/// <amd-module name="@tensorflow/tfjs-layers/dist/exports_constraints" />
|
/**
|
* @license
|
* Copyright 2018 Google LLC
|
*
|
* Use of this source code is governed by an MIT-style
|
* license that can be found in the LICENSE file or at
|
* https://opensource.org/licenses/MIT.
|
* =============================================================================
|
*/
|
import { Constraint, MaxNormArgs, MinMaxNormArgs, UnitNormArgs } from './constraints';
|
/**
|
* MaxNorm weight constraint.
|
*
|
* Constrains the weights incident to each hidden unit
|
* to have a norm less than or equal to a desired value.
|
*
|
* References
|
* - [Dropout: A Simple Way to Prevent Neural Networks from Overfitting
|
* Srivastava, Hinton, et al.
|
* 2014](http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf)
|
*
|
* @doc {heading: 'Constraints',namespace: 'constraints'}
|
*/
|
export declare function maxNorm(args: MaxNormArgs): Constraint;
|
/**
|
* Constrains the weights incident to each hidden unit to have unit norm.
|
*
|
* @doc {heading: 'Constraints', namespace: 'constraints'}
|
*/
|
export declare function unitNorm(args: UnitNormArgs): Constraint;
|
/**
|
* Constrains the weight to be non-negative.
|
*
|
* @doc {heading: 'Constraints', namespace: 'constraints'}
|
*/
|
export declare function nonNeg(): Constraint;
|
/** @doc {heading: 'Constraints', namespace: 'constraints'} */
|
export declare function minMaxNorm(config: MinMaxNormArgs): Constraint;
|