgIG1ldHJpY3Nba2V5XSA9IHRvQ2FtZWxDYXNlKHRyYWluaW5nQ29uZmlnLm1ldHJpY3Nba2V5XSk7XG4gICAgICB9XG4gICAgfVxuXG4gICAgdGhpcy5jb21waWxlKHtsb3NzLCBtZXRyaWNzLCBvcHRpbWl6ZXJ9KTtcbiAgfVxuXG4gIC8qKlxuICAgKiBTYXZlIHRoZSBjb25maWd1cmF0aW9uIGFuZC9vciB3ZWlnaHRzIG9mIHRoZSBMYXllcnNNb2RlbC5cbiAgICpcbiAgICogQW4gYElPSGFuZGxlcmAgaXMgYW4gb2JqZWN0IHRoYXQgaGFzIGEgYHNhdmVgIG1ldGhvZCBvZiB0aGUgcHJvcGVyXG4gICAqIHNpZ25hdHVyZSBkZWZpbmVkLiBUaGUgYHNhdmVgIG1ldGhvZCBtYW5hZ2VzIHRoZSBzdG9yaW5nIG9yXG4gICAqIHRyYW5zbWlzc2lvbiBvZiBzZXJpYWxpemVkIGRhdGEgKFwiYXJ0aWZhY3RzXCIpIHRoYXQgcmVwcmVzZW50IHRoZVxuICAgKiBtb2RlbCdzIHRvcG9sb2d5IGFuZCB3ZWlnaHRzIG9udG8gb3IgdmlhIGEgc3BlY2lmaWMgbWVkaXVtLCBzdWNoIGFzXG4gICAqIGZpbGUgZG93bmxvYWRzLCBsb2NhbCBzdG9yYWdlLCBJbmRleGVkREIgaW4gdGhlIHdlYiBicm93c2VyIGFuZCBIVFRQXG4gICAqIHJlcXVlc3RzIHRvIGEgc2VydmVyLiBUZW5zb3JGbG93LmpzIHByb3ZpZGVzIGBJT0hhbmRsZXJgXG4gICAqIGltcGxlbWVudGF0aW9ucyBmb3IgYSBudW1iZXIgb2YgZnJlcXVlbnRseSB1c2VkIHNhdmluZyBtZWRpdW1zLCBzdWNoIGFzXG4gICAqIGB0Zi5pby5icm93c2VyRG93bmxvYWRzYCBhbmQgYHRmLmlvLmJyb3dzZXJMb2NhbFN0b3JhZ2VgLiBTZWUgYHRmLmlvYFxuICAgKiBmb3IgbW9yZSBkZXRhaWxzLlxuICAgKlxuICAgKiBUaGlzIG1ldGhvZCBhbHNvIGFsbG93cyB5b3UgdG8gcmVmZXIgdG8gY2VydGFpbiB0eXBlcyBvZiBgSU9IYW5kbGVyYHNcbiAgICogYXMgVVJMLWxpa2Ugc3RyaW5nIHNob3J0Y3V0cywgc3VjaCBhcyAnbG9jYWxzdG9yYWdlOi8vJyBhbmRcbiAgICogJ2luZGV4ZWRkYjovLycuXG4gICAqXG4gICAqIEV4YW1wbGUgMTogU2F2ZSBgbW9kZWxgJ3MgdG9wb2xvZ3kgYW5kIHdlaWdodHMgdG8gYnJvd3NlciBbbG9jYWxcbiAgICogc3RvcmFnZV0oaHR0cHM6Ly9kZXZlbG9wZXIubW96aWxsYS5vcmcvZW4tVVMvZG9jcy9XZWIvQVBJL1dpbmRvdy9sb2NhbFN0b3JhZ2UpO1xuICAgKiB0aGVuIGxvYWQgaXQgYmFjay5cbiAgICpcbiAgICogYGBganNcbiAgICogY29uc3QgbW9kZWwgPSB0Zi5zZXF1ZW50aWFsKFxuICAgKiAgICAge2xheWVyczogW3RmLmxheWVycy5kZW5zZSh7dW5pdHM6IDEsIGlucHV0U2hhcGU6IFszXX0pXX0pO1xuICAgKiBjb25zb2xlLmxvZygnUHJlZGljdGlvbiBmcm9tIG9yaWdpbmFsIG1vZGVsOicpO1xuICAgKiBtb2RlbC5wcmVkaWN0KHRmLm9uZXMoWzEsIDNdKSkucHJpbnQoKTtcbiAgICpcbiAgICogY29uc3Qgc2F2ZVJlc3VsdHMgPSBhd2FpdCBtb2RlbC5zYXZlKCdsb2NhbHN0b3JhZ2U6Ly9teS1tb2RlbC0xJyk7XG4gICAqXG4gICAqIGNvbnN0IGxvYWRlZE1vZGVsID0gYXdhaXQgdGYubG9hZExheWVyc01vZGVsKCdsb2NhbHN0b3JhZ2U6Ly9teS1tb2RlbC0xJyk7XG4gICAqIGNvbnNvbGUubG9nKCdQcmVkaWN0aW9uIGZyb20gbG9hZGVkIG1vZGVsOicpO1xuICAgKiBsb2FkZWRNb2RlbC5wcmVkaWN0KHRmLm9uZXMoWzEsIDNdKSkucHJpbnQoKTtcbiAgICogYGBgXG4gICAqXG4gICAqIEV4YW1wbGUgMi4gU2F2aW5nIGBtb2RlbGAncyB0b3BvbG9neSBhbmQgd2VpZ2h0cyB0byBicm93c2VyXG4gICAqIFtJbmRleGVkREJdKGh0dHBzOi8vZGV2ZWxvcGVyLm1vemlsbGEub3JnL2VuLVVTL2RvY3MvV2ViL0FQSS9JbmRleGVkREJfQVBJKTtcbiAgICogdGhlbiBsb2FkIGl0IGJhY2suXG4gICAqXG4gICAqIGBgYGpzXG4gICAqIGNvbnN0IG1vZGVsID0gdGYuc2VxdWVudGlhbChcbiAgICogICAgIHtsYXllcnM6IFt0Zi5sYXllcnMuZGVuc2Uoe3VuaXRzOiAxLCBpbnB1dFNoYXBlOiBbM119KV19KTtcbiAgICogY29uc29sZS5sb2coJ1ByZWRpY3Rpb24gZnJvbSBvcmlnaW5hbCBtb2RlbDonKTtcbiAgICogbW9kZWwucHJlZGljdCh0Zi5vbmVzKFsxLCAzXSkpLnByaW50KCk7XG4gICAqXG4gICAqIGNvbnN0IHNhdmVSZXN1bHRzID0gYXdhaXQgbW9kZWwuc2F2ZSgnaW5kZXhlZGRiOi8vbXktbW9kZWwtMScpO1xuICAgKlxuICAgKiBjb25zdCBsb2FkZWRNb2RlbCA9IGF3YWl0IHRmLmxvYWRMYXllcnNNb2RlbCgnaW5kZXhlZGRiOi8vbXktbW9kZWwtMScpO1xuICAgKiBjb25zb2xlLmxvZygnUHJlZGljdGlvbiBmcm9tIGxvYWRlZCBtb2RlbDonKTtcbiAgICogbG9hZGVkTW9kZWwucHJlZGljdCh0Zi5vbmVzKFsxLCAzXSkpLnByaW50KCk7XG4gICAqIGBgYFxuICAgKlxuICAgKiBFeGFtcGxlIDMuIFNhdmluZyBgbW9kZWxgJ3MgdG9wb2xvZ3kgYW5kIHdlaWdodHMgYXMgdHdvIGZpbGVzXG4gICAqIChgbXktbW9kZWwtMS5qc29uYCBhbmQgYG15LW1vZGVsLTEud2VpZ2h0cy5iaW5gKSBkb3dubG9hZGVkIGZyb21cbiAgICogYnJvd3Nlci5cbiAgICpcbiAgICogYGBganNcbiAgICogY29uc3QgbW9kZWwgPSB0Zi5zZXF1ZW50aWFsKFxuICAgKiAgICAge2xheWVyczogW3RmLmxheWVycy5kZW5zZSh7dW5pdHM6IDEsIGlucHV0U2hhcGU6IFszXX0pXX0pO1xuICAgKiBjb25zdCBzYXZlUmVzdWx0cyA9IGF3YWl0IG1vZGVsLnNhdmUoJ2Rvd25sb2FkczovL215LW1vZGVsLTEnKTtcbiAgICogYGBgXG4gICAqXG4gICAqIEV4YW1wbGUgNC4gU2VuZCAgYG1vZGVsYCdzIHRvcG9sb2d5IGFuZCB3ZWlnaHRzIHRvIGFuIEhUVFAgc2VydmVyLlxuICAgKiBTZWUgdGhlIGRvY3VtZW50YXRpb24gb2YgYHRmLmlvLmh0dHBgIGZvciBtb3JlIGRldGFpbHNcbiAgICogaW5jbHVkaW5nIHNwZWNpZnlpbmcgcmVxdWVzdCBwYXJhbWV0ZXJzIGFuZCBpbXBsZW1lbnRhdGlvbiBvZiB0aGVcbiAgICogc2VydmVyLlxuICAgKlxuICAgKiBgYGBqc1xuICAgKiBjb25zdCBtb2RlbCA9IHRmLnNlcXVlbnRpYWwoXG4gICAqICAgICB7bGF5ZXJzOiBbdGYubGF5ZXJzLmRlbnNlKHt1bml0czogMSwgaW5wdXRTaGFwZTogWzNdfSldfSk7XG4gICAqIGNvbnN0IHNhdmVSZXN1bHRzID0gYXdhaXQgbW9kZWwuc2F2ZSgnaHR0cDovL215LXNlcnZlci9tb2RlbC91cGxvYWQnKTtcbiAgICogYGBgXG4gICAqXG4gICAqIEBwYXJhbSBoYW5kbGVyT3JVUkwgQW4gaW5zdGFuY2Ugb2YgYElPSGFuZGxlcmAgb3IgYSBVUkwtbGlrZSxcbiAgICogc2NoZW1lLWJhc2VkIHN0cmluZyBzaG9ydGN1dCBmb3IgYElPSGFuZGxlcmAuXG4gICAqIEBwYXJhbSBjb25maWcgT3B0aW9ucyBmb3Igc2F2aW5nIHRoZSBtb2RlbC5cbiAgICogQHJldHVybnMgQSBgUHJvbWlzZWAgb2YgYFNhdmVSZXN1bHRgLCB3aGljaCBzdW1tYXJpemVzIHRoZSByZXN1bHQgb2ZcbiAgICogdGhlIHNhdmluZywgc3VjaCBhcyBieXRlIHNpemVzIG9mIHRoZSBzYXZlZCBhcnRpZmFjdHMgZm9yIHRoZSBtb2RlbCdzXG4gICAqICAgdG9wb2xvZ3kgYW5kIHdlaWdodCB2YWx1ZXMuXG4gICAqXG4gICAqIEBkb2Mge2hlYWRpbmc6ICdNb2RlbHMnLCBzdWJoZWFkaW5nOiAnQ2xhc3NlcycsIGlnbm9yZUNJOiB0cnVlfVxuICAgKi9cbiAgYXN5bmMgc2F2ZShoYW5kbGVyT3JVUkw6IGlvLklPSGFuZGxlcnxzdHJpbmcsIGNvbmZpZz86IGlvLlNhdmVDb25maWcpOlxuICAgICAgUHJvbWlzZTxpby5TYXZlUmVzdWx0PiB7XG4gICAgaWYgKHR5cGVvZiBoYW5kbGVyT3JVUkwgPT09ICdzdHJpbmcnKSB7XG4gICAgICBjb25zdCBoYW5kbGVycyA9IGlvLmdldFNhdmVIYW5kbGVycyhoYW5kbGVyT3JVUkwpO1xuICAgICAgaWYgKGhhbmRsZXJzLmxlbmd0aCA9PT0gMCkge1xuICAgICAgICB0aHJvdyBuZXcgVmFsdWVFcnJvcihcbiAgICAgICAgICAgIGBDYW5ub3QgZmluZCBhbnkgc2F2ZSBoYW5kbGVycyBmb3IgVVJMICcke2hhbmRsZXJPclVSTH0nYCk7XG4gICAgICB9IGVsc2UgaWYgKGhhbmRsZXJzLmxlbmd0aCA+IDEpIHtcbiAgICAgICAgdGhyb3cgbmV3IFZhbHVlRXJyb3IoXG4gICAgICAgICAgICBgRm91bmQgbW9yZSB0aGFuIG9uZSAoJHtoYW5kbGVycy5sZW5ndGh9KSBzYXZlIGhhbmRsZXJzIGZvciBgICtcbiAgICAgICAgICAgIGBVUkwgJyR7aGFuZGxlck9yVVJMfSdgKTtcbiAgICAgIH1cbiAgICAgIGhhbmRsZXJPclVSTCA9IGhhbmRsZXJzWzBdO1xuICAgIH1cbiAgICBpZiAoaGFuZGxlck9yVVJMLnNhdmUgPT0gbnVsbCkge1xuICAgICAgdGhyb3cgbmV3IFZhbHVlRXJyb3IoXG4gICAgICAgICAgJ0xheWVyc01vZGVsLnNhdmUoKSBjYW5ub3QgcHJvY2VlZCBiZWNhdXNlIHRoZSBJT0hhbmRsZXIgJyArXG4gICAgICAgICAgJ3Byb3ZpZGVkIGRvZXMgbm90IGhhdmUgdGhlIGBzYXZlYCBhdHRyaWJ1dGUgZGVmaW5lZC4nKTtcbiAgICB9XG5cbiAgICBjb25zdCB3ZWlnaHREYXRhQW5kU3BlY3MgPVxuICAgICAgICBhd2FpdCBpby5lbmNvZGVXZWlnaHRzKHRoaXMuZ2V0TmFtZWRXZWlnaHRzKGNvbmZpZykpO1xuXG4gICAgY29uc3QgcmV0dXJuU3RyaW5nID0gZmFsc2U7XG4gICAgY29uc3QgdW51c2VkQXJnOiB7fSA9IG51bGw7XG4gICAgY29uc3QgbW9kZWxDb25maWcgPSB0aGlzLnRvSlNPTih1bnVzZWRBcmcsIHJldHVyblN0cmluZyk7XG4gICAgY29uc3QgbW9kZWxBcnRpZmFjdHM6IGlvLk1vZGVsQXJ0aWZhY3RzID0ge1xuICAgICAgbW9kZWxUb3BvbG9neTogbW9kZWxDb25maWcsXG4gICAgICBmb3JtYXQ6IExBWUVSU19NT0RFTF9GT1JNQVRfTkFNRSxcbiAgICAgIGdlbmVyYXRlZEJ5OiBgVGVuc29yRmxvdy5qcyB0ZmpzLWxheWVycyB2JHt2ZXJzaW9ufWAsXG4gICAgICBjb252ZXJ0ZWRCeTogbnVsbCxcbiAgICB9O1xuXG4gICAgY29uc3QgaW5jbHVkZU9wdGltaXplciA9IGNvbmZpZyA9PSBudWxsID8gZmFsc2UgOiBjb25maWcuaW5jbHVkZU9wdGltaXplcjtcbiAgICBpZiAoaW5jbHVkZU9wdGltaXplciAmJiB0aGlzLm9wdGltaXplciAhPSBudWxsKSB7XG4gICAgICBtb2RlbEFydGlmYWN0cy50cmFpbmluZ0NvbmZpZyA9IHRoaXMuZ2V0VHJhaW5pbmdDb25maWcoKTtcbiAgICAgIGNvbnN0IHdlaWdodFR5cGUgPSAnb3B0aW1pemVyJztcbiAgICAgIGNvbnN0IHtkYXRhOiBvcHRpbWl6ZXJXZWlnaHREYXRhLCBzcGVjczogb3B0aW1pemVyV2VpZ2h0U3BlY3N9ID1cbiAgICAgICAgICBhd2FpdCBpby5lbmNvZGVXZWlnaHRzKGF3YWl0IHRoaXMub3B0aW1pemVyLmdldFdlaWdodHMoKSwgd2VpZ2h0VHlwZSk7XG4gICAgICB3ZWlnaHREYXRhQW5kU3BlY3Muc3BlY3MucHVzaCguLi5vcHRpbWl6ZXJXZWlnaHRTcGVjcyk7XG4gICAgICB3ZWlnaHREYXRhQW5kU3BlY3MuZGF0YSA9IGlvLmNvbmNhdGVuYXRlQXJyYXlCdWZmZXJzKFxuICAgICAgICAgIFt3ZWlnaHREYXRhQW5kU3BlY3MuZGF0YSwgb3B0aW1pemVyV2VpZ2h0RGF0YV0pO1xuICAgIH1cblxuICAgIGlmICh0aGlzLnVzZXJEZWZpbmVkTWV0YWRhdGEgIT0gbnVsbCkge1xuICAgICAgLy8gQ2hlY2sgc2VyaWFsaXplZCBzaXplIG9mIHVzZXItZGVmaW5lZCBtZXRhZGF0YS5cbiAgICAgIGNvbnN0IGNoZWNrU2l6ZSA9IHRydWU7XG4gICAgICBjaGVja1VzZXJEZWZpbmVkTWV0YWRhdGEodGhpcy51c2VyRGVmaW5lZE1ldGFkYXRhLCB0aGlzLm5hbWUsIGNoZWNrU2l6ZSk7XG4gICAgICBtb2RlbEFydGlmYWN0cy51c2VyRGVmaW5lZE1ldGFkYXRhID0gdGhpcy51c2VyRGVmaW5lZE1ldGFkYXRhO1xuICAgIH1cblxuICAgIG1vZGVsQXJ0aWZhY3RzLndlaWdodERhdGEgPSB3ZWlnaHREYXRhQW5kU3BlY3MuZGF0YTtcbiAgICBtb2RlbEFydGlmYWN0cy53ZWlnaHRTcGVjcyA9IHdlaWdodERhdGFBbmRTcGVjcy5zcGVjcztcbiAgICByZXR1cm4gaGFuZGxlck9yVVJMLnNhdmUobW9kZWxBcnRpZmFjdHMpO1xuICB9XG5cbiAgLyoqXG4gICAqIFNldCB1c2VyLWRlZmluZWQgbWV0YWRhdGEuXG4gICAqXG4gICAqIFRoZSBzZXQgbWV0YWRhdGEgd2lsbCBiZSBzZXJpYWxpemVkIHRvZ2V0aGVyIHdpdGggdGhlIHRvcG9sb2d5XG4gICAqIGFuZCB3ZWlnaHRzIG9mIHRoZSBtb2RlbCBkdXJpbmcgYHNhdmUoKWAgY2FsbHMuXG4gICAqXG4gICAqIEBwYXJhbSBzZXRVc2VyRGVmaW5lZE1ldGFkYXRhXG4gICAqL1xuICBzZXRVc2VyRGVmaW5lZE1ldGFkYXRhKHVzZXJEZWZpbmVkTWV0YWRhdGE6IHt9KTogdm9pZCB7XG4gICAgY2hlY2tVc2VyRGVmaW5lZE1ldGFkYXRhKHVzZXJEZWZpbmVkTWV0YWRhdGEsIHRoaXMubmFtZSk7XG4gICAgdGhpcy51c2VyRGVmaW5lZE1ldGFkYXRhID0gdXNlckRlZmluZWRNZXRhZGF0YTtcbiAgfVxuXG4gIC8qKlxuICAgKiBHZXQgdXNlci1kZWZpbmVkIG1ldGFkYXRhLlxuICAgKlxuICAgKiBUaGUgbWV0YWRhdGEgaXMgc3VwcGxpZWQgdmlhIG9uZSBvZiB0aGUgdHdvIHJvdXRlczpcbiAgICogICAxLiBCeSBjYWxsaW5nIGBzZXRVc2VyRGVmaW5lZE1ldGFkYXRhKClgLlxuICAgKiAgIDIuIExvYWRlZCBkdXJpbmcgbW9kZWwgbG9hZGluZyAoaWYgdGhlIG1vZGVsIGlzIGNvbnN0cnVjdGVkXG4gICAqICAgICAgdmlhIGB0Zi5sb2FkTGF5ZXJzTW9kZWwoKWAuKVxuICAgKlxuICAgKiBJZiBubyB1c2VyLWRlZmluZWQgbWV0YWRhdGEgaXMgYXZhaWxhYmxlIGZyb20gZWl0aGVyIG9mIHRoZVxuICAgKiB0d28gcm91dGVzLCB0aGlzIGZ1bmN0aW9uIHdpbGwgcmV0dXJuIGB1bmRlZmluZWRgLlxuICAgKi9cbiAgZ2V0VXNlckRlZmluZWRNZXRhZGF0YSgpOiB7fSB7XG4gICAgcmV0dXJuIHRoaXMudXNlckRlZmluZWRNZXRhZGF0YTtcbiAgfVxufVxuc2VyaWFsaXphdGlvbi5yZWdpc3RlckNsYXNzKExheWVyc01vZGVsKTtcblxuLyoqXG4gKiBBIGB0Zi5GdW5jdGlvbmFsYCBpcyBhbiBhbGlhcyB0byBgdGYuTGF5ZXJzTW9kZWxgLlxuICpcbiAqIFNlZSBhbHNvOlxuICogICBgdGYuTGF5ZXJzTW9kZWxgLCBgdGYuU2VxdWVudGlhbGAsIGB0Zi5sb2FkTGF5ZXJzTW9kZWxgLlxuICovXG4vKiogQGRvYyB7aGVhZGluZzogJ01vZGVscycsIHN1YmhlYWRpbmc6ICdDbGFzc2VzJ30gKi9cbmV4cG9ydCBjbGFzcyBGdW5jdGlvbmFsIGV4dGVuZHMgTGF5ZXJzTW9kZWwge1xuICBzdGF0aWMgb3ZlcnJpZGUgY2xhc3NOYW1lID0gJ0Z1bmN0aW9uYWwnO1xufVxuc2VyaWFsaXphdGlvbi5yZWdpc3RlckNsYXNzKEZ1bmN0aW9uYWwpO1xuIl19