gx
chenyc
2025-06-12 7b72ac13a83764a662159d4a49b7fffb90476ecb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
/**
 * @license
 * Copyright 2018 Google LLC
 *
 * Use of this source code is governed by an MIT-style
 * license that can be found in the LICENSE file or at
 * https://opensource.org/licenses/MIT.
 * =============================================================================
 */
import { InputLayer } from './engine/input_layer';
import { Layer } from './engine/topology';
import { input } from './exports';
import { ELU, LeakyReLU, PReLU, ReLU, Softmax, ThresholdedReLU } from './layers/advanced_activations';
import { Conv1D, Conv2D, Conv2DTranspose, Conv3D, Cropping2D, SeparableConv2D, UpSampling2D, Conv3DTranspose } from './layers/convolutional';
import { DepthwiseConv2D } from './layers/convolutional_depthwise';
import { ConvLSTM2D, ConvLSTM2DCell } from './layers/convolutional_recurrent';
import { Activation, Dense, Dropout, Flatten, Masking, Permute, RepeatVector, Reshape, SpatialDropout1D } from './layers/core';
import { Embedding } from './layers/embeddings';
import { Add, Average, Concatenate, Dot, Maximum, Minimum, Multiply } from './layers/merge';
import { AlphaDropout, GaussianDropout, GaussianNoise } from './layers/noise';
import { BatchNormalization, LayerNormalization } from './layers/normalization';
import { ZeroPadding2D } from './layers/padding';
import { AveragePooling1D, AveragePooling2D, AveragePooling3D, GlobalAveragePooling1D, GlobalAveragePooling2D, GlobalMaxPooling1D, GlobalMaxPooling2D, MaxPooling1D, MaxPooling2D, MaxPooling3D } from './layers/pooling';
import { GRU, GRUCell, LSTM, LSTMCell, RNN, RNNCell, SimpleRNN, SimpleRNNCell, StackedRNNCells } from './layers/recurrent';
import { Bidirectional, TimeDistributed } from './layers/wrappers';
import { Rescaling } from './layers/preprocessing/image_preprocessing';
import { CenterCrop } from './layers/preprocessing/center_crop';
import { CategoryEncoding } from './layers/preprocessing/category_encoding';
import { Resizing } from './layers/preprocessing/image_resizing';
import { RandomWidth } from './layers/preprocessing/random_width';
// TODO(cais): Add doc string to all the public static functions in this
//   class; include exectuable JavaScript code snippets where applicable
//   (b/74074458).
// Input Layer.
/**
 * An input layer is an entry point into a `tf.LayersModel`.
 *
 * `InputLayer` is generated automatically for `tf.Sequential` models by
 * specifying the `inputshape` or `batchInputShape` for the first layer.  It
 * should not be specified explicitly. However, it can be useful sometimes,
 * e.g., when constructing a sequential model from a subset of another
 * sequential model's layers. Like the code snippet below shows.
 *
 * ```js
 * // Define a model which simply adds two inputs.
 * const model1 = tf.sequential();
 * model1.add(tf.layers.dense({inputShape: [4], units: 3, activation: 'relu'}));
 * model1.add(tf.layers.dense({units: 1, activation: 'sigmoid'}));
 * model1.summary();
 * model1.predict(tf.zeros([1, 4])).print();
 *
 * // Construct another model, reusing the second layer of `model1` while
 * // not using the first layer of `model1`. Note that you cannot add the second
 * // layer of `model` directly as the first layer of the new sequential model,
 * // because doing so will lead to an error related to the fact that the layer
 * // is not an input layer. Instead, you need to create an `inputLayer` and add
 * // it to the new sequential model before adding the reused layer.
 * const model2 = tf.sequential();
 * // Use an inputShape that matches the input shape of `model1`'s second
 * // layer.
 * model2.add(tf.layers.inputLayer({inputShape: [3]}));
 * model2.add(model1.layers[1]);
 * model2.summary();
 * model2.predict(tf.zeros([1, 3])).print();
 * ```
 *
 * @doc {heading: 'Layers', subheading: 'Inputs', namespace: 'layers'}
 */
export function inputLayer(args) {
    return new InputLayer(args);
}
// Advanced Activation Layers.
/**
 * Exponential Linear Unit (ELU).
 *
 * It follows:
 * `f(x) =  alpha * (exp(x) - 1.) for x < 0`,
 * `f(x) = x for x >= 0`.
 *
 * Input shape:
 *   Arbitrary. Use the configuration `inputShape` when using this layer as the
 *   first layer in a model.
 *
 * Output shape:
 *   Same shape as the input.
 *
 * References:
 *   - [Fast and Accurate Deep Network Learning by Exponential Linear Units
 * (ELUs)](https://arxiv.org/abs/1511.07289v1)
 *
 * @doc {
 *   heading: 'Layers',
 *   subheading: 'Advanced Activation',
 *   namespace: 'layers'
 * }
 */
export function elu(args) {
    return new ELU(args);
}
/**
 * Rectified Linear Unit activation function.
 *
 * Input shape:
 *   Arbitrary. Use the config field `inputShape` (Array of integers, does
 *   not include the sample axis) when using this layer as the first layer
 *   in a model.
 *
 * Output shape:
 *   Same shape as the input.
 *
 * @doc {
 *   heading: 'Layers',
 *   subheading: 'Advanced Activation',
 *   namespace: 'layers'
 * }
 */
export function reLU(args) {
    return new ReLU(args);
}
/**
 * Leaky version of a rectified linear unit.
 *
 * It allows a small gradient when the unit is not active:
 * `f(x) = alpha * x for x < 0.`
 * `f(x) = x for x >= 0.`
 *
 * Input shape:
 *   Arbitrary. Use the configuration `inputShape` when using this layer as the
 *   first layer in a model.
 *
 * Output shape:
 *   Same shape as the input.
 *
 * @doc {
 *   heading: 'Layers',
 *   subheading: 'Advanced Activation',
 *   namespace: 'layers'
 * }
 */
export function leakyReLU(args) {
    return new LeakyReLU(args);
}
/**
 * Parameterized version of a leaky rectified linear unit.
 *
 * It follows
 * `f(x) = alpha * x for x < 0.`
 * `f(x) = x for x >= 0.`
 * wherein `alpha` is a trainable weight.
 *
 * Input shape:
 *   Arbitrary. Use the configuration `inputShape` when using this layer as the
 *   first layer in a model.
 *
 * Output shape:
 *   Same shape as the input.
 *
 * @doc {
 *   heading: 'Layers',
 *   subheading: 'Advanced Activation',
 *   namespace: 'layers'
 * }
 */
export function prelu(args) {
    return new PReLU(args);
}
/**
 * Softmax activation layer.
 *
 * Input shape:
 *   Arbitrary. Use the configuration `inputShape` when using this layer as the
 *   first layer in a model.
 *
 * Output shape:
 *   Same shape as the input.
 *
 * @doc {
 *   heading: 'Layers',
 *   subheading: 'Advanced Activation',
 *   namespace: 'layers'
 * }
 */
export function softmax(args) {
    return new Softmax(args);
}
/**
 * Thresholded Rectified Linear Unit.
 *
 * It follows:
 * `f(x) = x for x > theta`,
 * `f(x) = 0 otherwise`.
 *
 * Input shape:
 *   Arbitrary. Use the configuration `inputShape` when using this layer as the
 *   first layer in a model.
 *
 * Output shape:
 *   Same shape as the input.
 *
 * References:
 *   - [Zero-Bias Autoencoders and the Benefits of Co-Adapting
 * Features](http://arxiv.org/abs/1402.3337)
 *
 * @doc {
 *   heading: 'Layers',
 *   subheading: 'Advanced Activation',
 *   namespace: 'layers'
 * }
 */
export function thresholdedReLU(args) {
    return new ThresholdedReLU(args);
}
// Convolutional Layers.
/**
 * 1D convolution layer (e.g., temporal convolution).
 *
 * This layer creates a convolution kernel that is convolved
 * with the layer input over a single spatial (or temporal) dimension
 * to produce a tensor of outputs.
 *
 * If `use_bias` is True, a bias vector is created and added to the outputs.
 *
 * If `activation` is not `null`, it is applied to the outputs as well.
 *
 * When using this layer as the first layer in a model, provide an
 * `inputShape` argument `Array` or `null`.
 *
 * For example, `inputShape` would be:
 * - `[10, 128]` for sequences of 10 vectors of 128-dimensional vectors
 * - `[null, 128]` for variable-length sequences of 128-dimensional vectors.
 *
 * @doc {heading: 'Layers', subheading: 'Convolutional',  namespace: 'layers'}
 */
export function conv1d(args) {
    return new Conv1D(args);
}
/**
 * 2D convolution layer (e.g. spatial convolution over images).
 *
 * This layer creates a convolution kernel that is convolved
 * with the layer input to produce a tensor of outputs.
 *
 * If `useBias` is True, a bias vector is created and added to the outputs.
 *
 * If `activation` is not `null`, it is applied to the outputs as well.
 *
 * When using this layer as the first layer in a model,
 * provide the keyword argument `inputShape`
 * (Array of integers, does not include the sample axis),
 * e.g. `inputShape=[128, 128, 3]` for 128x128 RGB pictures
 * in `dataFormat='channelsLast'`.
 *
 * @doc {heading: 'Layers', subheading: 'Convolutional', namespace: 'layers'}
 */
export function conv2d(args) {
    return new Conv2D(args);
}
/**
 * Transposed convolutional layer (sometimes called Deconvolution).
 *
 * The need for transposed convolutions generally arises
 * from the desire to use a transformation going in the opposite direction of
 * a normal convolution, i.e., from something that has the shape of the output
 * of some convolution to something that has the shape of its input while
 * maintaining a connectivity pattern that is compatible with said
 * convolution.
 *
 * When using this layer as the first layer in a model, provide the
 * configuration `inputShape` (`Array` of integers, does not include the
 * sample axis), e.g., `inputShape: [128, 128, 3]` for 128x128 RGB pictures in
 * `dataFormat: 'channelsLast'`.
 *
 * Input shape:
 *   4D tensor with shape:
 *   `[batch, channels, rows, cols]` if `dataFormat` is `'channelsFirst'`.
 *   or 4D tensor with shape
 *   `[batch, rows, cols, channels]` if `dataFormat` is `'channelsLast'`.
 *
 * Output shape:
 *   4D tensor with shape:
 *   `[batch, filters, newRows, newCols]` if `dataFormat` is
 * `'channelsFirst'`. or 4D tensor with shape:
 *   `[batch, newRows, newCols, filters]` if `dataFormat` is `'channelsLast'`.
 *
 * References:
 *   - [A guide to convolution arithmetic for deep
 * learning](https://arxiv.org/abs/1603.07285v1)
 *   - [Deconvolutional
 * Networks](http://www.matthewzeiler.com/pubs/cvpr2010/cvpr2010.pdf)
 *
 * @doc {heading: 'Layers', subheading: 'Convolutional', namespace: 'layers'}
 */
export function conv2dTranspose(args) {
    return new Conv2DTranspose(args);
}
/**
 * 3D convolution layer (e.g. spatial convolution over volumes).
 *
 * This layer creates a convolution kernel that is convolved
 * with the layer input to produce a tensor of outputs.
 *
 * If `useBias` is True, a bias vector is created and added to the outputs.
 *
 * If `activation` is not `null`, it is applied to the outputs as well.
 *
 * When using this layer as the first layer in a model,
 * provide the keyword argument `inputShape`
 * (Array of integers, does not include the sample axis),
 * e.g. `inputShape=[128, 128, 128, 1]` for 128x128x128 grayscale volumes
 * in `dataFormat='channelsLast'`.
 *
 * @doc {heading: 'Layers', subheading: 'Convolutional', namespace: 'layers'}
 */
export function conv3d(args) {
    return new Conv3D(args);
}
export function conv3dTranspose(args) {
    return new Conv3DTranspose(args);
}
/**
 * Depthwise separable 2D convolution.
 *
 * Separable convolution consists of first performing
 * a depthwise spatial convolution
 * (which acts on each input channel separately)
 * followed by a pointwise convolution which mixes together the resulting
 * output channels. The `depthMultiplier` argument controls how many
 * output channels are generated per input channel in the depthwise step.
 *
 * Intuitively, separable convolutions can be understood as
 * a way to factorize a convolution kernel into two smaller kernels,
 * or as an extreme version of an Inception block.
 *
 * Input shape:
 *   4D tensor with shape:
 *     `[batch, channels, rows, cols]` if data_format='channelsFirst'
 *   or 4D tensor with shape:
 *     `[batch, rows, cols, channels]` if data_format='channelsLast'.
 *
 * Output shape:
 *   4D tensor with shape:
 *     `[batch, filters, newRows, newCols]` if data_format='channelsFirst'
 *   or 4D tensor with shape:
 *     `[batch, newRows, newCols, filters]` if data_format='channelsLast'.
 *     `rows` and `cols` values might have changed due to padding.
 *
 * @doc {heading: 'Layers', subheading: 'Convolutional', namespace: 'layers'}
 */
export function separableConv2d(args) {
    return new SeparableConv2D(args);
}
/**
 * Cropping layer for 2D input (e.g., image).
 *
 * This layer can crop an input
 * at the top, bottom, left and right side of an image tensor.
 *
 * Input shape:
 *   4D tensor with shape:
 *   - If `dataFormat` is `"channelsLast"`:
 *     `[batch, rows, cols, channels]`
 *   - If `data_format` is `"channels_first"`:
 *     `[batch, channels, rows, cols]`.
 *
 * Output shape:
 *   4D with shape:
 *   - If `dataFormat` is `"channelsLast"`:
 *     `[batch, croppedRows, croppedCols, channels]`
 *    - If `dataFormat` is `"channelsFirst"`:
 *     `[batch, channels, croppedRows, croppedCols]`.
 *
 * Examples
 * ```js
 *
 * const model = tf.sequential();
 * model.add(tf.layers.cropping2D({cropping:[[2, 2], [2, 2]],
 *                                inputShape: [128, 128, 3]}));
 * //now output shape is [batch, 124, 124, 3]
 * ```
 *
 * @doc {heading: 'Layers', subheading: 'Convolutional', namespace: 'layers'}
 */
export function cropping2D(args) {
    return new Cropping2D(args);
}
/**
 * Upsampling layer for 2D inputs.
 *
 * Repeats the rows and columns of the data
 * by size[0] and size[1] respectively.
 *
 *
 * Input shape:
 *    4D tensor with shape:
 *     - If `dataFormat` is `"channelsLast"`:
 *         `[batch, rows, cols, channels]`
 *     - If `dataFormat` is `"channelsFirst"`:
 *        `[batch, channels, rows, cols]`
 *
 * Output shape:
 *     4D tensor with shape:
 *     - If `dataFormat` is `"channelsLast"`:
 *        `[batch, upsampledRows, upsampledCols, channels]`
 *     - If `dataFormat` is `"channelsFirst"`:
 *         `[batch, channels, upsampledRows, upsampledCols]`
 *
 *
 * @doc {heading: 'Layers', subheading: 'Convolutional', namespace: 'layers'}
 */
export function upSampling2d(args) {
    return new UpSampling2D(args);
}
// Convolutional(depthwise) Layers.
/**
 * Depthwise separable 2D convolution.
 *
 * Depthwise Separable convolutions consists in performing just the first step
 * in a depthwise spatial convolution (which acts on each input channel
 * separately). The `depthMultiplier` argument controls how many output channels
 * are generated per input channel in the depthwise step.
 *
 * @doc {heading: 'Layers', subheading: 'Convolutional', namespace: 'layers'}
 */
export function depthwiseConv2d(args) {
    return new DepthwiseConv2D(args);
}
// Basic Layers.
/**
 * Applies an activation function to an output.
 *
 * This layer applies element-wise activation function.  Other layers, notably
 * `dense` can also apply activation functions.  Use this isolated activation
 * function to extract the values before and after the
 * activation. For instance:
 *
 * ```js
 * const input = tf.input({shape: [5]});
 * const denseLayer = tf.layers.dense({units: 1});
 * const activationLayer = tf.layers.activation({activation: 'relu6'});
 *
 * // Obtain the output symbolic tensors by applying the layers in order.
 * const denseOutput = denseLayer.apply(input);
 * const activationOutput = activationLayer.apply(denseOutput);
 *
 * // Create the model based on the inputs.
 * const model = tf.model({
 *     inputs: input,
 *     outputs: [denseOutput, activationOutput]
 * });
 *
 * // Collect both outputs and print separately.
 * const [denseOut, activationOut] = model.predict(tf.randomNormal([6, 5]));
 * denseOut.print();
 * activationOut.print();
 * ```
 *
 * @doc {heading: 'Layers', subheading: 'Basic', namespace: 'layers'}
 */
export function activation(args) {
    return new Activation(args);
}
/**
 * Creates a dense (fully connected) layer.
 *
 * This layer implements the operation:
 *   `output = activation(dot(input, kernel) + bias)`
 *
 * `activation` is the element-wise activation function
 *   passed as the `activation` argument.
 *
 * `kernel` is a weights matrix created by the layer.
 *
 * `bias` is a bias vector created by the layer (only applicable if `useBias`
 * is `true`).
 *
 * **Input shape:**
 *
 *   nD `tf.Tensor` with shape: `(batchSize, ..., inputDim)`.
 *
 *   The most common situation would be
 *   a 2D input with shape `(batchSize, inputDim)`.
 *
 * **Output shape:**
 *
 *   nD tensor with shape: `(batchSize, ..., units)`.
 *
 *   For instance, for a 2D input with shape `(batchSize, inputDim)`,
 *   the output would have shape `(batchSize, units)`.
 *
 * Note: if the input to the layer has a rank greater than 2, then it is
 * flattened prior to the initial dot product with the kernel.
 *
 * @doc {heading: 'Layers', subheading: 'Basic', namespace: 'layers'}
 */
export function dense(args) {
    return new Dense(args);
}
/**
 * Applies
 * [dropout](http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf) to
 * the input.
 *
 * Dropout consists in randomly setting a fraction `rate` of input units to 0 at
 * each update during training time, which helps prevent overfitting.
 *
 * @doc {heading: 'Layers', subheading: 'Basic', namespace: 'layers'}
 */
export function dropout(args) {
    return new Dropout(args);
}
/**
 * Spatial 1D version of Dropout.
 *
 * This Layer type performs the same function as the Dropout layer, but it drops
 * entire 1D feature maps instead of individual elements. For example, if an
 * input example consists of 3 timesteps and the feature map for each timestep
 * has a size of 4, a `spatialDropout1d` layer may zero out the feature maps
 * of the 1st timesteps and 2nd timesteps completely while sparing all feature
 * elements of the 3rd timestep.
 *
 * If adjacent frames (timesteps) are strongly correlated (as is normally the
 * case in early convolution layers), regular dropout will not regularize the
 * activation and will otherwise just result in merely an effective learning
 * rate decrease. In this case, `spatialDropout1d` will help promote
 * independence among feature maps and should be used instead.
 *
 * **Arguments:**
 *   rate: A floating-point number >=0 and <=1. Fraction of the input elements
 *     to drop.
 *
 * **Input shape:**
 *   3D tensor with shape `(samples, timesteps, channels)`.
 *
 * **Output shape:**
 *   Same as the input shape.
 *
 * References:
 *   - [Efficient Object Localization Using Convolutional
 *      Networks](https://arxiv.org/abs/1411.4280)
 *
 * @doc {heading: 'Layers', subheading: 'Basic', namespace: 'layers'}
 */
export function spatialDropout1d(args) {
    return new SpatialDropout1D(args);
}
/**
 * Flattens the input. Does not affect the batch size.
 *
 * A `Flatten` layer flattens each batch in its inputs to 1D (making the output
 * 2D).
 *
 * For example:
 *
 * ```js
 * const input = tf.input({shape: [4, 3]});
 * const flattenLayer = tf.layers.flatten();
 * // Inspect the inferred output shape of the flatten layer, which
 * // equals `[null, 12]`. The 2nd dimension is 4 * 3, i.e., the result of the
 * // flattening. (The 1st dimension is the undermined batch size.)
 * console.log(JSON.stringify(flattenLayer.apply(input).shape));
 * ```
 *
 * @doc {heading: 'Layers', subheading: 'Basic', namespace: 'layers'}
 */
export function flatten(args) {
    return new Flatten(args);
}
/**
 * Repeats the input n times in a new dimension.
 *
 * ```js
 *  const model = tf.sequential();
 *  model.add(tf.layers.repeatVector({n: 4, inputShape: [2]}));
 *  const x = tf.tensor2d([[10, 20]]);
 *  // Use the model to do inference on a data point the model hasn't seen
 *  model.predict(x).print();
 *  // output shape is now [batch, 2, 4]
 * ```
 *
 * @doc {heading: 'Layers', subheading: 'Basic', namespace: 'layers'}
 */
export function repeatVector(args) {
    return new RepeatVector(args);
}
/**
 * Reshapes an input to a certain shape.
 *
 * ```js
 * const input = tf.input({shape: [4, 3]});
 * const reshapeLayer = tf.layers.reshape({targetShape: [2, 6]});
 * // Inspect the inferred output shape of the Reshape layer, which
 * // equals `[null, 2, 6]`. (The 1st dimension is the undermined batch size.)
 * console.log(JSON.stringify(reshapeLayer.apply(input).shape));
 * ```
 *
 * Input shape:
 *   Arbitrary, although all dimensions in the input shape must be fixed.
 *   Use the configuration `inputShape` when using this layer as the
 *   first layer in a model.
 *
 *
 * Output shape:
 *   [batchSize, targetShape[0], targetShape[1], ...,
 *    targetShape[targetShape.length - 1]].
 *
 * @doc {heading: 'Layers', subheading: 'Basic', namespace: 'layers'}
 */
export function reshape(args) {
    return new Reshape(args);
}
/**
 * Permutes the dimensions of the input according to a given pattern.
 *
 * Useful for, e.g., connecting RNNs and convnets together.
 *
 * Example:
 *
 * ```js
 * const model = tf.sequential();
 * model.add(tf.layers.permute({
 *   dims: [2, 1],
 *   inputShape: [10, 64]
 * }));
 * console.log(model.outputShape);
 * // Now model's output shape is [null, 64, 10], where null is the
 * // unpermuted sample (batch) dimension.
 * ```
 *
 * Input shape:
 *   Arbitrary. Use the configuration field `inputShape` when using this
 *   layer as the first layer in a model.
 *
 * Output shape:
 *   Same rank as the input shape, but with the dimensions re-ordered (i.e.,
 *   permuted) according to the `dims` configuration of this layer.
 *
 * @doc {heading: 'Layers', subheading: 'Basic', namespace: 'layers'}
 */
export function permute(args) {
    return new Permute(args);
}
/**
 * Maps positive integers (indices) into dense vectors of fixed size.
 * E.g. [[4], [20]] -> [[0.25, 0.1], [0.6, -0.2]]
 *
 * **Input shape:** 2D tensor with shape: `[batchSize, sequenceLength]`.
 *
 * **Output shape:** 3D tensor with shape: `[batchSize, sequenceLength,
 * outputDim]`.
 *
 * @doc {heading: 'Layers', subheading: 'Basic', namespace: 'layers'}
 */
export function embedding(args) {
    return new Embedding(args);
}
// Merge Layers.
/**
 * Layer that performs element-wise addition on an `Array` of inputs.
 *
 * It takes as input a list of tensors, all of the same shape, and returns a
 * single tensor (also of the same shape). The inputs are specified as an
 * `Array` when the `apply` method of the `Add` layer instance is called. For
 * example:
 *
 * ```js
 * const input1 = tf.input({shape: [2, 2]});
 * const input2 = tf.input({shape: [2, 2]});
 * const addLayer = tf.layers.add();
 * const sum = addLayer.apply([input1, input2]);
 * console.log(JSON.stringify(sum.shape));
 * // You get [null, 2, 2], with the first dimension as the undetermined batch
 * // dimension.
 * ```
 *
 * @doc {heading: 'Layers', subheading: 'Merge', namespace: 'layers'}
 */
export function add(args) {
    return new Add(args);
}
/**
 * Layer that performs element-wise averaging on an `Array` of inputs.
 *
 * It takes as input a list of tensors, all of the same shape, and returns a
 * single tensor (also of the same shape). For example:
 *
 * ```js
 * const input1 = tf.input({shape: [2, 2]});
 * const input2 = tf.input({shape: [2, 2]});
 * const averageLayer = tf.layers.average();
 * const average = averageLayer.apply([input1, input2]);
 * console.log(JSON.stringify(average.shape));
 * // You get [null, 2, 2], with the first dimension as the undetermined batch
 * // dimension.
 * ```
 *
 * @doc {heading: 'Layers', subheading: 'Merge', namespace: 'layers'}
 */
export function average(args) {
    return new Average(args);
}
/**
 * Layer that concatenates an `Array` of inputs.
 *
 * It takes a list of tensors, all of the same shape except for the
 * concatenation axis, and returns a single tensor, the concatenation
 * of all inputs. For example:
 *
 * ```js
 * const input1 = tf.input({shape: [2, 2]});
 * const input2 = tf.input({shape: [2, 3]});
 * const concatLayer = tf.layers.concatenate();
 * const output = concatLayer.apply([input1, input2]);
 * console.log(JSON.stringify(output.shape));
 * // You get [null, 2, 5], with the first dimension as the undetermined batch
 * // dimension. The last dimension (5) is the result of concatenating the
 * // last dimensions of the inputs (2 and 3).
 * ```
 *
 * @doc {heading: 'Layers', subheading: 'Merge', namespace: 'layers'}
 */
export function concatenate(args) {
    return new Concatenate(args);
}
/**
 * Layer that computes the element-wise maximum of an `Array` of inputs.
 *
 * It takes as input a list of tensors, all of the same shape, and returns a
 * single tensor (also of the same shape). For example:
 *
 * ```js
 * const input1 = tf.input({shape: [2, 2]});
 * const input2 = tf.input({shape: [2, 2]});
 * const maxLayer = tf.layers.maximum();
 * const max = maxLayer.apply([input1, input2]);
 * console.log(JSON.stringify(max.shape));
 * // You get [null, 2, 2], with the first dimension as the undetermined batch
 * // dimension.
 * ```
 *
 * @doc {heading: 'Layers', subheading: 'Merge', namespace: 'layers'}
 */
export function maximum(args) {
    return new Maximum(args);
}
/**
 * Layer that computes the element-wise minimum of an `Array` of inputs.
 *
 * It takes as input a list of tensors, all of the same shape, and returns a
 * single tensor (also of the same shape). For example:
 *
 * ```js
 * const input1 = tf.input({shape: [2, 2]});
 * const input2 = tf.input({shape: [2, 2]});
 * const minLayer = tf.layers.minimum();
 * const min = minLayer.apply([input1, input2]);
 * console.log(JSON.stringify(min.shape));
 * // You get [null, 2, 2], with the first dimension as the undetermined batch
 * // dimension.
 * ```
 *
 * @doc {heading: 'Layers', subheading: 'Merge', namespace: 'layers'}
 */
export function minimum(args) {
    return new Minimum(args);
}
/**
 * Layer that multiplies (element-wise) an `Array` of inputs.
 *
 * It takes as input an Array of tensors, all of the same
 * shape, and returns a single tensor (also of the same shape).
 * For example:
 *
 * ```js
 * const input1 = tf.input({shape: [2, 2]});
 * const input2 = tf.input({shape: [2, 2]});
 * const input3 = tf.input({shape: [2, 2]});
 * const multiplyLayer = tf.layers.multiply();
 * const product = multiplyLayer.apply([input1, input2, input3]);
 * console.log(product.shape);
 * // You get [null, 2, 2], with the first dimension as the undetermined batch
 * // dimension.
 *
 * @doc {heading: 'Layers', subheading: 'Merge', namespace: 'layers'}
 */
export function multiply(args) {
    return new Multiply(args);
}
/**
 * Layer that computes a dot product between samples in two tensors.
 *
 * E.g., if applied to a list of two tensors `a` and `b` both of shape
 * `[batchSize, n]`, the output will be a tensor of shape `[batchSize, 1]`,
 * where each entry at index `[i, 0]` will be the dot product between
 * `a[i, :]` and `b[i, :]`.
 *
 * Example:
 *
 * ```js
 * const dotLayer = tf.layers.dot({axes: -1});
 * const x1 = tf.tensor2d([[10, 20], [30, 40]]);
 * const x2 = tf.tensor2d([[-1, -2], [-3, -4]]);
 *
 * // Invoke the layer's apply() method in eager (imperative) mode.
 * const y = dotLayer.apply([x1, x2]);
 * y.print();
 * ```
 *
 * @doc {heading: 'Layers', subheading: 'Merge', namespace: 'layers'}
 */
export function dot(args) {
    return new Dot(args);
}
// Normalization Layers.
/**
 * Batch normalization layer (Ioffe and Szegedy, 2014).
 *
 * Normalize the activations of the previous layer at each batch,
 * i.e. applies a transformation that maintains the mean activation
 * close to 0 and the activation standard deviation close to 1.
 *
 * Input shape:
 *   Arbitrary. Use the keyword argument `inputShape` (Array of integers, does
 *   not include the sample axis) when calling the constructor of this class,
 *   if this layer is used as a first layer in a model.
 *
 * Output shape:
 *   Same shape as input.
 *
 * References:
 *   - [Batch Normalization: Accelerating Deep Network Training by Reducing
 * Internal Covariate Shift](https://arxiv.org/abs/1502.03167)
 *
 * @doc {heading: 'Layers', subheading: 'Normalization', namespace: 'layers'}
 */
export function batchNormalization(args) {
    return new BatchNormalization(args);
}
/**
 * Layer-normalization layer (Ba et al., 2016).
 *
 * Normalizes the activations of the previous layer for each given example in a
 * batch independently, instead of across a batch like in `batchNormalization`.
 * In other words, this layer applies a transformation that maintains the mean
 * activation within each example close to 0 and activation variance close to 1.
 *
 * Input shape:
 *   Arbitrary. Use the argument `inputShape` when using this layer as the first
 *   layer in a model.
 *
 * Output shape:
 *   Same as input.
 *
 * References:
 *   - [Layer Normalization](https://arxiv.org/abs/1607.06450)
 *
 * @doc {heading: 'Layers', subheading: 'Normalization', namespace: 'layers'}
 */
export function layerNormalization(args) {
    return new LayerNormalization(args);
}
// Padding Layers.
/**
 * Zero-padding layer for 2D input (e.g., image).
 *
 * This layer can add rows and columns of zeros
 * at the top, bottom, left and right side of an image tensor.
 *
 * Input shape:
 *   4D tensor with shape:
 *   - If `dataFormat` is `"channelsLast"`:
 *     `[batch, rows, cols, channels]`
 *   - If `data_format` is `"channels_first"`:
 *     `[batch, channels, rows, cols]`.
 *
 * Output shape:
 *   4D with shape:
 *   - If `dataFormat` is `"channelsLast"`:
 *     `[batch, paddedRows, paddedCols, channels]`
 *    - If `dataFormat` is `"channelsFirst"`:
 *     `[batch, channels, paddedRows, paddedCols]`.
 *
 * @doc {heading: 'Layers', subheading: 'Padding', namespace: 'layers'}
 */
export function zeroPadding2d(args) {
    return new ZeroPadding2D(args);
}
// Pooling Layers.
/**
 * Average pooling operation for spatial data.
 *
 * Input shape: `[batchSize, inLength, channels]`
 *
 * Output shape: `[batchSize, pooledLength, channels]`
 *
 * `tf.avgPool1d` is an alias.
 *
 * @doc {heading: 'Layers', subheading: 'Pooling', namespace: 'layers'}
 */
export function averagePooling1d(args) {
    return new AveragePooling1D(args);
}
export function avgPool1d(args) {
    return averagePooling1d(args);
}
// For backwards compatibility.
// See https://github.com/tensorflow/tfjs/issues/152
export function avgPooling1d(args) {
    return averagePooling1d(args);
}
/**
 * Average pooling operation for spatial data.
 *
 * Input shape:
 *  - If `dataFormat === CHANNEL_LAST`:
 *      4D tensor with shape:
 *      `[batchSize, rows, cols, channels]`
 *  - If `dataFormat === CHANNEL_FIRST`:
 *      4D tensor with shape:
 *      `[batchSize, channels, rows, cols]`
 *
 * Output shape
 *  - If `dataFormat === CHANNEL_LAST`:
 *      4D tensor with shape:
 *      `[batchSize, pooledRows, pooledCols, channels]`
 *  - If `dataFormat === CHANNEL_FIRST`:
 *      4D tensor with shape:
 *      `[batchSize, channels, pooledRows, pooledCols]`
 *
 * `tf.avgPool2d` is an alias.
 *
 * @doc {heading: 'Layers', subheading: 'Pooling', namespace: 'layers'}
 */
export function averagePooling2d(args) {
    return new AveragePooling2D(args);
}
export function avgPool2d(args) {
    return averagePooling2d(args);
}
// For backwards compatibility.
// See https://github.com/tensorflow/tfjs/issues/152
export function avgPooling2d(args) {
    return averagePooling2d(args);
}
/**
 * Average pooling operation for 3D data.
 *
 * Input shape
 *   - If `dataFormat === channelsLast`:
 *       5D tensor with shape:
 *       `[batchSize, depths, rows, cols, channels]`
 *   - If `dataFormat === channelsFirst`:
 *      4D tensor with shape:
 *       `[batchSize, channels, depths, rows, cols]`
 *
 * Output shape
 *   - If `dataFormat=channelsLast`:
 *       5D tensor with shape:
 *       `[batchSize, pooledDepths, pooledRows, pooledCols, channels]`
 *   - If `dataFormat=channelsFirst`:
 *       5D tensor with shape:
 *       `[batchSize, channels, pooledDepths, pooledRows, pooledCols]`
 *
 * @doc {heading: 'Layers', subheading: 'Pooling', namespace: 'layers'}
 */
export function averagePooling3d(args) {
    return new AveragePooling3D(args);
}
export function avgPool3d(args) {
    return averagePooling3d(args);
}
// For backwards compatibility.
// See https://github.com/tensorflow/tfjs/issues/152
export function avgPooling3d(args) {
    return averagePooling3d(args);
}
/**
 * Global average pooling operation for temporal data.
 *
 * Input Shape: 3D tensor with shape: `[batchSize, steps, features]`.
 *
 * Output Shape: 2D tensor with shape: `[batchSize, features]`.
 *
 * @doc {heading: 'Layers', subheading: 'Pooling', namespace: 'layers'}
 */
export function globalAveragePooling1d(args) {
    return new GlobalAveragePooling1D(args);
}
/**
 * Global average pooling operation for spatial data.
 *
 * Input shape:
 *   - If `dataFormat` is `CHANNEL_LAST`:
 *       4D tensor with shape: `[batchSize, rows, cols, channels]`.
 *   - If `dataFormat` is `CHANNEL_FIRST`:
 *       4D tensor with shape: `[batchSize, channels, rows, cols]`.
 *
 * Output shape:
 *   2D tensor with shape: `[batchSize, channels]`.
 *
 * @doc {heading: 'Layers', subheading: 'Pooling', namespace: 'layers'}
 */
export function globalAveragePooling2d(args) {
    return new GlobalAveragePooling2D(args);
}
/**
 * Global max pooling operation for temporal data.
 *
 * Input Shape: 3D tensor with shape: `[batchSize, steps, features]`.
 *
 * Output Shape: 2D tensor with shape: `[batchSize, features]`.
 *
 * @doc {heading: 'Layers', subheading: 'Pooling', namespace: 'layers'}
 */
export function globalMaxPooling1d(args) {
    return new GlobalMaxPooling1D(args);
}
/**
 * Global max pooling operation for spatial data.
 *
 * Input shape:
 *   - If `dataFormat` is `CHANNEL_LAST`:
 *       4D tensor with shape: `[batchSize, rows, cols, channels]`.
 *   - If `dataFormat` is `CHANNEL_FIRST`:
 *       4D tensor with shape: `[batchSize, channels, rows, cols]`.
 *
 * Output shape:
 *   2D tensor with shape: `[batchSize, channels]`.
 *
 * @doc {heading: 'Layers', subheading: 'Pooling', namespace: 'layers'}
 */
export function globalMaxPooling2d(args) {
    return new GlobalMaxPooling2D(args);
}
/**
 * Max pooling operation for temporal data.
 *
 * Input shape:  `[batchSize, inLength, channels]`
 *
 * Output shape: `[batchSize, pooledLength, channels]`
 *
 * @doc {heading: 'Layers', subheading: 'Pooling', namespace: 'layers'}
 */
export function maxPooling1d(args) {
    return new MaxPooling1D(args);
}
/**
 * Max pooling operation for spatial data.
 *
 * Input shape
 *   - If `dataFormat === CHANNEL_LAST`:
 *       4D tensor with shape:
 *       `[batchSize, rows, cols, channels]`
 *   - If `dataFormat === CHANNEL_FIRST`:
 *      4D tensor with shape:
 *       `[batchSize, channels, rows, cols]`
 *
 * Output shape
 *   - If `dataFormat=CHANNEL_LAST`:
 *       4D tensor with shape:
 *       `[batchSize, pooledRows, pooledCols, channels]`
 *   - If `dataFormat=CHANNEL_FIRST`:
 *       4D tensor with shape:
 *       `[batchSize, channels, pooledRows, pooledCols]`
 *
 * @doc {heading: 'Layers', subheading: 'Pooling', namespace: 'layers'}
 */
export function maxPooling2d(args) {
    return new MaxPooling2D(args);
}
/**
 * Max pooling operation for 3D data.
 *
 * Input shape
 *   - If `dataFormat === channelsLast`:
 *       5D tensor with shape:
 *       `[batchSize, depths, rows, cols, channels]`
 *   - If `dataFormat === channelsFirst`:
 *      5D tensor with shape:
 *       `[batchSize, channels, depths, rows, cols]`
 *
 * Output shape
 *   - If `dataFormat=channelsLast`:
 *       5D tensor with shape:
 *       `[batchSize, pooledDepths, pooledRows, pooledCols, channels]`
 *   - If `dataFormat=channelsFirst`:
 *       5D tensor with shape:
 *       `[batchSize, channels, pooledDepths, pooledRows, pooledCols]`
 *
 * @doc {heading: 'Layers', subheading: 'Pooling', namespace: 'layers'}
 */
export function maxPooling3d(args) {
    return new MaxPooling3D(args);
}
// Recurrent Layers.
/**
 * Gated Recurrent Unit - Cho et al. 2014.
 *
 * This is an `RNN` layer consisting of one `GRUCell`. However, unlike
 * the underlying `GRUCell`, the `apply` method of `SimpleRNN` operates
 * on a sequence of inputs. The shape of the input (not including the first,
 * batch dimension) needs to be at least 2-D, with the first dimension being
 * time steps. For example:
 *
 * ```js
 * const rnn = tf.layers.gru({units: 8, returnSequences: true});
 *
 * // Create an input with 10 time steps.
 * const input = tf.input({shape: [10, 20]});
 * const output = rnn.apply(input);
 *
 * console.log(JSON.stringify(output.shape));
 * // [null, 10, 8]: 1st dimension is unknown batch size; 2nd dimension is the
 * // same as the sequence length of `input`, due to `returnSequences`: `true`;
 * // 3rd dimension is the `GRUCell`'s number of units.
 *
 * @doc {heading: 'Layers', subheading: 'Recurrent', namespace: 'layers'}
 */
export function gru(args) {
    return new GRU(args);
}
/**
 * Cell class for `GRU`.
 *
 * `GRUCell` is distinct from the `RNN` subclass `GRU` in that its
 * `apply` method takes the input data of only a single time step and returns
 * the cell's output at the time step, while `GRU` takes the input data
 * over a number of time steps. For example:
 *
 * ```js
 * const cell = tf.layers.gruCell({units: 2});
 * const input = tf.input({shape: [10]});
 * const output = cell.apply(input);
 *
 * console.log(JSON.stringify(output.shape));
 * // [null, 10]: This is the cell's output at a single time step. The 1st
 * // dimension is the unknown batch size.
 * ```
 *
 * Instance(s) of `GRUCell` can be used to construct `RNN` layers. The
 * most typical use of this workflow is to combine a number of cells into a
 * stacked RNN cell (i.e., `StackedRNNCell` internally) and use it to create an
 * RNN. For example:
 *
 * ```js
 * const cells = [
 *   tf.layers.gruCell({units: 4}),
 *   tf.layers.gruCell({units: 8}),
 * ];
 * const rnn = tf.layers.rnn({cell: cells, returnSequences: true});
 *
 * // Create an input with 10 time steps and a length-20 vector at each step.
 * const input = tf.input({shape: [10, 20]});
 * const output = rnn.apply(input);
 *
 * console.log(JSON.stringify(output.shape));
 * // [null, 10, 8]: 1st dimension is unknown batch size; 2nd dimension is the
 * // same as the sequence length of `input`, due to `returnSequences`: `true`;
 * // 3rd dimension is the last `gruCell`'s number of units.
 * ```
 *
 * To create an `RNN` consisting of only *one* `GRUCell`, use the
 * `tf.layers.gru`.
 *
 * @doc {heading: 'Layers', subheading: 'Recurrent', namespace: 'layers'}
 */
export function gruCell(args) {
    return new GRUCell(args);
}
/**
 * Long-Short Term Memory layer - Hochreiter 1997.
 *
 * This is an `RNN` layer consisting of one `LSTMCell`. However, unlike
 * the underlying `LSTMCell`, the `apply` method of `LSTM` operates
 * on a sequence of inputs. The shape of the input (not including the first,
 * batch dimension) needs to be at least 2-D, with the first dimension being
 * time steps. For example:
 *
 * ```js
 * const lstm = tf.layers.lstm({units: 8, returnSequences: true});
 *
 * // Create an input with 10 time steps.
 * const input = tf.input({shape: [10, 20]});
 * const output = lstm.apply(input);
 *
 * console.log(JSON.stringify(output.shape));
 * // [null, 10, 8]: 1st dimension is unknown batch size; 2nd dimension is the
 * // same as the sequence length of `input`, due to `returnSequences`: `true`;
 * // 3rd dimension is the `LSTMCell`'s number of units.
 *
 * @doc {heading: 'Layers', subheading: 'Recurrent', namespace: 'layers'}
 */
export function lstm(args) {
    return new LSTM(args);
}
/**
 * Cell class for `LSTM`.
 *
 * `LSTMCell` is distinct from the `RNN` subclass `LSTM` in that its
 * `apply` method takes the input data of only a single time step and returns
 * the cell's output at the time step, while `LSTM` takes the input data
 * over a number of time steps. For example:
 *
 * ```js
 * const cell = tf.layers.lstmCell({units: 2});
 * const input = tf.input({shape: [10]});
 * const output = cell.apply(input);
 *
 * console.log(JSON.stringify(output.shape));
 * // [null, 10]: This is the cell's output at a single time step. The 1st
 * // dimension is the unknown batch size.
 * ```
 *
 * Instance(s) of `LSTMCell` can be used to construct `RNN` layers. The
 * most typical use of this workflow is to combine a number of cells into a
 * stacked RNN cell (i.e., `StackedRNNCell` internally) and use it to create an
 * RNN. For example:
 *
 * ```js
 * const cells = [
 *   tf.layers.lstmCell({units: 4}),
 *   tf.layers.lstmCell({units: 8}),
 * ];
 * const rnn = tf.layers.rnn({cell: cells, returnSequences: true});
 *
 * // Create an input with 10 time steps and a length-20 vector at each step.
 * const input = tf.input({shape: [10, 20]});
 * const output = rnn.apply(input);
 *
 * console.log(JSON.stringify(output.shape));
 * // [null, 10, 8]: 1st dimension is unknown batch size; 2nd dimension is the
 * // same as the sequence length of `input`, due to `returnSequences`: `true`;
 * // 3rd dimension is the last `lstmCell`'s number of units.
 * ```
 *
 * To create an `RNN` consisting of only *one* `LSTMCell`, use the
 * `tf.layers.lstm`.
 *
 * @doc {heading: 'Layers', subheading: 'Recurrent', namespace: 'layers'}
 */
export function lstmCell(args) {
    return new LSTMCell(args);
}
/**
 * Fully-connected RNN where the output is to be fed back to input.
 *
 * This is an `RNN` layer consisting of one `SimpleRNNCell`. However, unlike
 * the underlying `SimpleRNNCell`, the `apply` method of `SimpleRNN` operates
 * on a sequence of inputs. The shape of the input (not including the first,
 * batch dimension) needs to be at least 2-D, with the first dimension being
 * time steps. For example:
 *
 * ```js
 * const rnn = tf.layers.simpleRNN({units: 8, returnSequences: true});
 *
 * // Create an input with 10 time steps.
 * const input = tf.input({shape: [10, 20]});
 * const output = rnn.apply(input);
 *
 * console.log(JSON.stringify(output.shape));
 * // [null, 10, 8]: 1st dimension is unknown batch size; 2nd dimension is the
 * // same as the sequence length of `input`, due to `returnSequences`: `true`;
 * // 3rd dimension is the `SimpleRNNCell`'s number of units.
 * ```
 *
 * @doc {heading: 'Layers', subheading: 'Recurrent', namespace: 'layers'}
 */
export function simpleRNN(args) {
    return new SimpleRNN(args);
}
/**
 * Cell class for `SimpleRNN`.
 *
 * `SimpleRNNCell` is distinct from the `RNN` subclass `SimpleRNN` in that its
 * `apply` method takes the input data of only a single time step and returns
 * the cell's output at the time step, while `SimpleRNN` takes the input data
 * over a number of time steps. For example:
 *
 * ```js
 * const cell = tf.layers.simpleRNNCell({units: 2});
 * const input = tf.input({shape: [10]});
 * const output = cell.apply(input);
 *
 * console.log(JSON.stringify(output.shape));
 * // [null, 10]: This is the cell's output at a single time step. The 1st
 * // dimension is the unknown batch size.
 * ```
 *
 * Instance(s) of `SimpleRNNCell` can be used to construct `RNN` layers. The
 * most typical use of this workflow is to combine a number of cells into a
 * stacked RNN cell (i.e., `StackedRNNCell` internally) and use it to create an
 * RNN. For example:
 *
 * ```js
 * const cells = [
 *   tf.layers.simpleRNNCell({units: 4}),
 *   tf.layers.simpleRNNCell({units: 8}),
 * ];
 * const rnn = tf.layers.rnn({cell: cells, returnSequences: true});
 *
 * // Create an input with 10 time steps and a length-20 vector at each step.
 * const input = tf.input({shape: [10, 20]});
 * const output = rnn.apply(input);
 *
 * console.log(JSON.stringify(output.shape));
 * // [null, 10, 8]: 1st dimension is unknown batch size; 2nd dimension is the
 * // same as the sequence length of `input`, due to `returnSequences`: `true`;
 * // 3rd dimension is the last `SimpleRNNCell`'s number of units.
 * ```
 *
 * To create an `RNN` consisting of only *one* `SimpleRNNCell`, use the
 * `tf.layers.simpleRNN`.
 *
 * @doc {heading: 'Layers', subheading: 'Recurrent', namespace: 'layers'}
 */
export function simpleRNNCell(args) {
    return new SimpleRNNCell(args);
}
/**
 * Convolutional LSTM layer - Xingjian Shi 2015.
 *
 * This is a `ConvRNN2D` layer consisting of one `ConvLSTM2DCell`. However,
 * unlike the underlying `ConvLSTM2DCell`, the `apply` method of `ConvLSTM2D`
 * operates on a sequence of inputs. The shape of the input (not including the
 * first, batch dimension) needs to be 4-D, with the first dimension being time
 * steps. For example:
 *
 * ```js
 * const filters = 3;
 * const kernelSize = 3;
 *
 * const batchSize = 4;
 * const sequenceLength = 2;
 * const size = 5;
 * const channels = 3;
 *
 * const inputShape = [batchSize, sequenceLength, size, size, channels];
 * const input = tf.ones(inputShape);
 *
 * const layer = tf.layers.convLstm2d({filters, kernelSize});
 *
 * const output = layer.apply(input);
 * ```
 */
/** @doc {heading: 'Layers', subheading: 'Recurrent', namespace: 'layers'} */
export function convLstm2d(args) {
    return new ConvLSTM2D(args);
}
/**
 * Cell class for `ConvLSTM2D`.
 *
 * `ConvLSTM2DCell` is distinct from the `ConvRNN2D` subclass `ConvLSTM2D` in
 * that its `call` method takes the input data of only a single time step and
 * returns the cell's output at the time step, while `ConvLSTM2D` takes the
 * input data over a number of time steps. For example:
 *
 * ```js
 * const filters = 3;
 * const kernelSize = 3;
 *
 * const sequenceLength = 1;
 * const size = 5;
 * const channels = 3;
 *
 * const inputShape = [sequenceLength, size, size, channels];
 * const input = tf.ones(inputShape);
 *
 * const cell = tf.layers.convLstm2dCell({filters, kernelSize});
 *
 * cell.build(input.shape);
 *
 * const outputSize = size - kernelSize + 1;
 * const outShape = [sequenceLength, outputSize, outputSize, filters];
 *
 * const initialH = tf.zeros(outShape);
 * const initialC = tf.zeros(outShape);
 *
 * const [o, h, c] = cell.call([input, initialH, initialC], {});
 * ```
 */
/** @doc {heading: 'Layers', subheading: 'Recurrent', namespace: 'layers'} */
export function convLstm2dCell(args) {
    return new ConvLSTM2DCell(args);
}
/**
 * Base class for recurrent layers.
 *
 * Input shape:
 *   3D tensor with shape `[batchSize, timeSteps, inputDim]`.
 *
 * Output shape:
 *   - if `returnState`, an Array of tensors (i.e., `tf.Tensor`s). The first
 *     tensor is the output. The remaining tensors are the states at the
 *     last time step, each with shape `[batchSize, units]`.
 *   - if `returnSequences`, the output will have shape
 *     `[batchSize, timeSteps, units]`.
 *   - else, the output will have shape `[batchSize, units]`.
 *
 * Masking:
 *   This layer supports masking for input data with a variable number
 *   of timesteps. To introduce masks to your data,
 *   use an embedding layer with the `mask_zero` parameter
 *   set to `True`.
 *
 * Notes on using statefulness in RNNs:
 *   You can set RNN layers to be 'stateful', which means that the states
 *   computed for the samples in one batch will be reused as initial states
 *   for the samples in the next batch. This assumes a one-to-one mapping
 *   between samples in different successive batches.
 *
 *   To enable statefulness:
 *     - specify `stateful: true` in the layer constructor.
 *     - specify a fixed batch size for your model, by passing
 *       if sequential model:
 *         `batchInputShape=[...]` to the first layer in your model.
 *       else for functional model with 1 or more Input layers:
 *         `batchShape=[...]` to all the first layers in your model.
 *       This is the expected shape of your inputs *including the batch size*.
 *       It should be a tuple of integers, e.g. `(32, 10, 100)`.
 *     - specify `shuffle=False` when calling fit().
 *
 *   To reset the states of your model, call `.resetStates()` on either
 *   a specific layer, or on your entire model.
 *
 * Note on specifying the initial state of RNNs
 *   You can specify the initial state of RNN layers symbolically by
 *   calling them with the option `initialState`. The value of
 *   `initialState` should be a tensor or list of tensors representing
 *   the initial state of the RNN layer.
 *
 *   You can specify the initial state of RNN layers numerically by
 *   calling `resetStates` with the keyword argument `states`. The value of
 *   `states` should be a numpy array or list of numpy arrays representing
 *   the initial state of the RNN layer.
 *
 * Note on passing external constants to RNNs
 *   You can pass "external" constants to the cell using the `constants`
 *   keyword argument of `RNN.call` method. This requires that the `cell.call`
 *   method accepts the same keyword argument `constants`. Such constants
 *   can be used to condition the cell transformation on additional static
 *   inputs (not changing over time), a.k.a. an attention mechanism.
 *
 * @doc {heading: 'Layers', subheading: 'Recurrent', namespace: 'layers'}
 */
export function rnn(args) {
    return new RNN(args);
}
/**
 * Wrapper allowing a stack of RNN cells to behave as a single cell.
 *
 * Used to implement efficient stacked RNNs.
 *
 * @doc {heading: 'Layers', subheading: 'Recurrent', namespace: 'layers'}
 */
export function stackedRNNCells(args) {
    return new StackedRNNCells(args);
}
// Wrapper Layers.
/** @doc {heading: 'Layers', subheading: 'Wrapper', namespace: 'layers'} */
export function bidirectional(args) {
    return new Bidirectional(args);
}
/**
 * This wrapper applies a layer to every temporal slice of an input.
 *
 * The input should be at least 3D,  and the dimension of the index `1` will be
 * considered to be the temporal dimension.
 *
 * Consider a batch of 32 samples, where each sample is a sequence of 10 vectors
 * of 16 dimensions. The batch input shape of the layer is then `[32,  10,
 * 16]`, and the `inputShape`, not including the sample dimension, is
 * `[10, 16]`.
 *
 * You can then use `TimeDistributed` to apply a `Dense` layer to each of the 10
 * timesteps, independently:
 *
 * ```js
 * const model = tf.sequential();
 * model.add(tf.layers.timeDistributed({
 *   layer: tf.layers.dense({units: 8}),
 *   inputShape: [10, 16],
 * }));
 *
 * // Now model.outputShape = [null, 10, 8].
 * // The output will then have shape `[32, 10, 8]`.
 *
 * // In subsequent layers, there is no need for `inputShape`:
 * model.add(tf.layers.timeDistributed({layer: tf.layers.dense({units: 32})}));
 * console.log(JSON.stringify(model.outputs[0].shape));
 * // Now model.outputShape = [null, 10, 32].
 * ```
 *
 * The output will then have shape `[32, 10, 32]`.
 *
 * `TimeDistributed` can be used with arbitrary layers, not just `Dense`, for
 * instance a `Conv2D` layer.
 *
 * ```js
 * const model = tf.sequential();
 * model.add(tf.layers.timeDistributed({
 *   layer: tf.layers.conv2d({filters: 64, kernelSize: [3, 3]}),
 *   inputShape: [10, 299, 299, 3],
 * }));
 * console.log(JSON.stringify(model.outputs[0].shape));
 * ```
 *
 * @doc {heading: 'Layers', subheading: 'Wrapper', namespace: 'layers'}
 */
export function timeDistributed(args) {
    return new TimeDistributed(args);
}
// Aliases for pooling.
export const globalMaxPool1d = globalMaxPooling1d;
export const globalMaxPool2d = globalMaxPooling2d;
export const maxPool1d = maxPooling1d;
export const maxPool2d = maxPooling2d;
export { Layer, RNN, RNNCell, input /* alias for tf.input */ };
/**
 * Apply additive zero-centered Gaussian noise.
 *
 * As it is a regularization layer, it is only active at training time.
 *
 * This is useful to mitigate overfitting
 * (you could see it as a form of random data augmentation).
 * Gaussian Noise (GS) is a natural choice as corruption process
 * for real valued inputs.
 *
 * # Arguments
 * stddev: float, standard deviation of the noise distribution.
 *
 * # Input shape
 * Arbitrary. Use the keyword argument `input_shape`
 * (tuple of integers, does not include the samples axis)
 * when using this layer as the first layer in a model.
 *
 * # Output shape
 * Same shape as input.
 *
 * @doc {heading: 'Layers', subheading: 'Noise', namespace: 'layers'}
 */
export function gaussianNoise(args) {
    return new GaussianNoise(args);
}
/**
 * Apply multiplicative 1-centered Gaussian noise.
 *
 * As it is a regularization layer, it is only active at training time.
 *
 * Arguments:
 *   - `rate`: float, drop probability (as with `Dropout`).
 *     The multiplicative noise will have
 *     standard deviation `sqrt(rate / (1 - rate))`.
 *
 * Input shape:
 *   Arbitrary. Use the keyword argument `inputShape`
 *   (tuple of integers, does not include the samples axis)
 *   when using this layer as the first layer in a model.
 *
 * Output shape:
 *   Same shape as input.
 *
 * References:
 *   - [Dropout: A Simple Way to Prevent Neural Networks from Overfitting](
 *      http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf)
 *
 * @doc {heading: 'Layers', subheading: 'Noise', namespace: 'layers'}
 */
export function gaussianDropout(args) {
    return new GaussianDropout(args);
}
/**
 * Applies Alpha Dropout to the input.
 *
 * As it is a regularization layer, it is only active at training time.
 *
 * Alpha Dropout is a `Dropout` that keeps mean and variance of inputs
 * to their original values, in order to ensure the self-normalizing property
 * even after this dropout.
 * Alpha Dropout fits well to Scaled Exponential Linear Units
 * by randomly setting activations to the negative saturation value.
 *
 * Arguments:
 *   - `rate`: float, drop probability (as with `Dropout`).
 *     The multiplicative noise will have
 *     standard deviation `sqrt(rate / (1 - rate))`.
 *   - `noise_shape`: A 1-D `Tensor` of type `int32`, representing the
 *     shape for randomly generated keep/drop flags.
 *
 * Input shape:
 *   Arbitrary. Use the keyword argument `inputShape`
 *   (tuple of integers, does not include the samples axis)
 *   when using this layer as the first layer in a model.
 *
 * Output shape:
 *   Same shape as input.
 *
 * References:
 *   - [Self-Normalizing Neural Networks](https://arxiv.org/abs/1706.02515)
 *
 * @doc {heading: 'Layers', subheading: 'Noise', namespace: 'layers'}
 */
export function alphaDropout(args) {
    return new AlphaDropout(args);
}
/**
 * Masks a sequence by using a mask value to skip timesteps.
 *
 * If all features for a given sample timestep are equal to `mask_value`,
 * then the sample timestep will be masked (skipped) in all downstream layers
 * (as long as they support masking).
 *
 * If any downstream layer does not support masking yet receives such
 * an input mask, an exception will be raised.
 *
 * Arguments:
 *   - `maskValue`: Either None or mask value to skip.
 *
 * Input shape:
 *   Arbitrary. Use the keyword argument `inputShape`
 *   (tuple of integers, does not include the samples axis)
 *   when using this layer as the first layer in a model.
 *
 * Output shape:
 *   Same shape as input.
 *
 * @doc {heading: 'Layers', subheading: 'Mask', namespace: 'layers'}
 */
export function masking(args) {
    return new Masking(args);
}
/**
 * A preprocessing layer which rescales input values to a new range.
 *
 * This layer rescales every value of an input (often an image) by multiplying
 * by `scale` and adding `offset`.
 *
 * For instance:
 * 1. To rescale an input in the ``[0, 255]`` range
 * to be in the `[0, 1]` range, you would pass `scale=1/255`.
 * 2. To rescale an input in the ``[0, 255]`` range to be in the `[-1, 1]`
 * range, you would pass `scale=1./127.5, offset=-1`.
 * The rescaling is applied both during training and inference. Inputs can be
 * of integer or floating point dtype, and by default the layer will output
 * floats.
 *
 * Arguments:
 *   - `scale`: Float, the scale to apply to the inputs.
 *   - `offset`: Float, the offset to apply to the inputs.
 *
 * Input shape:
 *   Arbitrary.
 *
 * Output shape:
 *   Same as input.
 *
 * @doc {heading: 'Layers', subheading: 'Rescaling', namespace: 'layers'}
 */
export function rescaling(args) {
    return new Rescaling(args);
}
/**
 *  A preprocessing layer which center crops images.
 *
 *   This layers crops the central portion of the images to a target size. If an
 *   image is smaller than the target size, it will be resized and cropped so as
 *   to return the largest possible window in the image that matches the target
 *   aspect ratio.
 *
 *   Input pixel values can be of any range (e.g. `[0., 1.)` or `[0, 255]`) and
 *   of integer or floating point dtype.
 *
 *   If the input height/width is even and the target height/width is odd (or
 *   inversely), the input image is left-padded by 1 pixel.
 *
 *   Arguments:
 *     `height`: Integer, the height of the output shape.
 *     `width`: Integer, the width of the output shape.
 *
 *   Input shape:
 *     3D (unbatched) or 4D (batched) tensor with shape:
 *     `(..., height, width, channels)`, in `channelsLast` format.
 *
 *   Output shape:
 *     3D (unbatched) or 4D (batched) tensor with shape:
 *     `(..., targetHeight, targetWidth, channels)`.
 *
 *
 *  @doc {heading: 'Layers', subheading: 'CenterCrop', namespace: 'layers'}
 */
export function centerCrop(args) {
    return new CenterCrop(args);
}
/**
 * A preprocessing layer which resizes images.
 * This layer resizes an image input to a target height and width. The input
 * should be a 4D (batched) or 3D (unbatched) tensor in `"channels_last"`
 * format.  Input pixel values can be of any range (e.g. `[0., 1.)` or `[0,
 * 255]`) and of interger or floating point dtype. By default, the layer will
 * output floats.
 *
 * Arguments:
 *   - `height`: number, the height for the output tensor.
 *   - `width`: number, the width for the output tensor.
 *   - `interpolation`: string, the method for image resizing interpolation.
 *   - `cropToAspectRatio`: boolean, whether to keep image aspect ratio.
 *
 * Input shape:
 *   Arbitrary.
 *
 * Output shape:
 *   height, width, num channels.
 *
 * @doc {heading: 'Layers', subheading: 'Resizing', namespace: 'layers'}
 */
export function resizing(args) {
    return new Resizing(args);
}
/**
 * A preprocessing layer which encodes integer features.
 *
 * This layer provides options for condensing data into a categorical encoding
 * when the total number of tokens are known in advance. It accepts integer
 * values as inputs, and it outputs a dense representation of those
 * inputs.
 *
 * Arguments:
 *
 * numTokens: The total number of tokens the layer should support. All
 *  inputs to the layer must integers in the range `0 <= value <
 *  numTokens`, or an error will be thrown.
 *
 * outputMode: Specification for the output of the layer.
 *  Defaults to `multiHot`. Values can be `oneHot`, `multiHot` or
 *  `count`, configuring the layer as follows:
 *
 *    oneHot: Encodes each individual element in the input into an
 *      array of `numTokens` size, containing a 1 at the element index. If
 *      the last dimension is size 1, will encode on that dimension. If the
 *      last dimension is not size 1, will append a new dimension for the
 *      encoded output.
 *
 *    multiHot: Encodes each sample in the input into a single array
 *     of `numTokens` size, containing a 1 for each vocabulary term
 *     present in the sample. Treats the last dimension as the sample
 *     dimension, if input shape is `(..., sampleLength)`, output shape
 *     will be `(..., numTokens)`.
 *
 *    count: Like `multiHot`, but the int array contains a count of
 *     the number of times the token at that index appeared in the sample.
 *
 *  For all output modes, currently only output up to rank 2 is supported.
 *   Call arguments:
 *    inputs: A 1D or 2D tensor of integer inputs.
 *    countWeights: A tensor in the same shape as `inputs` indicating the
 *    weight for each sample value when summing up in `count` mode. Not used
 *    in `multiHot` or `oneHot` modes.
 *
 *
 * @doc {heading: 'Layers', subheading: 'CategoryEncoding', namespace: 'layers'}
 */
export function categoryEncoding(args) {
    return new CategoryEncoding(args);
}
/**
 * A preprocessing layer which randomly varies image width during training.
 *
 * This layer will randomly adjusts the width of a batch of images of a batch
 * of images by a random factor.
 *
 * The input should be a 3D (unbatched) or 4D (batched) tensor in
 * the `"channels_last"` image data format. Input pixel values can be of any
 * range (e.g. `[0., 1.)` or `[0, 255]`) and of integer or floating point
 * dtype. By default, the layer will output floats. By default, this layer is
 * inactive during inference. For an overview and full list of preprocessing
 * layers, see the preprocessing [guide]
 * (https://www.tensorflow.org/guide/keras/preprocessing_layers).
 *
 * Arguments:
 *
 * factor:
 *   A positive float (fraction of original width), or a tuple of size 2
 *   representing lower and upper bound for resizing vertically.
 *   When represented as a single float, this value is used for both the upper
 *   and lower bound. For instance, `factor=(0.2, 0.3)` results in an output
 *   with width changed by a random amount in the range `[20%, 30%]`.
 *   `factor=(-0.2, 0.3)` results in an output with width changed by a random
 *   amount in the range `[-20%, +30%]`. `factor=0.2` results in an output
 *   with width changed by a random amount in the range `[-20%, +20%]`.
 * interpolation:
 *   String, the interpolation method.
 *   Defaults to `bilinear`.
 *   Supports `"bilinear"`, `"nearest"`.
 *   The tf methods `"bicubic"`, `"area"`, `"lanczos3"`, `"lanczos5"`,
 *   `"gaussian"`, `"mitchellcubic"` are unimplemented in tfjs.
 * seed:
 *   Integer. Used to create a random seed.
 *
 * Input shape:
 *     3D (unbatched) or 4D (batched) tensor with shape:
 *     `(..., height, width, channels)`, in `"channels_last"` format.
 * Output shape:
 *     3D (unbatched) or 4D (batched) tensor with shape:
 *     `(..., height, random_width, channels)`.
 *
 *
 * @doc {heading: 'Layers', subheading: 'RandomWidth', namespace: 'layers'}
 */
export function randomWidth(args) {
    return new RandomWidth(args);
}
//# sourceMappingURL=data:application/json;base64,eyJ2ZXJzaW9uIjozLCJmaWxlIjoiZXhwb3J0c19sYXllcnMuanMiLCJzb3VyY2VSb290IjoiIiwic291cmNlcyI6WyIuLi8uLi8uLi8uLi8uLi90ZmpzLWxheWVycy9zcmMvZXhwb3J0c19sYXllcnMudHMiXSwibmFtZXMiOltdLCJtYXBwaW5ncyI6IkFBQUE7Ozs7Ozs7O0dBUUc7QUFFSCxPQUFPLEVBQUMsVUFBVSxFQUFpQixNQUFNLHNCQUFzQixDQUFDO0FBQ2hFLE9BQU8sRUFBQyxLQUFLLEVBQVksTUFBTSxtQkFBbUIsQ0FBQztBQUNuRCxPQUFPLEVBQUMsS0FBSyxFQUFDLE1BQU0sV0FBVyxDQUFDO0FBQ2hDLE9BQU8sRUFBQyxHQUFHLEVBQWdCLFNBQVMsRUFBc0IsS0FBSyxFQUFrQixJQUFJLEVBQWlCLE9BQU8sRUFBb0IsZUFBZSxFQUEyQixNQUFNLCtCQUErQixDQUFDO0FBQ2pOLE9BQU8sRUFBQyxNQUFNLEVBQUUsTUFBTSxFQUFFLGVBQWUsRUFBRSxNQUFNLEVBQWlCLFVBQVUsRUFBdUIsZUFBZSxFQUEwQixZQUFZLEVBQXlCLGVBQWUsRUFBQyxNQUFNLHdCQUF3QixDQUFDO0FBQzlOLE9BQU8sRUFBQyxlQUFlLEVBQTJCLE1BQU0sa0NBQWtDLENBQUM7QUFDM0YsT0FBTyxFQUFDLFVBQVUsRUFBa0IsY0FBYyxFQUFxQixNQUFNLGtDQUFrQyxDQUFDO0FBQ2hILE9BQU8sRUFBQyxVQUFVLEVBQXVCLEtBQUssRUFBa0IsT0FBTyxFQUFvQixPQUFPLEVBQW9CLE9BQU8sRUFBZSxPQUFPLEVBQW9CLFlBQVksRUFBeUIsT0FBTyxFQUFvQixnQkFBZ0IsRUFBOEIsTUFBTSxlQUFlLENBQUM7QUFDM1MsT0FBTyxFQUFDLFNBQVMsRUFBcUIsTUFBTSxxQkFBcUIsQ0FBQztBQUNsRSxPQUFPLEVBQUMsR0FBRyxFQUFFLE9BQU8sRUFBRSxXQUFXLEVBQXdCLEdBQUcsRUFBZ0IsT0FBTyxFQUFFLE9BQU8sRUFBRSxRQUFRLEVBQUMsTUFBTSxnQkFBZ0IsQ0FBQztBQUM5SCxPQUFPLEVBQUMsWUFBWSxFQUFvQixlQUFlLEVBQXVCLGFBQWEsRUFBb0IsTUFBTSxnQkFBZ0IsQ0FBQztBQUN0SSxPQUFPLEVBQUMsa0JBQWtCLEVBQStCLGtCQUFrQixFQUE4QixNQUFNLHdCQUF3QixDQUFDO0FBQ3hJLE9BQU8sRUFBQyxhQUFhLEVBQXlCLE1BQU0sa0JBQWtCLENBQUM7QUFDdkUsT0FBTyxFQUFDLGdCQUFnQixFQUFFLGdCQUFnQixFQUFFLGdCQUFnQixFQUFFLHNCQUFzQixFQUFFLHNCQUFzQixFQUFFLGtCQUFrQixFQUFFLGtCQUFrQixFQUE0QixZQUFZLEVBQUUsWUFBWSxFQUFFLFlBQVksRUFBNkQsTUFBTSxrQkFBa0IsQ0FBQztBQUM5UyxPQUFPLEVBQUMsR0FBRyxFQUFFLE9BQU8sRUFBa0MsSUFBSSxFQUFFLFFBQVEsRUFBb0MsR0FBRyxFQUFFLE9BQU8sRUFBZ0IsU0FBUyxFQUFFLGFBQWEsRUFBOEMsZUFBZSxFQUFzQixNQUFNLG9CQUFvQixDQUFDO0FBQzFRLE9BQU8sRUFBQyxhQUFhLEVBQTBCLGVBQWUsRUFBbUIsTUFBTSxtQkFBbUIsQ0FBQztBQUMzRyxPQUFPLEVBQUMsU0FBUyxFQUFnQixNQUFNLDRDQUE0QyxDQUFDO0FBQ3BGLE9BQU8sRUFBQyxVQUFVLEVBQWlCLE1BQU0sb0NBQW9DLENBQUM7QUFDOUUsT0FBTyxFQUFDLGdCQUFnQixFQUF1QixNQUFNLDBDQUEwQyxDQUFDO0FBQ2hHLE9BQU8sRUFBQyxRQUFRLEVBQWUsTUFBTSx1Q0FBdUMsQ0FBQztBQUM3RSxPQUFPLEVBQUMsV0FBVyxFQUFrQixNQUFNLHFDQUFxQyxDQUFDO0FBRWpGLHdFQUF3RTtBQUN4RSx3RUFBd0U7QUFDeEUsa0JBQWtCO0FBRWxCLGVBQWU7QUFDZjs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7O0dBaUNHO0FBQ0gsTUFBTSxVQUFVLFVBQVUsQ0FBQyxJQUFvQjtJQUM3QyxPQUFPLElBQUksVUFBVSxDQUFDLElBQUksQ0FBQyxDQUFDO0FBQzlCLENBQUM7QUFFRCw4QkFBOEI7QUFFOUI7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7O0dBdUJHO0FBQ0gsTUFBTSxVQUFVLEdBQUcsQ0FBQyxJQUFtQjtJQUNyQyxPQUFPLElBQUksR0FBRyxDQUFDLElBQUksQ0FBQyxDQUFDO0FBQ3ZCLENBQUM7QUFFRDs7Ozs7Ozs7Ozs7Ozs7OztHQWdCRztBQUNILE1BQU0sVUFBVSxJQUFJLENBQUMsSUFBb0I7SUFDdkMsT0FBTyxJQUFJLElBQUksQ0FBQyxJQUFJLENBQUMsQ0FBQztBQUN4QixDQUFDO0FBRUQ7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7R0FtQkc7QUFDSCxNQUFNLFVBQVUsU0FBUyxDQUFDLElBQXlCO0lBQ2pELE9BQU8sSUFBSSxTQUFTLENBQUMsSUFBSSxDQUFDLENBQUM7QUFDN0IsQ0FBQztBQUVEOzs7Ozs7Ozs7Ozs7Ozs7Ozs7OztHQW9CRztBQUNILE1BQU0sVUFBVSxLQUFLLENBQUMsSUFBcUI7SUFDekMsT0FBTyxJQUFJLEtBQUssQ0FBQyxJQUFJLENBQUMsQ0FBQztBQUN6QixDQUFDO0FBRUQ7Ozs7Ozs7Ozs7Ozs7OztHQWVHO0FBQ0gsTUFBTSxVQUFVLE9BQU8sQ0FBQyxJQUF1QjtJQUM3QyxPQUFPLElBQUksT0FBTyxDQUFDLElBQUksQ0FBQyxDQUFDO0FBQzNCLENBQUM7QUFFRDs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7R0F1Qkc7QUFDSCxNQUFNLFVBQVUsZUFBZSxDQUFDLElBQStCO0lBQzdELE9BQU8sSUFBSSxlQUFlLENBQUMsSUFBSSxDQUFDLENBQUM7QUFDbkMsQ0FBQztBQUVELHdCQUF3QjtBQUV4Qjs7Ozs7Ozs7Ozs7Ozs7Ozs7OztHQW1CRztBQUNILE1BQU0sVUFBVSxNQUFNLENBQUMsSUFBbUI7SUFDeEMsT0FBTyxJQUFJLE1BQU0sQ0FBQyxJQUFJLENBQUMsQ0FBQztBQUMxQixDQUFDO0FBRUQ7Ozs7Ozs7Ozs7Ozs7Ozs7O0dBaUJHO0FBQ0gsTUFBTSxVQUFVLE1BQU0sQ0FBQyxJQUFtQjtJQUN4QyxPQUFPLElBQUksTUFBTSxDQUFDLElBQUksQ0FBQyxDQUFDO0FBQzFCLENBQUM7QUFFRDs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7OztHQWtDRztBQUNILE1BQU0sVUFBVSxlQUFlLENBQUMsSUFBbUI7SUFDakQsT0FBTyxJQUFJLGVBQWUsQ0FBQyxJQUFJLENBQUMsQ0FBQztBQUNuQyxDQUFDO0FBRUQ7Ozs7Ozs7Ozs7Ozs7Ozs7O0dBaUJHO0FBQ0gsTUFBTSxVQUFVLE1BQU0sQ0FBQyxJQUFtQjtJQUN4QyxPQUFPLElBQUksTUFBTSxDQUFDLElBQUksQ0FBQyxDQUFDO0FBQzFCLENBQUM7QUFFRCxNQUFNLFVBQVUsZUFBZSxDQUFDLElBQW1CO0lBQ2pELE9BQU8sSUFBSSxlQUFlLENBQUMsSUFBSSxDQUFDLENBQUM7QUFDbkMsQ0FBQztBQUVEOzs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7O0dBNEJHO0FBQ0gsTUFBTSxVQUFVLGVBQWUsQ0FBQyxJQUE0QjtJQUMxRCxPQUFPLElBQUksZUFBZSxDQUFDLElBQUksQ0FBQyxDQUFDO0FBQ25DLENBQUM7QUFFRDs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7O0dBOEJHO0FBQ0gsTUFBTSxVQUFVLFVBQVUsQ0FBQyxJQUF5QjtJQUNsRCxPQUFPLElBQUksVUFBVSxDQUFDLElBQUksQ0FBQyxDQUFDO0FBQzlCLENBQUM7QUFFRDs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7R0F1Qkc7QUFDSCxNQUFNLFVBQVUsWUFBWSxDQUFDLElBQTJCO0lBQ3RELE9BQU8sSUFBSSxZQUFZLENBQUMsSUFBSSxDQUFDLENBQUM7QUFDaEMsQ0FBQztBQUVELG1DQUFtQztBQUVuQzs7Ozs7Ozs7O0dBU0c7QUFDSCxNQUFNLFVBQVUsZUFBZSxDQUFDLElBQThCO0lBQzVELE9BQU8sSUFBSSxlQUFlLENBQUMsSUFBSSxDQUFDLENBQUM7QUFDbkMsQ0FBQztBQUVELGdCQUFnQjtBQUVoQjs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7O0dBOEJHO0FBQ0gsTUFBTSxVQUFVLFVBQVUsQ0FBQyxJQUF5QjtJQUNsRCxPQUFPLElBQUksVUFBVSxDQUFDLElBQUksQ0FBQyxDQUFDO0FBQzlCLENBQUM7QUFFRDs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7R0FnQ0c7QUFDSCxNQUFNLFVBQVUsS0FBSyxDQUFDLElBQW9CO0lBQ3hDLE9BQU8sSUFBSSxLQUFLLENBQUMsSUFBSSxDQUFDLENBQUM7QUFDekIsQ0FBQztBQUVEOzs7Ozs7Ozs7R0FTRztBQUNILE1BQU0sVUFBVSxPQUFPLENBQUMsSUFBc0I7SUFDNUMsT0FBTyxJQUFJLE9BQU8sQ0FBQyxJQUFJLENBQUMsQ0FBQztBQUMzQixDQUFDO0FBRUQ7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7R0ErQkc7QUFDSCxNQUFNLFVBQVUsZ0JBQWdCLENBQUMsSUFBaUM7SUFDaEUsT0FBTyxJQUFJLGdCQUFnQixDQUFDLElBQUksQ0FBQyxDQUFDO0FBQ3BDLENBQUM7QUFFRDs7Ozs7Ozs7Ozs7Ozs7Ozs7O0dBa0JHO0FBQ0gsTUFBTSxVQUFVLE9BQU8sQ0FBQyxJQUF1QjtJQUM3QyxPQUFPLElBQUksT0FBTyxDQUFDLElBQUksQ0FBQyxDQUFDO0FBQzNCLENBQUM7QUFFRDs7Ozs7Ozs7Ozs7OztHQWFHO0FBQ0gsTUFBTSxVQUFVLFlBQVksQ0FBQyxJQUEyQjtJQUN0RCxPQUFPLElBQUksWUFBWSxDQUFDLElBQUksQ0FBQyxDQUFDO0FBQ2hDLENBQUM7QUFFRDs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7OztHQXNCRztBQUNILE1BQU0sVUFBVSxPQUFPLENBQUMsSUFBc0I7SUFDNUMsT0FBTyxJQUFJLE9BQU8sQ0FBQyxJQUFJLENBQUMsQ0FBQztBQUMzQixDQUFDO0FBRUQ7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7OztHQTJCRztBQUNILE1BQU0sVUFBVSxPQUFPLENBQUMsSUFBc0I7SUFDNUMsT0FBTyxJQUFJLE9BQU8sQ0FBQyxJQUFJLENBQUMsQ0FBQztBQUMzQixDQUFDO0FBRUQ7Ozs7Ozs7Ozs7R0FVRztBQUNILE1BQU0sVUFBVSxTQUFTLENBQUMsSUFBd0I7SUFDaEQsT0FBTyxJQUFJLFNBQVMsQ0FBQyxJQUFJLENBQUMsQ0FBQztBQUM3QixDQUFDO0FBRUQsZ0JBQWdCO0FBRWhCOzs7Ozs7Ozs7Ozs7Ozs7Ozs7O0dBbUJHO0FBQ0gsTUFBTSxVQUFVLEdBQUcsQ0FBQyxJQUFnQjtJQUNsQyxPQUFPLElBQUksR0FBRyxDQUFDLElBQUksQ0FBQyxDQUFDO0FBQ3ZCLENBQUM7QUFFRDs7Ozs7Ozs7Ozs7Ozs7Ozs7R0FpQkc7QUFDSCxNQUFNLFVBQVUsT0FBTyxDQUFDLElBQWdCO0lBQ3RDLE9BQU8sSUFBSSxPQUFPLENBQUMsSUFBSSxDQUFDLENBQUM7QUFDM0IsQ0FBQztBQUVEOzs7Ozs7Ozs7Ozs7Ozs7Ozs7O0dBbUJHO0FBQ0gsTUFBTSxVQUFVLFdBQVcsQ0FBQyxJQUEyQjtJQUNyRCxPQUFPLElBQUksV0FBVyxDQUFDLElBQUksQ0FBQyxDQUFDO0FBQy9CLENBQUM7QUFFRDs7Ozs7Ozs7Ozs7Ozs7Ozs7R0FpQkc7QUFDSCxNQUFNLFVBQVUsT0FBTyxDQUFDLElBQWdCO0lBQ3RDLE9BQU8sSUFBSSxPQUFPLENBQUMsSUFBSSxDQUFDLENBQUM7QUFDM0IsQ0FBQztBQUVEOzs7Ozs7Ozs7Ozs7Ozs7OztHQWlCRztBQUNILE1BQU0sVUFBVSxPQUFPLENBQUMsSUFBZ0I7SUFDdEMsT0FBTyxJQUFJLE9BQU8sQ0FBQyxJQUFJLENBQUMsQ0FBQztBQUMzQixDQUFDO0FBRUQ7Ozs7Ozs7Ozs7Ozs7Ozs7OztHQWtCRztBQUNILE1BQU0sVUFBVSxRQUFRLENBQUMsSUFBZ0I7SUFDdkMsT0FBTyxJQUFJLFFBQVEsQ0FBQyxJQUFJLENBQUMsQ0FBQztBQUM1QixDQUFDO0FBRUQ7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7OztHQXFCRztBQUNILE1BQU0sVUFBVSxHQUFHLENBQUMsSUFBa0I7SUFDcEMsT0FBTyxJQUFJLEdBQUcsQ0FBQyxJQUFJLENBQUMsQ0FBQztBQUN2QixDQUFDO0FBRUQsd0JBQXdCO0FBRXhCOzs7Ozs7Ozs7Ozs7Ozs7Ozs7OztHQW9CRztBQUNILE1BQU0sVUFBVSxrQkFBa0IsQ0FBQyxJQUFrQztJQUNuRSxPQUFPLElBQUksa0JBQWtCLENBQUMsSUFBSSxDQUFDLENBQUM7QUFDdEMsQ0FBQztBQUVEOzs7Ozs7Ozs7Ozs7Ozs7Ozs7O0dBbUJHO0FBQ0gsTUFBTSxVQUFVLGtCQUFrQixDQUFDLElBQWtDO0lBQ25FLE9BQU8sSUFBSSxrQkFBa0IsQ0FBQyxJQUFJLENBQUMsQ0FBQztBQUN0QyxDQUFDO0FBRUQsa0JBQWtCO0FBRWxCOzs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7R0FxQkc7QUFDSCxNQUFNLFVBQVUsYUFBYSxDQUFDLElBQTZCO0lBQ3pELE9BQU8sSUFBSSxhQUFhLENBQUMsSUFBSSxDQUFDLENBQUM7QUFDakMsQ0FBQztBQUVELGtCQUFrQjtBQUVsQjs7Ozs7Ozs7OztHQVVHO0FBQ0gsTUFBTSxVQUFVLGdCQUFnQixDQUFDLElBQXdCO0lBQ3ZELE9BQU8sSUFBSSxnQkFBZ0IsQ0FBQyxJQUFJLENBQUMsQ0FBQztBQUNwQyxDQUFDO0FBQ0QsTUFBTSxVQUFVLFNBQVMsQ0FBQyxJQUF3QjtJQUNoRCxPQUFPLGdCQUFnQixDQUFDLElBQUksQ0FBQyxDQUFDO0FBQ2hDLENBQUM7QUFDRCwrQkFBK0I7QUFDL0Isb0RBQW9EO0FBQ3BELE1BQU0sVUFBVSxZQUFZLENBQUMsSUFBd0I7SUFDbkQsT0FBTyxnQkFBZ0IsQ0FBQyxJQUFJLENBQUMsQ0FBQztBQUNoQyxDQUFDO0FBRUQ7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7R0FzQkc7QUFDSCxNQUFNLFVBQVUsZ0JBQWdCLENBQUMsSUFBd0I7SUFDdkQsT0FBTyxJQUFJLGdCQUFnQixDQUFDLElBQUksQ0FBQyxDQUFDO0FBQ3BDLENBQUM7QUFDRCxNQUFNLFVBQVUsU0FBUyxDQUFDLElBQXdCO0lBQ2hELE9BQU8sZ0JBQWdCLENBQUMsSUFBSSxDQUFDLENBQUM7QUFDaEMsQ0FBQztBQUNELCtCQUErQjtBQUMvQixvREFBb0Q7QUFDcEQsTUFBTSxVQUFVLFlBQVksQ0FBQyxJQUF3QjtJQUNuRCxPQUFPLGdCQUFnQixDQUFDLElBQUksQ0FBQyxDQUFDO0FBQ2hDLENBQUM7QUFFRDs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7R0FvQkc7QUFDSCxNQUFNLFVBQVUsZ0JBQWdCLENBQUMsSUFBd0I7SUFDdkQsT0FBTyxJQUFJLGdCQUFnQixDQUFDLElBQUksQ0FBQyxDQUFDO0FBQ3BDLENBQUM7QUFDRCxNQUFNLFVBQVUsU0FBUyxDQUFDLElBQXdCO0lBQ2hELE9BQU8sZ0JBQWdCLENBQUMsSUFBSSxDQUFDLENBQUM7QUFDaEMsQ0FBQztBQUNELCtCQUErQjtBQUMvQixvREFBb0Q7QUFDcEQsTUFBTSxVQUFVLFlBQVksQ0FBQyxJQUF3QjtJQUNuRCxPQUFPLGdCQUFnQixDQUFDLElBQUksQ0FBQyxDQUFDO0FBQ2hDLENBQUM7QUFFRDs7Ozs7Ozs7R0FRRztBQUNILE1BQU0sVUFBVSxzQkFBc0IsQ0FBQyxJQUFnQjtJQUNyRCxPQUFPLElBQUksc0JBQXNCLENBQUMsSUFBSSxDQUFDLENBQUM7QUFDMUMsQ0FBQztBQUVEOzs7Ozs7Ozs7Ozs7O0dBYUc7QUFDSCxNQUFNLFVBQVUsc0JBQXNCLENBQUMsSUFBOEI7SUFDbkUsT0FBTyxJQUFJLHNCQUFzQixDQUFDLElBQUksQ0FBQyxDQUFDO0FBQzFDLENBQUM7QUFFRDs7Ozs7Ozs7R0FRRztBQUNILE1BQU0sVUFBVSxrQkFBa0IsQ0FBQyxJQUFnQjtJQUNqRCxPQUFPLElBQUksa0JBQWtCLENBQUMsSUFBSSxDQUFDLENBQUM7QUFDdEMsQ0FBQztBQUVEOzs7Ozs7Ozs7Ozs7O0dBYUc7QUFDSCxNQUFNLFVBQVUsa0JBQWtCLENBQUMsSUFBOEI7SUFDL0QsT0FBTyxJQUFJLGtCQUFrQixDQUFDLElBQUksQ0FBQyxDQUFDO0FBQ3RDLENBQUM7QUFFRDs7Ozs7Ozs7R0FRRztBQUNILE1BQU0sVUFBVSxZQUFZLENBQUMsSUFBd0I7SUFDbkQsT0FBTyxJQUFJLFlBQVksQ0FBQyxJQUFJLENBQUMsQ0FBQztBQUNoQyxDQUFDO0FBRUQ7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7O0dBb0JHO0FBQ0gsTUFBTSxVQUFVLFlBQVksQ0FBQyxJQUF3QjtJQUNuRCxPQUFPLElBQUksWUFBWSxDQUFDLElBQUksQ0FBQyxDQUFDO0FBQ2hDLENBQUM7QUFFRDs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7R0FvQkc7QUFDSCxNQUFNLFVBQVUsWUFBWSxDQUFDLElBQXdCO0lBQ25ELE9BQU8sSUFBSSxZQUFZLENBQUMsSUFBSSxDQUFDLENBQUM7QUFDaEMsQ0FBQztBQUVELG9CQUFvQjtBQUVwQjs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7OztHQXNCRztBQUNILE1BQU0sVUFBVSxHQUFHLENBQUMsSUFBa0I7SUFDcEMsT0FBTyxJQUFJLEdBQUcsQ0FBQyxJQUFJLENBQUMsQ0FBQztBQUN2QixDQUFDO0FBRUQ7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7O0dBNENHO0FBQ0gsTUFBTSxVQUFVLE9BQU8sQ0FBQyxJQUFzQjtJQUM1QyxPQUFPLElBQUksT0FBTyxDQUFDLElBQUksQ0FBQyxDQUFDO0FBQzNCLENBQUM7QUFFRDs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7OztHQXNCRztBQUNILE1BQU0sVUFBVSxJQUFJLENBQUMsSUFBbUI7SUFDdEMsT0FBTyxJQUFJLElBQUksQ0FBQyxJQUFJLENBQUMsQ0FBQztBQUN4QixDQUFDO0FBRUQ7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7O0dBNENHO0FBQ0gsTUFBTSxVQUFVLFFBQVEsQ0FBQyxJQUF1QjtJQUM5QyxPQUFPLElBQUksUUFBUSxDQUFDLElBQUksQ0FBQyxDQUFDO0FBQzVCLENBQUM7QUFFRDs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7R0F1Qkc7QUFDSCxNQUFNLFVBQVUsU0FBUyxDQUFDLElBQXdCO0lBQ2hELE9BQU8sSUFBSSxTQUFTLENBQUMsSUFBSSxDQUFDLENBQUM7QUFDN0IsQ0FBQztBQUVEOzs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7OztHQTRDRztBQUNILE1BQU0sVUFBVSxhQUFhLENBQUMsSUFBNEI7SUFDeEQsT0FBTyxJQUFJLGFBQWEsQ0FBQyxJQUFJLENBQUMsQ0FBQztBQUNqQyxDQUFDO0FBRUQ7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7R0F5Qkc7QUFDSCw2RUFBNkU7QUFDN0UsTUFBTSxVQUFVLFVBQVUsQ0FBQyxJQUFvQjtJQUM3QyxPQUFPLElBQUksVUFBVSxDQUFDLElBQUksQ0FBQyxDQUFDO0FBQzlCLENBQUM7QUFFRDs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7OztHQStCRztBQUNILDZFQUE2RTtBQUM3RSxNQUFNLFVBQVUsY0FBYyxDQUFDLElBQXdCO0lBQ3JELE9BQU8sSUFBSSxjQUFjLENBQUMsSUFBSSxDQUFDLENBQUM7QUFDbEMsQ0FBQztBQUVEOzs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7OztHQTJERztBQUNILE1BQU0sVUFBVSxHQUFHLENBQUMsSUFBa0I7SUFDcEMsT0FBTyxJQUFJLEdBQUcsQ0FBQyxJQUFJLENBQUMsQ0FBQztBQUN2QixDQUFDO0FBRUQ7Ozs7OztHQU1HO0FBQ0gsTUFBTSxVQUFVLGVBQWUsQ0FBQyxJQUF5QjtJQUN2RCxPQUFPLElBQUksZUFBZSxDQUFDLElBQUksQ0FBQyxDQUFDO0FBQ25DLENBQUM7QUFFRCxrQkFBa0I7QUFFbEIsMkVBQTJFO0FBQzNFLE1BQU0sVUFBVSxhQUFhLENBQUMsSUFBNEI7SUFDeEQsT0FBTyxJQUFJLGFBQWEsQ0FBQyxJQUFJLENBQUMsQ0FBQztBQUNqQyxDQUFDO0FBRUQ7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7OztHQTZDRztBQUNILE1BQU0sVUFBVSxlQUFlLENBQUMsSUFBc0I7SUFDcEQsT0FBTyxJQUFJLGVBQWUsQ0FBQyxJQUFJLENBQUMsQ0FBQztBQUNuQyxDQUFDO0FBRUQsdUJBQXVCO0FBQ3ZCLE1BQU0sQ0FBQyxNQUFNLGVBQWUsR0FBRyxrQkFBa0IsQ0FBQztBQUNsRCxNQUFNLENBQUMsTUFBTSxlQUFlLEdBQUcsa0JBQWtCLENBQUM7QUFDbEQsTUFBTSxDQUFDLE1BQU0sU0FBUyxHQUFHLFlBQVksQ0FBQztBQUN0QyxNQUFNLENBQUMsTUFBTSxTQUFTLEdBQUcsWUFBWSxDQUFDO0FBRXRDLE9BQU8sRUFBQyxLQUFLLEVBQUUsR0FBRyxFQUFFLE9BQU8sRUFBRSxLQUFLLENBQUMsd0JBQXdCLEVBQUMsQ0FBQztBQUU3RDs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7OztHQXNCRztBQUNILE1BQU0sVUFBVSxhQUFhLENBQUMsSUFBdUI7SUFDbkQsT0FBTyxJQUFJLGFBQWEsQ0FBQyxJQUFJLENBQUMsQ0FBQztBQUNqQyxDQUFDO0FBRUQ7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7O0dBdUJHO0FBQ0gsTUFBTSxVQUFVLGVBQWUsQ0FBQyxJQUF5QjtJQUN2RCxPQUFPLElBQUksZUFBZSxDQUFDLElBQUksQ0FBQyxDQUFDO0FBQ25DLENBQUM7QUFFRDs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7O0dBOEJHO0FBQ0gsTUFBTSxVQUFVLFlBQVksQ0FBQyxJQUFzQjtJQUNqRCxPQUFPLElBQUksWUFBWSxDQUFDLElBQUksQ0FBQyxDQUFDO0FBQ2hDLENBQUM7QUFFRDs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7OztHQXNCRztBQUNILE1BQU0sVUFBVSxPQUFPLENBQUMsSUFBa0I7SUFDeEMsT0FBTyxJQUFJLE9BQU8sQ0FBQyxJQUFJLENBQUMsQ0FBQztBQUMzQixDQUFDO0FBRUQ7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7O0dBMEJHO0FBQ0gsTUFBTSxVQUFVLFNBQVMsQ0FBQyxJQUFvQjtJQUM1QyxPQUFPLElBQUksU0FBUyxDQUFDLElBQUksQ0FBQyxDQUFDO0FBQzdCLENBQUM7QUFFRDs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7OztHQTRCRztBQUNILE1BQU0sVUFBVSxVQUFVLENBQUMsSUFBcUI7SUFDN0MsT0FBTyxJQUFJLFVBQVUsQ0FBQyxJQUFJLENBQUMsQ0FBQztBQUM3QixDQUFDO0FBRUg7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7OztHQXFCRztBQUNILE1BQU0sVUFBVSxRQUFRLENBQUMsSUFBbUI7SUFDMUMsT0FBTyxJQUFJLFFBQVEsQ0FBQyxJQUFJLENBQUMsQ0FBQztBQUM1QixDQUFDO0FBRUQ7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7OztHQTBDRztBQUNILE1BQU0sVUFBVSxnQkFBZ0IsQ0FBQyxJQUEwQjtJQUN6RCxPQUFPLElBQUksZ0JBQWdCLENBQUMsSUFBSSxDQUFDLENBQUM7QUFDcEMsQ0FBQztBQUVBOzs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7O0dBMkNHO0FBQ0YsTUFBTSxVQUFVLFdBQVcsQ0FBQyxJQUFxQjtJQUMvQyxPQUFPLElBQUksV0FBVyxDQUFDLElBQUksQ0FBQyxDQUFDO0FBQy9CLENBQUMiLCJzb3VyY2VzQ29udGVudCI6WyIvKipcbiAqIEBsaWNlbnNlXG4gKiBDb3B5cmlnaHQgMjAxOCBHb29nbGUgTExDXG4gKlxuICogVXNlIG9mIHRoaXMgc291cmNlIGNvZGUgaXMgZ292ZXJuZWQgYnkgYW4gTUlULXN0eWxlXG4gKiBsaWNlbnNlIHRoYXQgY2FuIGJlIGZvdW5kIGluIHRoZSBMSUNFTlNFIGZpbGUgb3IgYXRcbiAqIGh0dHBzOi8vb3BlbnNvdXJjZS5vcmcvbGljZW5zZXMvTUlULlxuICogPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1cbiAqL1xuXG5pbXBvcnQge0lucHV0TGF5ZXIsIElucHV0TGF5ZXJBcmdzfSBmcm9tICcuL2VuZ2luZS9pbnB1dF9sYXllcic7XG5pbXBvcnQge0xheWVyLCBMYXllckFyZ3N9IGZyb20gJy4vZW5naW5lL3RvcG9sb2d5JztcbmltcG9ydCB7aW5wdXR9IGZyb20gJy4vZXhwb3J0cyc7XG5pbXBvcnQge0VMVSwgRUxVTGF5ZXJBcmdzLCBMZWFreVJlTFUsIExlYWt5UmVMVUxheWVyQXJncywgUFJlTFUsIFBSZUxVTGF5ZXJBcmdzLCBSZUxVLCBSZUxVTGF5ZXJBcmdzLCBTb2Z0bWF4LCBTb2Z0bWF4TGF5ZXJBcmdzLCBUaHJlc2hvbGRlZFJlTFUsIFRocmVzaG9sZGVkUmVMVUxheWVyQXJnc30gZnJvbSAnLi9sYXllcnMvYWR2YW5jZWRfYWN0aXZhdGlvbnMnO1xuaW1wb3J0IHtDb252MUQsIENvbnYyRCwgQ29udjJEVHJhbnNwb3NlLCBDb252M0QsIENvbnZMYXllckFyZ3MsIENyb3BwaW5nMkQsIENyb3BwaW5nMkRMYXllckFyZ3MsIFNlcGFyYWJsZUNvbnYyRCwgU2VwYXJhYmxlQ29udkxheWVyQXJncywgVXBTYW1wbGluZzJELCBVcFNhbXBsaW5nMkRMYXllckFyZ3MsIENvbnYzRFRyYW5zcG9zZX0gZnJvbSAnLi9sYXllcnMvY29udm9sdXRpb25hbCc7XG5pbXBvcnQge0RlcHRod2lzZUNvbnYyRCwgRGVwdGh3aXNlQ29udjJETGF5ZXJBcmdzfSBmcm9tICcuL2xheWVycy9jb252b2x1dGlvbmFsX2RlcHRod2lzZSc7XG5pbXBvcnQge0NvbnZMU1RNMkQsIENvbnZMU1RNMkRBcmdzLCBDb252TFNUTTJEQ2VsbCwgQ29udkxTVE0yRENlbGxBcmdzfSBmcm9tICcuL2xheWVycy9jb252b2x1dGlvbmFsX3JlY3VycmVudCc7XG5pbXBvcnQge0FjdGl2YXRpb24sIEFjdGl2YXRpb25MYXllckFyZ3MsIERlbnNlLCBEZW5zZUxheWVyQXJncywgRHJvcG91dCwgRHJvcG91dExheWVyQXJncywgRmxhdHRlbiwgRmxhdHRlbkxheWVyQXJncywgTWFza2luZywgTWFza2luZ0FyZ3MsIFBlcm11dGUsIFBlcm11dGVMYXllckFyZ3MsIFJlcGVhdFZlY3RvciwgUmVwZWF0VmVjdG9yTGF5ZXJBcmdzLCBSZXNoYXBlLCBSZXNoYXBlTGF5ZXJBcmdzLCBTcGF0aWFsRHJvcG91dDFELCBTcGF0aWFsRHJvcG91dDFETGF5ZXJDb25maWd9IGZyb20gJy4vbGF5ZXJzL2NvcmUnO1xuaW1wb3J0IHtFbWJlZGRpbmcsIEVtYmVkZGluZ0xheWVyQXJnc30gZnJvbSAnLi9sYXllcnMvZW1iZWRkaW5ncyc7XG5pbXBvcnQge0FkZCwgQXZlcmFnZSwgQ29uY2F0ZW5hdGUsIENvbmNhdGVuYXRlTGF5ZXJBcmdzLCBEb3QsIERvdExheWVyQXJncywgTWF4aW11bSwgTWluaW11bSwgTXVsdGlwbHl9IGZyb20gJy4vbGF5ZXJzL21lcmdlJztcbmltcG9ydCB7QWxwaGFEcm9wb3V0LCBBbHBoYURyb3BvdXRBcmdzLCBHYXVzc2lhbkRyb3BvdXQsIEdhdXNzaWFuRHJvcG91dEFyZ3MsIEdhdXNzaWFuTm9pc2UsIEdhdXNzaWFuTm9pc2VBcmdzfSBmcm9tICcuL2xheWVycy9ub2lzZSc7XG5pbXBvcnQge0JhdGNoTm9ybWFsaXphdGlvbiwgQmF0Y2hOb3JtYWxpemF0aW9uTGF5ZXJBcmdzLCBMYXllck5vcm1hbGl6YXRpb24sIExheWVyTm9ybWFsaXphdGlvbkxheWVyQXJnc30gZnJvbSAnLi9sYXllcnMvbm9ybWFsaXphdGlvbic7XG5pbXBvcnQge1plcm9QYWRkaW5nMkQsIFplcm9QYWRkaW5nMkRMYXllckFyZ3N9IGZyb20gJy4vbGF5ZXJzL3BhZGRpbmcnO1xuaW1wb3J0IHtBdmVyYWdlUG9vbGluZzFELCBBdmVyYWdlUG9vbGluZzJELCBBdmVyYWdlUG9vbGluZzNELCBHbG9iYWxBdmVyYWdlUG9vbGluZzFELCBHbG9iYWxBdmVyYWdlUG9vbGluZzJELCBHbG9iYWxNYXhQb29saW5nMUQsIEdsb2JhbE1heFBvb2xpbmcyRCwgR2xvYmFsUG9vbGluZzJETGF5ZXJBcmdzLCBNYXhQb29saW5nMUQsIE1heFBvb2xpbmcyRCwgTWF4UG9vbGluZzNELCBQb29saW5nMURMYXllckFyZ3MsIFBvb2xpbmcyRExheWVyQXJncywgUG9vbGluZzNETGF5ZXJBcmdzfSBmcm9tICcuL2xheWVycy9wb29saW5nJztcbmltcG9ydCB7R1JVLCBHUlVDZWxsLCBHUlVDZWxsTGF5ZXJBcmdzLCBHUlVMYXllckFyZ3MsIExTVE0sIExTVE1DZWxsLCBMU1RNQ2VsbExheWVyQXJncywgTFNUTUxheWVyQXJncywgUk5OLCBSTk5DZWxsLCBSTk5MYXllckFyZ3MsIFNpbXBsZVJOTiwgU2ltcGxlUk5OQ2VsbCwgU2ltcGxlUk5OQ2VsbExheWVyQXJncywgU2ltcGxlUk5OTGF5ZXJBcmdzLCBTdGFja2VkUk5OQ2VsbHMsIFN0YWNrZWRSTk5DZWxsc0FyZ3N9IGZyb20gJy4vbGF5ZXJzL3JlY3VycmVudCc7XG5pbXBvcnQge0JpZGlyZWN0aW9uYWwsIEJpZGlyZWN0aW9uYWxMYXllckFyZ3MsIFRpbWVEaXN0cmlidXRlZCwgV3JhcHBlckxheWVyQXJnc30gZnJvbSAnLi9sYXllcnMvd3JhcHBlcnMnO1xuaW1wb3J0IHtSZXNjYWxpbmcsIFJlc2NhbGluZ0FyZ3N9IGZyb20gJy4vbGF5ZXJzL3ByZXByb2Nlc3NpbmcvaW1hZ2VfcHJlcHJvY2Vzc2luZyc7XG5pbXBvcnQge0NlbnRlckNyb3AsIENlbnRlckNyb3BBcmdzfSBmcm9tICcuL2xheWVycy9wcmVwcm9jZXNzaW5nL2NlbnRlcl9jcm9wJztcbmltcG9ydCB7Q2F0ZWdvcnlFbmNvZGluZywgQ2F0ZWdvcnlFbmNvZGluZ0FyZ3N9IGZyb20gJy4vbGF5ZXJzL3ByZXByb2Nlc3NpbmcvY2F0ZWdvcnlfZW5jb2RpbmcnO1xuaW1wb3J0IHtSZXNpemluZywgUmVzaXppbmdBcmdzfSBmcm9tICcuL2xheWVycy9wcmVwcm9jZXNzaW5nL2ltYWdlX3Jlc2l6aW5nJztcbmltcG9ydCB7UmFuZG9tV2lkdGgsIFJhbmRvbVdpZHRoQXJnc30gZnJvbSAnLi9sYXllcnMvcHJlcHJvY2Vzc2luZy9yYW5kb21fd2lkdGgnO1xuXG4vLyBUT0RPKGNhaXMpOiBBZGQgZG9jIHN0cmluZyB0byBhbGwgdGhlIHB1YmxpYyBzdGF0aWMgZnVuY3Rpb25zIGluIHRoaXNcbi8vICAgY2xhc3M7IGluY2x1ZGUgZXhlY3R1YWJsZSBKYXZhU2NyaXB0IGNvZGUgc25pcHBldHMgd2hlcmUgYXBwbGljYWJsZVxuLy8gICAoYi83NDA3NDQ1OCkuXG5cbi8vIElucHV0IExheWVyLlxuLyoqXG4gKiBBbiBpbnB1dCBsYXllciBpcyBhbiBlbnRyeSBwb2ludCBpbnRvIGEgYHRmLkxheWVyc01vZGVsYC5cbiAqXG4gKiBgSW5wdXRMYXllcmAgaXMgZ2VuZXJhdGVkIGF1dG9tYXRpY2FsbHkgZm9yIGB0Zi5TZXF1ZW50aWFsYCBtb2RlbHMgYnlcbiAqIHNwZWNpZnlpbmcgdGhlIGBpbnB1dHNoYXBlYCBvciBgYmF0Y2hJbnB1dFNoYXBlYCBmb3IgdGhlIGZpcnN0IGxheWVyLiAgSXRcbiAqIHNob3VsZCBub3QgYmUgc3BlY2lmaWVkIGV4cGxpY2l0bHkuIEhvd2V2ZXIsIGl0IGNhbiBiZSB1c2VmdWwgc29tZXRpbWVzLFxuICogZS5nLiwgd2hlbiBjb25zdHJ1Y3RpbmcgYSBzZXF1ZW50aWFsIG1vZGVsIGZyb20gYSBzdWJzZXQgb2YgYW5vdGhlclxuICogc2VxdWVudGlhbCBtb2RlbCdzIGxheWVycy4gTGlrZSB0aGUgY29kZSBzbmlwcGV0IGJlbG93IHNob3dzLlxuICpcbiAqIGBgYGpzXG4gKiAvLyBEZWZpbmUgYSBtb2RlbCB3aGljaCBzaW1wbHkgYWRkcyB0d28gaW5wdXRzLlxuICogY29uc3QgbW9kZWwxID0gdGYuc2VxdWVudGlhbCgpO1xuICogbW9kZWwxLmFkZCh0Zi5sYXllcnMuZGVuc2Uoe2lucHV0U2hhcGU6IFs0XSwgdW5pdHM6IDMsIGFjdGl2YXRpb246ICdyZWx1J30pKTtcbiAqIG1vZGVsMS5hZGQodGYubGF5ZXJzLmRlbnNlKHt1bml0czogMSwgYWN0aXZhdGlvbjogJ3NpZ21vaWQnfSkpO1xuICogbW9kZWwxLnN1bW1hcnkoKTtcbiAqIG1vZGVsMS5wcmVkaWN0KHRmLnplcm9zKFsxLCA0XSkpLnByaW50KCk7XG4gKlxuICogLy8gQ29uc3RydWN0IGFub3RoZXIgbW9kZWwsIHJldXNpbmcgdGhlIHNlY29uZCBsYXllciBvZiBgbW9kZWwxYCB3aGlsZVxuICogLy8gbm90IHVzaW5nIHRoZSBmaXJzdCBsYXllciBvZiBgbW9kZWwxYC4gTm90ZSB0aGF0IHlvdSBjYW5ub3QgYWRkIHRoZSBzZWNvbmRcbiAqIC8vIGxheWVyIG9mIGBtb2RlbGAgZGlyZWN0bHkgYXMgdGhlIGZpcnN0IGxheWVyIG9mIHRoZSBuZXcgc2VxdWVudGlhbCBtb2RlbCxcbiAqIC8vIGJlY2F1c2UgZG9pbmcgc28gd2lsbCBsZWFkIHRvIGFuIGVycm9yIHJlbGF0ZWQgdG8gdGhlIGZhY3QgdGhhdCB0aGUgbGF5ZXJcbiAqIC8vIGlzIG5vdCBhbiBpbnB1dCBsYXllci4gSW5zdGVhZCwgeW91IG5lZWQgdG8gY3JlYXRlIGFuIGBpbnB1dExheWVyYCBhbmQgYWRkXG4gKiAvLyBpdCB0byB0aGUgbmV3IHNlcXVlbnRpYWwgbW9kZWwgYmVmb3JlIGFkZGluZyB0aGUgcmV1c2VkIGxheWVyLlxuICogY29uc3QgbW9kZWwyID0gdGYuc2VxdWVudGlhbCgpO1xuICogLy8gVXNlIGFuIGlucHV0U2hhcGUgdGhhdCBtYXRjaGVzIHRoZSBpbnB1dCBzaGFwZSBvZiBgbW9kZWwxYCdzIHNlY29uZFxuICogLy8gbGF5ZXIuXG4gKiBtb2RlbDIuYWRkKHRmLmxheWVycy5pbnB1dExheWVyKHtpbnB1dFNoYXBlOiBbM119KSk7XG4gKiBtb2RlbDIuYWRkKG1vZGVsMS5sYXllcnNbMV0pO1xuICogbW9kZWwyLnN1bW1hcnkoKTtcbiAqIG1vZGVsMi5wcmVkaWN0KHRmLnplcm9zKFsxLCAzXSkpLnByaW50KCk7XG4gKiBgYGBcbiAqXG4gKiBAZG9jIHtoZWFkaW5nOiAnTGF5ZXJzJywgc3ViaGVhZGluZzogJ0lucHV0cycsIG5hbWVzcGFjZTogJ2xheWVycyd9XG4gKi9cbmV4cG9ydCBmdW5jdGlvbiBpbnB1dExheWVyKGFyZ3M6IElucHV0TGF5ZXJBcmdzKSB7XG4gIHJldHVybiBuZXcgSW5wdXRMYXllcihhcmdzKTtcbn1cblxuLy8gQWR2YW5jZWQgQWN0aXZhdGlvbiBMYXllcnMuXG5cbi8qKlxuICogRXhwb25lbnRpYWwgTGluZWFyIFVuaXQgKEVMVSkuXG4gKlxuICogSXQgZm9sbG93czpcbiAqIGBmKHgpID0gIGFscGhhICogKGV4cCh4KSAtIDEuKSBmb3IgeCA8IDBgLFxuICogYGYoeCkgPSB4IGZvciB4ID49IDBgLlxuICpcbiAqIElucHV0IHNoYXBlOlxuICogICBBcmJpdHJhcnkuIFVzZSB0aGUgY29uZmlndXJhdGlvbiBgaW5wdXRTaGFwZWAgd2hlbiB1c2luZyB0aGlzIGxheWVyIGFzIHRoZVxuICogICBmaXJzdCBsYXllciBpbiBhIG1vZGVsLlxuICpcbiAqIE91dHB1dCBzaGFwZTpcbiAqICAgU2FtZSBzaGFwZSBhcyB0aGUgaW5wdXQuXG4gKlxuICogUmVmZXJlbmNlczpcbiAqICAgLSBbRmFzdCBhbmQgQWNjdXJhdGUgRGVlcCBOZXR3b3JrIExlYXJuaW5nIGJ5IEV4cG9uZW50aWFsIExpbmVhciBVbml0c1xuICogKEVMVXMpXShodHRwczovL2FyeGl2Lm9yZy9hYnMvMTUxMS4wNzI4OXYxKVxuICpcbiAqIEBkb2Mge1xuICogICBoZWFkaW5nOiAnTGF5ZXJzJyxcbiAqICAgc3ViaGVhZGluZzogJ0FkdmFuY2VkIEFjdGl2YXRpb24nLFxuICogICBuYW1lc3BhY2U6ICdsYXllcnMnXG4gKiB9XG4gKi9cbmV4cG9ydCBmdW5jdGlvbiBlbHUoYXJncz86IEVMVUxheWVyQXJncykge1xuICByZXR1cm4gbmV3IEVMVShhcmdzKTtcbn1cblxuLyoqXG4gKiBSZWN0aWZpZWQgTGluZWFyIFVuaXQgYWN0aXZhdGlvbiBmdW5jdGlvbi5cbiAqXG4gKiBJbnB1dCBzaGFwZTpcbiAqICAgQXJiaXRyYXJ5LiBVc2UgdGhlIGNvbmZpZyBmaWVsZCBgaW5wdXRTaGFwZWAgKEFycmF5IG9mIGludGVnZXJzLCBkb2VzXG4gKiAgIG5vdCBpbmNsdWRlIHRoZSBzYW1wbGUgYXhpcykgd2hlbiB1c2luZyB0aGlzIGxheWVyIGFzIHRoZSBmaXJzdCBsYXllclxuICogICBpbiBhIG1vZGVsLlxuICpcbiAqIE91dHB1dCBzaGFwZTpcbiAqICAgU2FtZSBzaGFwZSBhcyB0aGUgaW5wdXQuXG4gKlxuICogQGRvYyB7XG4gKiAgIGhlYWRpbmc6ICdMYXllcnMnLFxuICogICBzdWJoZWFkaW5nOiAnQWR2YW5jZWQgQWN0aXZhdGlvbicsXG4gKiAgIG5hbWVzcGFjZTogJ2xheWVycydcbiAqIH1cbiAqL1xuZXhwb3J0IGZ1bmN0aW9uIHJlTFUoYXJncz86IFJlTFVMYXllckFyZ3MpIHtcbiAgcmV0dXJuIG5ldyBSZUxVKGFyZ3MpO1xufVxuXG4vKipcbiAqIExlYWt5IHZlcnNpb24gb2YgYSByZWN0aWZpZWQgbGluZWFyIHVuaXQuXG4gKlxuICogSXQgYWxsb3dzIGEgc21hbGwgZ3JhZGllbnQgd2hlbiB0aGUgdW5pdCBpcyBub3QgYWN0aXZlOlxuICogYGYoeCkgPSBhbHBoYSAqIHggZm9yIHggPCAwLmBcbiAqIGBmKHgpID0geCBmb3IgeCA+PSAwLmBcbiAqXG4gKiBJbnB1dCBzaGFwZTpcbiAqICAgQXJiaXRyYXJ5LiBVc2UgdGhlIGNvbmZpZ3VyYXRpb24gYGlucHV0U2hhcGVgIHdoZW4gdXNpbmcgdGhpcyBsYXllciBhcyB0aGVcbiAqICAgZmlyc3QgbGF5ZXIgaW4gYSBtb2RlbC5cbiAqXG4gKiBPdXRwdXQgc2hhcGU6XG4gKiAgIFNhbWUgc2hhcGUgYXMgdGhlIGlucHV0LlxuICpcbiAqIEBkb2Mge1xuICogICBoZWFkaW5nOiAnTGF5ZXJzJyxcbiAqICAgc3ViaGVhZGluZzogJ0FkdmFuY2VkIEFjdGl2YXRpb24nLFxuICogICBuYW1lc3BhY2U6ICdsYXllcnMnXG4gKiB9XG4gKi9cbmV4cG9ydCBmdW5jdGlvbiBsZWFreVJlTFUoYXJncz86IExlYWt5UmVMVUxheWVyQXJncykge1xuICByZXR1cm4gbmV3IExlYWt5UmVMVShhcmdzKTtcbn1cblxuLyoqXG4gKiBQYXJhbWV0ZXJpemVkIHZlcnNpb24gb2YgYSBsZWFreSByZWN0aWZpZWQgbGluZWFyIHVuaXQuXG4gKlxuICogSXQgZm9sbG93c1xuICogYGYoeCkgPSBhbHBoYSAqIHggZm9yIHggPCAwLmBcbiAqIGBmKHgpID0geCBmb3IgeCA+PSAwLmBcbiAqIHdoZXJlaW4gYGFscGhhYCBpcyBhIHRyYWluYWJsZSB3ZWlnaHQuXG4gKlxuICogSW5wdXQgc2hhcGU6XG4gKiAgIEFyYml0cmFyeS4gVXNlIHRoZSBjb25maWd1cmF0aW9uIGBpbnB1dFNoYXBlYCB3aGVuIHVzaW5nIHRoaXMgbGF5ZXIgYXMgdGhlXG4gKiAgIGZpcnN0IGxheWVyIGluIGEgbW9kZWwuXG4gKlxuICogT3V0cHV0IHNoYXBlOlxuICogICBTYW1lIHNoYXBlIGFzIHRoZSBpbnB1dC5cbiAqXG4gKiBAZG9jIHtcbiAqICAgaGVhZGluZzogJ0xheWVycycsXG4gKiAgIHN1YmhlYWRpbmc6ICdBZHZhbmNlZCBBY3RpdmF0aW9uJyxcbiAqICAgbmFtZXNwYWNlOiAnbGF5ZXJzJ1xuICogfVxuICovXG5leHBvcnQgZnVuY3Rpb24gcHJlbHUoYXJncz86IFBSZUxVTGF5ZXJBcmdzKSB7XG4gIHJldHVybiBuZXcgUFJlTFUoYXJncyk7XG59XG5cbi8qKlxuICogU29mdG1heCBhY3RpdmF0aW9uIGxheWVyLlxuICpcbiAqIElucHV0IHNoYXBlOlxuICogICBBcmJpdHJhcnkuIFVzZSB0aGUgY29uZmlndXJhdGlvbiBgaW5wdXRTaGFwZWAgd2hlbiB1c2luZyB0aGlzIGxheWVyIGFzIHRoZVxuICogICBmaXJzdCBsYXllciBpbiBhIG1vZGVsLlxuICpcbiAqIE91dHB1dCBzaGFwZTpcbiAqICAgU2FtZSBzaGFwZSBhcyB0aGUgaW5wdXQuXG4gKlxuICogQGRvYyB7XG4gKiAgIGhlYWRpbmc6ICdMYXllcnMnLFxuICogICBzdWJoZWFkaW5nOiAnQWR2YW5jZWQgQWN0aXZhdGlvbicsXG4gKiAgIG5hbWVzcGFjZTogJ2xheWVycydcbiAqIH1cbiAqL1xuZXhwb3J0IGZ1bmN0aW9uIHNvZnRtYXgoYXJncz86IFNvZnRtYXhMYXllckFyZ3MpIHtcbiAgcmV0dXJuIG5ldyBTb2Z0bWF4KGFyZ3MpO1xufVxuXG4vKipcbiAqIFRocmVzaG9sZGVkIFJlY3RpZmllZCBMaW5lYXIgVW5pdC5cbiAqXG4gKiBJdCBmb2xsb3dzOlxuICogYGYoeCkgPSB4IGZvciB4ID4gdGhldGFgLFxuICogYGYoeCkgPSAwIG90aGVyd2lzZWAuXG4gKlxuICogSW5wdXQgc2hhcGU6XG4gKiAgIEFyYml0cmFyeS4gVXNlIHRoZSBjb25maWd1cmF0aW9uIGBpbnB1dFNoYXBlYCB3aGVuIHVzaW5nIHRoaXMgbGF5ZXIgYXMgdGhlXG4gKiAgIGZpcnN0IGxheWVyIGluIGEgbW9kZWwuXG4gKlxuICogT3V0cHV0IHNoYXBlOlxuICogICBTYW1lIHNoYXBlIGFzIHRoZSBpbnB1dC5cbiAqXG4gKiBSZWZlcmVuY2VzOlxuICogICAtIFtaZXJvLUJpYXMgQXV0b2VuY29kZXJzIGFuZCB0aGUgQmVuZWZpdHMgb2YgQ28tQWRhcHRpbmdcbiAqIEZlYXR1cmVzXShodHRwOi8vYXJ4aXYub3JnL2Ficy8xNDAyLjMzMzcpXG4gKlxuICogQGRvYyB7XG4gKiAgIGhlYWRpbmc6ICdMYXllcnMnLFxuICogICBzdWJoZWFkaW5nOiAnQWR2YW5jZWQgQWN0aXZhdGlvbicsXG4gKiAgIG5hbWVzcGFjZTogJ2xheWVycydcbiAqIH1cbiAqL1xuZXhwb3J0IGZ1bmN0aW9uIHRocmVzaG9sZGVkUmVMVShhcmdzPzogVGhyZXNob2xkZWRSZUxVTGF5ZXJBcmdzKSB7XG4gIHJldHVybiBuZXcgVGhyZXNob2xkZWRSZUxVKGFyZ3MpO1xufVxuXG4vLyBDb252b2x1dGlvbmFsIExheWVycy5cblxuLyoqXG4gKiAxRCBjb252b2x1dGlvbiBsYXllciAoZS5nLiwgdGVtcG9yYWwgY29udm9sdXRpb24pLlxuICpcbiAqIFRoaXMgbGF5ZXIgY3JlYXRlcyBhIGNvbnZvbHV0aW9uIGtlcm5lbCB0aGF0IGlzIGNvbnZvbHZlZFxuICogd2l0aCB0aGUgbGF5ZXIgaW5wdXQgb3ZlciBhIHNpbmdsZSBzcGF0aWFsIChvciB0ZW1wb3JhbCkgZGltZW5zaW9uXG4gKiB0byBwcm9kdWNlIGEgdGVuc29yIG9mIG91dHB1dHMuXG4gKlxuICogSWYgYHVzZV9iaWFzYCBpcyBUcnVlLCBhIGJpYXMgdmVjdG9yIGlzIGNyZWF0ZWQgYW5kIGFkZGVkIHRvIHRoZSBvdXRwdXRzLlxuICpcbiAqIElmIGBhY3RpdmF0aW9uYCBpcyBub3QgYG51bGxgLCBpdCBpcyBhcHBsaWVkIHRvIHRoZSBvdXRwdXRzIGFzIHdlbGwuXG4gKlxuICogV2hlbiB1c2luZyB0aGlzIGxheWVyIGFzIHRoZSBmaXJzdCBsYXllciBpbiBhIG1vZGVsLCBwcm92aWRlIGFuXG4gKiBgaW5wdXRTaGFwZWAgYXJndW1lbnQgYEFycmF5YCBvciBgbnVsbGAuXG4gKlxuICogRm9yIGV4YW1wbGUsIGBpbnB1dFNoYXBlYCB3b3VsZCBiZTpcbiAqIC0gYFsxMCwgMTI4XWAgZm9yIHNlcXVlbmNlcyBvZiAxMCB2ZWN0b3JzIG9mIDEyOC1kaW1lbnNpb25hbCB2ZWN0b3JzXG4gKiAtIGBbbnVsbCwgMTI4XWAgZm9yIHZhcmlhYmxlLWxlbmd0aCBzZXF1ZW5jZXMgb2YgMTI4LWRpbWVuc2lvbmFsIHZlY3RvcnMuXG4gKlxuICogQGRvYyB7aGVhZGluZzogJ0xheWVycycsIHN1YmhlYWRpbmc6ICdDb252b2x1dGlvbmFsJywgIG5hbWVzcGFjZTogJ2xheWVycyd9XG4gKi9cbmV4cG9ydCBmdW5jdGlvbiBjb252MWQoYXJnczogQ29udkxheWVyQXJncykge1xuICByZXR1cm4gbmV3IENvbnYxRChhcmdzKTtcbn1cblxuLyoqXG4gKiAyRCBjb252b2x1dGlvbiBsYXllciAoZS5nLiBzcGF0aWFsIGNvbnZvbHV0aW9uIG92ZXIgaW1hZ2VzKS5cbiAqXG4gKiBUaGlzIGxheWVyIGNyZWF0ZXMgYSBjb252b2x1dGlvbiBrZXJuZWwgdGhhdCBpcyBjb252b2x2ZWRcbiAqIHdpdGggdGhlIGxheWVyIGlucHV0IHRvIHByb2R1Y2UgYSB0ZW5zb3Igb2Ygb3V0cHV0cy5cbiAqXG4gKiBJZiBgdXNlQmlhc2AgaXMgVHJ1ZSwgYSBiaWFzIHZlY3RvciBpcyBjcmVhdGVkIGFuZCBhZGRlZCB0byB0aGUgb3V0cHV0cy5cbiAqXG4gKiBJZiBgYWN0aXZhdGlvbmAgaXMgbm90IGBudWxsYCwgaXQgaXMgYXBwbGllZCB0byB0aGUgb3V0cHV0cyBhcyB3ZWxsLlxuICpcbiAqIFdoZW4gdXNpbmcgdGhpcyBsYXllciBhcyB0aGUgZmlyc3QgbGF5ZXIgaW4gYSBtb2RlbCxcbiAqIHByb3ZpZGUgdGhlIGtleXdvcmQgYXJndW1lbnQgYGlucHV0U2hhcGVgXG4gKiAoQXJyYXkgb2YgaW50ZWdlcnMsIGRvZXMgbm90IGluY2x1ZGUgdGhlIHNhbXBsZSBheGlzKSxcbiAqIGUuZy4gYGlucHV0U2hhcGU9WzEyOCwgMTI4LCAzXWAgZm9yIDEyOHgxMjggUkdCIHBpY3R1cmVzXG4gKiBpbiBgZGF0YUZvcm1hdD0nY2hhbm5lbHNMYXN0J2AuXG4gKlxuICogQGRvYyB7aGVhZGluZzogJ0xheWVycycsIHN1YmhlYWRpbmc6ICdDb252b2x1dGlvbmFsJywgbmFtZXNwYWNlOiAnbGF5ZXJzJ31cbiAqL1xuZXhwb3J0IGZ1bmN0aW9uIGNvbnYyZChhcmdzOiBDb252TGF5ZXJBcmdzKSB7XG4gIHJldHVybiBuZXcgQ29udjJEKGFyZ3MpO1xufVxuXG4vKipcbiAqIFRyYW5zcG9zZWQgY29udm9sdXRpb25hbCBsYXllciAoc29tZXRpbWVzIGNhbGxlZCBEZWNvbnZvbHV0aW9uKS5cbiAqXG4gKiBUaGUgbmVlZCBmb3IgdHJhbnNwb3NlZCBjb252b2x1dGlvbnMgZ2VuZXJhbGx5IGFyaXNlc1xuICogZnJvbSB0aGUgZGVzaXJlIHRvIHVzZSBhIHRyYW5zZm9ybWF0aW9uIGdvaW5nIGluIHRoZSBvcHBvc2l0ZSBkaXJlY3Rpb24gb2ZcbiAqIGEgbm9ybWFsIGNvbnZvbHV0aW9uLCBpLmUuLCBmcm9tIHNvbWV0aGluZyB0aGF0IGhhcyB0aGUgc2hhcGUgb2YgdGhlIG91dHB1dFxuICogb2Ygc29tZSBjb252b2x1dGlvbiB0byBzb21ldGhpbmcgdGhhdCBoYXMgdGhlIHNoYXBlIG9mIGl0cyBpbnB1dCB3aGlsZVxuICogbWFpbnRhaW5pbmcgYSBjb25uZWN0aXZpdHkgcGF0dGVybiB0aGF0IGlzIGNvbXBhdGlibGUgd2l0aCBzYWlkXG4gKiBjb252b2x1dGlvbi5cbiAqXG4gKiBXaGVuIHVzaW5nIHRoaXMgbGF5ZXIgYXMgdGhlIGZpcnN0IGxheWVyIGluIGEgbW9kZWwsIHByb3ZpZGUgdGhlXG4gKiBjb25maWd1cmF0aW9uIGBpbnB1dFNoYXBlYCAoYEFycmF5YCBvZiBpbnRlZ2VycywgZG9lcyBub3QgaW5jbHVkZSB0aGVcbiAqIHNhbXBsZSBheGlzKSwgZS5nLiwgYGlucHV0U2hhcGU6IFsxMjgsIDEyOCwgM11gIGZvciAxMjh4MTI4IFJHQiBwaWN0dXJlcyBpblxuICogYGRhdGFGb3JtYXQ6ICdjaGFubmVsc0xhc3QnYC5cbiAqXG4gKiBJbnB1dCBzaGFwZTpcbiAqICAgNEQgdGVuc29yIHdpdGggc2hhcGU6XG4gKiAgIGBbYmF0Y2gsIGNoYW5uZWxzLCByb3dzLCBjb2xzXWAgaWYgYGRhdGFGb3JtYXRgIGlzIGAnY2hhbm5lbHNGaXJzdCdgLlxuICogICBvciA0RCB0ZW5zb3Igd2l0aCBzaGFwZVxuICogICBgW2JhdGNoLCByb3dzLCBjb2xzLCBjaGFubmVsc11gIGlmIGBkYXRhRm9ybWF0YCBpcyBgJ2NoYW5uZWxzTGFzdCdgLlxuICpcbiAqIE91dHB1dCBzaGFwZTpcbiAqICAgNEQgdGVuc29yIHdpdGggc2hhcGU6XG4gKiAgIGBbYmF0Y2gsIGZpbHRlcnMsIG5ld1Jvd3MsIG5ld0NvbHNdYCBpZiBgZGF0YUZvcm1hdGAgaXNcbiAqIGAnY2hhbm5lbHNGaXJzdCdgLiBvciA0RCB0ZW5zb3Igd2l0aCBzaGFwZTpcbiAqICAgYFtiYXRjaCwgbmV3Um93cywgbmV3Q29scywgZmlsdGVyc11gIGlmIGBkYXRhRm9ybWF0YCBpcyBgJ2NoYW5uZWxzTGFzdCdgLlxuICpcbiAqIFJlZmVyZW5jZXM6XG4gKiAgIC0gW0EgZ3VpZGUgdG8gY29udm9sdXRpb24gYXJpdGhtZXRpYyBmb3IgZGVlcFxuICogbGVhcm5pbmddKGh0dHBzOi8vYXJ4aXYub3JnL2Ficy8xNjAzLjA3Mjg1djEpXG4gKiAgIC0gW0RlY29udm9sdXRpb25hbFxuICogTmV0d29ya3NdKGh0dHA6Ly93d3cubWF0dGhld3plaWxlci5jb20vcHVicy9jdnByMjAxMC9jdnByMjAxMC5wZGYpXG4gKlxuICogQGRvYyB7aGVhZGluZzogJ0xheWVycycsIHN1YmhlYWRpbmc6ICdDb252b2x1dGlvbmFsJywgbmFtZXNwYWNlOiAnbGF5ZXJzJ31cbiAqL1xuZXhwb3J0IGZ1bmN0aW9uIGNvbnYyZFRyYW5zcG9zZShhcmdzOiBDb252TGF5ZXJBcmdzKSB7XG4gIHJldHVybiBuZXcgQ29udjJEVHJhbnNwb3NlKGFyZ3MpO1xufVxuXG4vKipcbiAqIDNEIGNvbnZvbHV0aW9uIGxheWVyIChlLmcuIHNwYXRpYWwgY29udm9sdXRpb24gb3ZlciB2b2x1bWVzKS5cbiAqXG4gKiBUaGlzIGxheWVyIGNyZWF0ZXMgYSBjb252b2x1dGlvbiBrZXJuZWwgdGhhdCBpcyBjb252b2x2ZWRcbiAqIHdpdGggdGhlIGxheWVyIGlucHV0IHRvIHByb2R1Y2UgYSB0ZW5zb3Igb2Ygb3V0cHV0cy5cbiAqXG4gKiBJZiBgdXNlQmlhc2AgaXMgVHJ1ZSwgYSBiaWFzIHZlY3RvciBpcyBjcmVhdGVkIGFuZCBhZGRlZCB0byB0aGUgb3V0cHV0cy5cbiAqXG4gKiBJZiBgYWN0aXZhdGlvbmAgaXMgbm90IGBudWxsYCwgaXQgaXMgYXBwbGllZCB0byB0aGUgb3V0cHV0cyBhcyB3ZWxsLlxuICpcbiAqIFdoZW4gdXNpbmcgdGhpcyBsYXllciBhcyB0aGUgZmlyc3QgbGF5ZXIgaW4gYSBtb2RlbCxcbiAqIHByb3ZpZGUgdGhlIGtleXdvcmQgYXJndW1lbnQgYGlucHV0U2hhcGVgXG4gKiAoQXJyYXkgb2YgaW50ZWdlcnMsIGRvZXMgbm90IGluY2x1ZGUgdGhlIHNhbXBsZSBheGlzKSxcbiAqIGUuZy4gYGlucHV0U2hhcGU9WzEyOCwgMTI4LCAxMjgsIDFdYCBmb3IgMTI4eDEyOHgxMjggZ3JheXNjYWxlIHZvbHVtZXNcbiAqIGluIGBkYXRhRm9ybWF0PSdjaGFubmVsc0xhc3QnYC5cbiAqXG4gKiBAZG9jIHtoZWFkaW5nOiAnTGF5ZXJzJywgc3ViaGVhZGluZzogJ0NvbnZvbHV0aW9uYWwnLCBuYW1lc3BhY2U6ICdsYXllcnMnfVxuICovXG5leHBvcnQgZnVuY3Rpb24gY29udjNkKGFyZ3M6IENvbnZMYXllckFyZ3MpIHtcbiAgcmV0dXJuIG5ldyBDb252M0QoYXJncyk7XG59XG5cbmV4cG9ydCBmdW5jdGlvbiBjb252M2RUcmFuc3Bvc2UoYXJnczogQ29udkxheWVyQXJncyk6IExheWVyIHtcbiAgcmV0dXJuIG5ldyBDb252M0RUcmFuc3Bvc2UoYXJncyk7XG59XG5cbi8qKlxuICogRGVwdGh3aXNlIHNlcGFyYWJsZSAyRCBjb252b2x1dGlvbi5cbiAqXG4gKiBTZXBhcmFibGUgY29udm9sdXRpb24gY29uc2lzdHMgb2YgZmlyc3QgcGVyZm9ybWluZ1xuICogYSBkZXB0aHdpc2Ugc3BhdGlhbCBjb252b2x1dGlvblxuICogKHdoaWNoIGFjdHMgb24gZWFjaCBpbnB1dCBjaGFubmVsIHNlcGFyYXRlbHkpXG4gKiBmb2xsb3dlZCBieSBhIHBvaW50d2lzZSBjb252b2x1dGlvbiB3aGljaCBtaXhlcyB0b2dldGhlciB0aGUgcmVzdWx0aW5nXG4gKiBvdXRwdXQgY2hhbm5lbHMuIFRoZSBgZGVwdGhNdWx0aXBsaWVyYCBhcmd1bWVudCBjb250cm9scyBob3cgbWFueVxuICogb3V0cHV0IGNoYW5uZWxzIGFyZSBnZW5lcmF0ZWQgcGVyIGlucHV0IGNoYW5uZWwgaW4gdGhlIGRlcHRod2lzZSBzdGVwLlxuICpcbiAqIEludHVpdGl2ZWx5LCBzZXBhcmFibGUgY29udm9sdXRpb25zIGNhbiBiZSB1bmRlcnN0b29kIGFzXG4gKiBhIHdheSB0byBmYWN0b3JpemUgYSBjb252b2x1dGlvbiBrZXJuZWwgaW50byB0d28gc21hbGxlciBrZXJuZWxzLFxuICogb3IgYXMgYW4gZXh0cmVtZSB2ZXJzaW9uIG9mIGFuIEluY2VwdGlvbiBibG9jay5cbiAqXG4gKiBJbnB1dCBzaGFwZTpcbiAqICAgNEQgdGVuc29yIHdpdGggc2hhcGU6XG4gKiAgICAgYFtiYXRjaCwgY2hhbm5lbHMsIHJvd3MsIGNvbHNdYCBpZiBkYXRhX2Zvcm1hdD0nY2hhbm5lbHNGaXJzdCdcbiAqICAgb3IgNEQgdGVuc29yIHdpdGggc2hhcGU6XG4gKiAgICAgYFtiYXRjaCwgcm93cywgY29scywgY2hhbm5lbHNdYCBpZiBkYXRhX2Zvcm1hdD0nY2hhbm5lbHNMYXN0Jy5cbiAqXG4gKiBPdXRwdXQgc2hhcGU6XG4gKiAgIDREIHRlbnNvciB3aXRoIHNoYXBlOlxuICogICAgIGBbYmF0Y2gsIGZpbHRlcnMsIG5ld1Jvd3MsIG5ld0NvbHNdYCBpZiBkYXRhX2Zvcm1hdD0nY2hhbm5lbHNGaXJzdCdcbiAqICAgb3IgNEQgdGVuc29yIHdpdGggc2hhcGU6XG4gKiAgICAgYFtiYXRjaCwgbmV3Um93cywgbmV3Q29scywgZmlsdGVyc11gIGlmIGRhdGFfZm9ybWF0PSdjaGFubmVsc0xhc3QnLlxuICogICAgIGByb3dzYCBhbmQgYGNvbHNgIHZhbHVlcyBtaWdodCBoYXZlIGNoYW5nZWQgZHVlIHRvIHBhZGRpbmcuXG4gKlxuICogQGRvYyB7aGVhZGluZzogJ0xheWVycycsIHN1YmhlYWRpbmc6ICdDb252b2x1dGlvbmFsJywgbmFtZXNwYWNlOiAnbGF5ZXJzJ31cbiAqL1xuZXhwb3J0IGZ1bmN0aW9uIHNlcGFyYWJsZUNvbnYyZChhcmdzOiBTZXBhcmFibGVDb252TGF5ZXJBcmdzKSB7XG4gIHJldHVybiBuZXcgU2VwYXJhYmxlQ29udjJEKGFyZ3MpO1xufVxuXG4vKipcbiAqIENyb3BwaW5nIGxheWVyIGZvciAyRCBpbnB1dCAoZS5nLiwgaW1hZ2UpLlxuICpcbiAqIFRoaXMgbGF5ZXIgY2FuIGNyb3AgYW4gaW5wdXRcbiAqIGF0IHRoZSB0b3AsIGJvdHRvbSwgbGVmdCBhbmQgcmlnaHQgc2lkZSBvZiBhbiBpbWFnZSB0ZW5zb3IuXG4gKlxuICogSW5wdXQgc2hhcGU6XG4gKiAgIDREIHRlbnNvciB3aXRoIHNoYXBlOlxuICogICAtIElmIGBkYXRhRm9ybWF0YCBpcyBgXCJjaGFubmVsc0xhc3RcImA6XG4gKiAgICAgYFtiYXRjaCwgcm93cywgY29scywgY2hhbm5lbHNdYFxuICogICAtIElmIGBkYXRhX2Zvcm1hdGAgaXMgYFwiY2hhbm5lbHNfZmlyc3RcImA6XG4gKiAgICAgYFtiYXRjaCwgY2hhbm5lbHMsIHJvd3MsIGNvbHNdYC5cbiAqXG4gKiBPdXRwdXQgc2hhcGU6XG4gKiAgIDREIHdpdGggc2hhcGU6XG4gKiAgIC0gSWYgYGRhdGFGb3JtYXRgIGlzIGBcImNoYW5uZWxzTGFzdFwiYDpcbiAqICAgICBgW2JhdGNoLCBjcm9wcGVkUm93cywgY3JvcHBlZENvbHMsIGNoYW5uZWxzXWBcbiAqICAgIC0gSWYgYGRhdGFGb3JtYXRgIGlzIGBcImNoYW5uZWxzRmlyc3RcImA6XG4gKiAgICAgYFtiYXRjaCwgY2hhbm5lbHMsIGNyb3BwZWRSb3dzLCBjcm9wcGVkQ29sc11gLlxuICpcbiAqIEV4YW1wbGVzXG4gKiBgYGBqc1xuICpcbiAqIGNvbnN0IG1vZGVsID0gdGYuc2VxdWVudGlhbCgpO1xuICogbW9kZWwuYWRkKHRmLmxheWVycy5jcm9wcGluZzJEKHtjcm9wcGluZzpbWzIsIDJdLCBbMiwgMl1dLFxuICogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGlucHV0U2hhcGU6IFsxMjgsIDEyOCwgM119KSk7XG4gKiAvL25vdyBvdXRwdXQgc2hhcGUgaXMgW2JhdGNoLCAxMjQsIDEyNCwgM11cbiAqIGBgYFxuICpcbiAqIEBkb2Mge2hlYWRpbmc6ICdMYXllcnMnLCBzdWJoZWFkaW5nOiAnQ29udm9sdXRpb25hbCcsIG5hbWVzcGFjZTogJ2xheWVycyd9XG4gKi9cbmV4cG9ydCBmdW5jdGlvbiBjcm9wcGluZzJEKGFyZ3M6IENyb3BwaW5nMkRMYXllckFyZ3MpIHtcbiAgcmV0dXJuIG5ldyBDcm9wcGluZzJEKGFyZ3MpO1xufVxuXG4vKipcbiAqIFVwc2FtcGxpbmcgbGF5ZXIgZm9yIDJEIGlucHV0cy5cbiAqXG4gKiBSZXBlYXRzIHRoZSByb3dzIGFuZCBjb2x1bW5zIG9mIHRoZSBkYXRhXG4gKiBieSBzaXplWzBdIGFuZCBzaXplWzFdIHJlc3BlY3RpdmVseS5cbiAqXG4gKlxuICogSW5wdXQgc2hhcGU6XG4gKiAgICA0RCB0ZW5zb3Igd2l0aCBzaGFwZTpcbiAqICAgICAtIElmIGBkYXRhRm9ybWF0YCBpcyBgXCJjaGFubmVsc0xhc3RcImA6XG4gKiAgICAgICAgIGBbYmF0Y2gsIHJvd3MsIGNvbHMsIGNoYW5uZWxzXWBcbiAqICAgICAtIElmIGBkYXRhRm9ybWF0YCBpcyBgXCJjaGFubmVsc0ZpcnN0XCJgOlxuICogICAgICAgIGBbYmF0Y2gsIGNoYW5uZWxzLCByb3dzLCBjb2xzXWBcbiAqXG4gKiBPdXRwdXQgc2hhcGU6XG4gKiAgICAgNEQgdGVuc29yIHdpdGggc2hhcGU6XG4gKiAgICAgLSBJZiBgZGF0YUZvcm1hdGAgaXMgYFwiY2hhbm5lbHNMYXN0XCJgOlxuICogICAgICAgIGBbYmF0Y2gsIHVwc2FtcGxlZFJvd3MsIHVwc2FtcGxlZENvbHMsIGNoYW5uZWxzXWBcbiAqICAgICAtIElmIGBkYXRhRm9ybWF0YCBpcyBgXCJjaGFubmVsc0ZpcnN0XCJgOlxuICogICAgICAgICBgW2JhdGNoLCBjaGFubmVscywgdXBzYW1wbGVkUm93cywgdXBzYW1wbGVkQ29sc11gXG4gKlxuICpcbiAqIEBkb2Mge2hlYWRpbmc6ICdMYXllcnMnLCBzdWJoZWFkaW5nOiAnQ29udm9sdXRpb25hbCcsIG5hbWVzcGFjZTogJ2xheWVycyd9XG4gKi9cbmV4cG9ydCBmdW5jdGlvbiB1cFNhbXBsaW5nMmQoYXJnczogVXBTYW1wbGluZzJETGF5ZXJBcmdzKSB7XG4gIHJldHVybiBuZXcgVXBTYW1wbGluZzJEKGFyZ3MpO1xufVxuXG4vLyBDb252b2x1dGlvbmFsKGRlcHRod2lzZSkgTGF5ZXJzLlxuXG4vKipcbiAqIERlcHRod2lzZSBzZXBhcmFibGUgMkQgY29udm9sdXRpb24uXG4gKlxuICogRGVwdGh3aXNlIFNlcGFyYWJsZSBjb252b2x1dGlvbnMgY29uc2lzdHMgaW4gcGVyZm9ybWluZyBqdXN0IHRoZSBmaXJzdCBzdGVwXG4gKiBpbiBhIGRlcHRod2lzZSBzcGF0aWFsIGNvbnZvbHV0aW9uICh3aGljaCBhY3RzIG9uIGVhY2ggaW5wdXQgY2hhbm5lbFxuICogc2VwYXJhdGVseSkuIFRoZSBgZGVwdGhNdWx0aXBsaWVyYCBhcmd1bWVudCBjb250cm9scyBob3cgbWFueSBvdXRwdXQgY2hhbm5lbHNcbiAqIGFyZSBnZW5lcmF0ZWQgcGVyIGlucHV0IGNoYW5uZWwgaW4gdGhlIGRlcHRod2lzZSBzdGVwLlxuICpcbiAqIEBkb2Mge2hlYWRpbmc6ICdMYXllcnMnLCBzdWJoZWFkaW5nOiAnQ29udm9sdXRpb25hbCcsIG5hbWVzcGFjZTogJ2xheWVycyd9XG4gKi9cbmV4cG9ydCBmdW5jdGlvbiBkZXB0aHdpc2VDb252MmQoYXJnczogRGVwdGh3aXNlQ29udjJETGF5ZXJBcmdzKSB7XG4gIHJldHVybiBuZXcgRGVwdGh3aXNlQ29udjJEKGFyZ3MpO1xufVxuXG4vLyBCYXNpYyBMYXllcnMuXG5cbi8qKlxuICogQXBwbGllcyBhbiBhY3RpdmF0aW9uIGZ1bmN0aW9uIHRvIGFuIG91dHB1dC5cbiAqXG4gKiBUaGlzIGxheWVyIGFwcGxpZXMgZWxlbWVudC13aXNlIGFjdGl2YXRpb24gZnVuY3Rpb24uICBPdGhlciBsYXllcnMsIG5vdGFibHlcbiAqIGBkZW5zZWAgY2FuIGFsc28gYXBwbHkgYWN0aXZhdGlvbiBmdW5jdGlvbnMuICBVc2UgdGhpcyBpc29sYXRlZCBhY3RpdmF0aW9uXG4gKiBmdW5jdGlvbiB0byBleHRyYWN0IHRoZSB2YWx1ZXMgYmVmb3JlIGFuZCBhZnRlciB0aGVcbiAqIGFjdGl2YXRpb24uIEZvciBpbnN0YW5jZTpcbiAqXG4gKiBgYGBqc1xuICogY29uc3QgaW5wdXQgPSB0Zi5pbnB1dCh7c2hhcGU6IFs1XX0pO1xuICogY29uc3QgZGVuc2VMYXllciA9IHRmLmxheWVycy5kZW5zZSh7dW5pdHM6IDF9KTtcbiAqIGNvbnN0IGFjdGl2YXRpb25MYXllciA9IHRmLmxheWVycy5hY3RpdmF0aW9uKHthY3RpdmF0aW9uOiAncmVsdTYnfSk7XG4gKlxuICogLy8gT2J0YWluIHRoZSBvdXRwdXQgc3ltYm9saWMgdGVuc29ycyBieSBhcHBseWluZyB0aGUgbGF5ZXJzIGluIG9yZGVyLlxuICogY29uc3QgZGVuc2VPdXRwdXQgPSBkZW5zZUxheWVyLmFwcGx5KGlucHV0KTtcbiAqIGNvbnN0IGFjdGl2YXRpb25PdXRwdXQgPSBhY3RpdmF0aW9uTGF5ZXIuYXBwbHkoZGVuc2VPdXRwdXQpO1xuICpcbiAqIC8vIENyZWF0ZSB0aGUgbW9kZWwgYmFzZWQgb24gdGhlIGlucHV0cy5cbiAqIGNvbnN0IG1vZGVsID0gdGYubW9kZWwoe1xuICogICAgIGlucHV0czogaW5wdXQsXG4gKiAgICAgb3V0cHV0czogW2RlbnNlT3V0cHV0LCBhY3RpdmF0aW9uT3V0cHV0XVxuICogfSk7XG4gKlxuICogLy8gQ29sbGVjdCBib3RoIG91dHB1dHMgYW5kIHByaW50IHNlcGFyYXRlbHkuXG4gKiBjb25zdCBbZGVuc2VPdXQsIGFjdGl2YXRpb25PdXRdID0gbW9kZWwucHJlZGljdCh0Zi5yYW5kb21Ob3JtYWwoWzYsIDVdKSk7XG4gKiBkZW5zZU91dC5wcmludCgpO1xuICogYWN0aXZhdGlvbk91dC5wcmludCgpO1xuICogYGBgXG4gKlxuICogQGRvYyB7aGVhZGluZzogJ0xheWVycycsIHN1YmhlYWRpbmc6ICdCYXNpYycsIG5hbWVzcGFjZTogJ2xheWVycyd9XG4gKi9cbmV4cG9ydCBmdW5jdGlvbiBhY3RpdmF0aW9uKGFyZ3M6IEFjdGl2YXRpb25MYXllckFyZ3MpIHtcbiAgcmV0dXJuIG5ldyBBY3RpdmF0aW9uKGFyZ3MpO1xufVxuXG4vKipcbiAqIENyZWF0ZXMgYSBkZW5zZSAoZnVsbHkgY29ubmVjdGVkKSBsYXllci5cbiAqXG4gKiBUaGlzIGxheWVyIGltcGxlbWVudHMgdGhlIG9wZXJhdGlvbjpcbiAqICAgYG91dHB1dCA9IGFjdGl2YXRpb24oZG90KGlucHV0LCBrZXJuZWwpICsgYmlhcylgXG4gKlxuICogYGFjdGl2YXRpb25gIGlzIHRoZSBlbGVtZW50LXdpc2UgYWN0aXZhdGlvbiBmdW5jdGlvblxuICogICBwYXNzZWQgYXMgdGhlIGBhY3RpdmF0aW9uYCBhcmd1bWVudC5cbiAqXG4gKiBga2VybmVsYCBpcyBhIHdlaWdodHMgbWF0cml4IGNyZWF0ZWQgYnkgdGhlIGxheWVyLlxuICpcbiAqIGBiaWFzYCBpcyBhIGJpYXMgdmVjdG9yIGNyZWF0ZWQgYnkgdGhlIGxheWVyIChvbmx5IGFwcGxpY2FibGUgaWYgYHVzZUJpYXNgXG4gKiBpcyBgdHJ1ZWApLlxuICpcbiAqICoqSW5wdXQgc2hhcGU6KipcbiAqXG4gKiAgIG5EIGB0Zi5UZW5zb3JgIHdpdGggc2hhcGU6IGAoYmF0Y2hTaXplLCAuLi4sIGlucHV0RGltKWAuXG4gKlxuICogICBUaGUgbW9zdCBjb21tb24gc2l0dWF0aW9uIHdvdWxkIGJlXG4gKiAgIGEgMkQgaW5wdXQgd2l0aCBzaGFwZSBgKGJhdGNoU2l6ZSwgaW5wdXREaW0pYC5cbiAqXG4gKiAqKk91dHB1dCBzaGFwZToqKlxuICpcbiAqICAgbkQgdGVuc29yIHdpdGggc2hhcGU6IGAoYmF0Y2hTaXplLCAuLi4sIHVuaXRzKWAuXG4gKlxuICogICBGb3IgaW5zdGFuY2UsIGZvciBhIDJEIGlucHV0IHdpdGggc2hhcGUgYChiYXRjaFNpemUsIGlucHV0RGltKWAsXG4gKiAgIHRoZSBvdXRwdXQgd291bGQgaGF2ZSBzaGFwZSBgKGJhdGNoU2l6ZSwgdW5pdHMpYC5cbiAqXG4gKiBOb3RlOiBpZiB0aGUgaW5wdXQgdG8gdGhlIGxheWVyIGhhcyBhIHJhbmsgZ3JlYXRlciB0aGFuIDIsIHRoZW4gaXQgaXNcbiAqIGZsYXR0ZW5lZCBwcmlvciB0byB0aGUgaW5pdGlhbCBkb3QgcHJvZHVjdCB3aXRoIHRoZSBrZXJuZWwuXG4gKlxuICogQGRvYyB7aGVhZGluZzogJ0xheWVycycsIHN1YmhlYWRpbmc6ICdCYXNpYycsIG5hbWVzcGFjZTogJ2xheWVycyd9XG4gKi9cbmV4cG9ydCBmdW5jdGlvbiBkZW5zZShhcmdzOiBEZW5zZUxheWVyQXJncykge1xuICByZXR1cm4gbmV3IERlbnNlKGFyZ3MpO1xufVxuXG4vKipcbiAqIEFwcGxpZXNcbiAqIFtkcm9wb3V0XShodHRwOi8vd3d3LmNzLnRvcm9udG8uZWR1L35yc2FsYWtodS9wYXBlcnMvc3JpdmFzdGF2YTE0YS5wZGYpIHRvXG4gKiB0aGUgaW5wdXQuXG4gKlxuICogRHJvcG91dCBjb25zaXN0cyBpbiByYW5kb21seSBzZXR0aW5nIGEgZnJhY3Rpb24gYHJhdGVgIG9mIGlucHV0IHVuaXRzIHRvIDAgYXRcbiAqIGVhY2ggdXBkYXRlIGR1cmluZyB0cmFpbmluZyB0aW1lLCB3aGljaCBoZWxwcyBwcmV2ZW50IG92ZXJmaXR0aW5nLlxuICpcbiAqIEBkb2Mge2hlYWRpbmc6ICdMYXllcnMnLCBzdWJoZWFkaW5nOiAnQmFzaWMnLCBuYW1lc3BhY2U6ICdsYXllcnMnfVxuICovXG5leHBvcnQgZnVuY3Rpb24gZHJvcG91dChhcmdzOiBEcm9wb3V0TGF5ZXJBcmdzKSB7XG4gIHJldHVybiBuZXcgRHJvcG91dChhcmdzKTtcbn1cblxuLyoqXG4gKiBTcGF0aWFsIDFEIHZlcnNpb24gb2YgRHJvcG91dC5cbiAqXG4gKiBUaGlzIExheWVyIHR5cGUgcGVyZm9ybXMgdGhlIHNhbWUgZnVuY3Rpb24gYXMgdGhlIERyb3BvdXQgbGF5ZXIsIGJ1dCBpdCBkcm9wc1xuICogZW50aXJlIDFEIGZlYXR1cmUgbWFwcyBpbnN0ZWFkIG9mIGluZGl2aWR1YWwgZWxlbWVudHMuIEZvciBleGFtcGxlLCBpZiBhblxuICogaW5wdXQgZXhhbXBsZSBjb25zaXN0cyBvZiAzIHRpbWVzdGVwcyBhbmQgdGhlIGZlYXR1cmUgbWFwIGZvciBlYWNoIHRpbWVzdGVwXG4gKiBoYXMgYSBzaXplIG9mIDQsIGEgYHNwYXRpYWxEcm9wb3V0MWRgIGxheWVyIG1heSB6ZXJvIG91dCB0aGUgZmVhdHVyZSBtYXBzXG4gKiBvZiB0aGUgMXN0IHRpbWVzdGVwcyBhbmQgMm5kIHRpbWVzdGVwcyBjb21wbGV0ZWx5IHdoaWxlIHNwYXJpbmcgYWxsIGZlYXR1cmVcbiAqIGVsZW1lbnRzIG9mIHRoZSAzcmQgdGltZXN0ZXAuXG4gKlxuICogSWYgYWRqYWNlbnQgZnJhbWVzICh0aW1lc3RlcHMpIGFyZSBzdHJvbmdseSBjb3JyZWxhdGVkIChhcyBpcyBub3JtYWxseSB0aGVcbiAqIGNhc2UgaW4gZWFybHkgY29udm9sdXRpb24gbGF5ZXJzKSwgcmVndWxhciBkcm9wb3V0IHdpbGwgbm90IHJlZ3VsYXJpemUgdGhlXG4gKiBhY3RpdmF0aW9uIGFuZCB3aWxsIG90aGVyd2lzZSBqdXN0IHJlc3VsdCBpbiBtZXJlbHkgYW4gZWZmZWN0aXZlIGxlYXJuaW5nXG4gKiByYXRlIGRlY3JlYXNlLiBJbiB0aGlzIGNhc2UsIGBzcGF0aWFsRHJvcG91dDFkYCB3aWxsIGhlbHAgcHJvbW90ZVxuICogaW5kZXBlbmRlbmNlIGFtb25nIGZlYXR1cmUgbWFwcyBhbmQgc2hvdWxkIGJlIHVzZWQgaW5zdGVhZC5cbiAqXG4gKiAqKkFyZ3VtZW50czoqKlxuICogICByYXRlOiBBIGZsb2F0aW5nLXBvaW50IG51bWJlciA+PTAgYW5kIDw9MS4gRnJhY3Rpb24gb2YgdGhlIGlucHV0IGVsZW1lbnRzXG4gKiAgICAgdG8gZHJvcC5cbiAqXG4gKiAqKklucHV0IHNoYXBlOioqXG4gKiAgIDNEIHRlbnNvciB3aXRoIHNoYXBlIGAoc2FtcGxlcywgdGltZXN0ZXBzLCBjaGFubmVscylgLlxuICpcbiAqICoqT3V0cHV0IHNoYXBlOioqXG4gKiAgIFNhbWUgYXMgdGhlIGlucHV0IHNoYXBlLlxuICpcbiAqIFJlZmVyZW5jZXM6XG4gKiAgIC0gW0VmZmljaWVudCBPYmplY3QgTG9jYWxpemF0aW9uIFVzaW5nIENvbnZvbHV0aW9uYWxcbiAqICAgICAgTmV0d29ya3NdKGh0dHBzOi8vYXJ4aXYub3JnL2Ficy8xNDExLjQyODApXG4gKlxuICogQGRvYyB7aGVhZGluZzogJ0xheWVycycsIHN1YmhlYWRpbmc6ICdCYXNpYycsIG5hbWVzcGFjZTogJ2xheWVycyd9XG4gKi9cbmV4cG9ydCBmdW5jdGlvbiBzcGF0aWFsRHJvcG91dDFkKGFyZ3M6IFNwYXRpYWxEcm9wb3V0MURMYXllckNvbmZpZykge1xuICByZXR1cm4gbmV3IFNwYXRpYWxEcm9wb3V0MUQoYXJncyk7XG59XG5cbi8qKlxuICogRmxhdHRlbnMgdGhlIGlucHV0LiBEb2VzIG5vdCBhZmZlY3QgdGhlIGJhdGNoIHNpemUuXG4gKlxuICogQSBgRmxhdHRlbmAgbGF5ZXIgZmxhdHRlbnMgZWFjaCBiYXRjaCBpbiBpdHMgaW5wdXRzIHRvIDFEIChtYWtpbmcgdGhlIG91dHB1dFxuICogMkQpLlxuICpcbiAqIEZvciBleGFtcGxlOlxuICpcbiAqIGBgYGpzXG4gKiBjb25zdCBpbnB1dCA9IHRmLmlucHV0KHtzaGFwZTogWzQsIDNdfSk7XG4gKiBjb25zdCBmbGF0dGVuTGF5ZXIgPSB0Zi5sYXllcnMuZmxhdHRlbigpO1xuICogLy8gSW5zcGVjdCB0aGUgaW5mZXJyZWQgb3V0cHV0IHNoYXBlIG9mIHRoZSBmbGF0dGVuIGxheWVyLCB3aGljaFxuICogLy8gZXF1YWxzIGBbbnVsbCwgMTJdYC4gVGhlIDJuZCBkaW1lbnNpb24gaXMgNCAqIDMsIGkuZS4sIHRoZSByZXN1bHQgb2YgdGhlXG4gKiAvLyBmbGF0dGVuaW5nLiAoVGhlIDFzdCBkaW1lbnNpb24gaXMgdGhlIHVuZGVybWluZWQgYmF0Y2ggc2l6ZS4pXG4gKiBjb25zb2xlLmxvZyhKU09OLnN0cmluZ2lmeShmbGF0dGVuTGF5ZXIuYXBwbHkoaW5wdXQpLnNoYXBlKSk7XG4gKiBgYGBcbiAqXG4gKiBAZG9jIHtoZWFkaW5nOiAnTGF5ZXJzJywgc3ViaGVhZGluZzogJ0Jhc2ljJywgbmFtZXNwYWNlOiAnbGF5ZXJzJ31cbiAqL1xuZXhwb3J0IGZ1bmN0aW9uIGZsYXR0ZW4oYXJncz86IEZsYXR0ZW5MYXllckFyZ3MpIHtcbiAgcmV0dXJuIG5ldyBGbGF0dGVuKGFyZ3MpO1xufVxuXG4vKipcbiAqIFJlcGVhdHMgdGhlIGlucHV0IG4gdGltZXMgaW4gYSBuZXcgZGltZW5zaW9uLlxuICpcbiAqIGBgYGpzXG4gKiAgY29uc3QgbW9kZWwgPSB0Zi5zZXF1ZW50aWFsKCk7XG4gKiAgbW9kZWwuYWRkKHRmLmxheWVycy5yZXBlYXRWZWN0b3Ioe246IDQsIGlucHV0U2hhcGU6IFsyXX0pKTtcbiAqICBjb25zdCB4ID0gdGYudGVuc29yMmQoW1sxMCwgMjBdXSk7XG4gKiAgLy8gVXNlIHRoZSBtb2RlbCB0byBkbyBpbmZlcmVuY2Ugb24gYSBkYXRhIHBvaW50IHRoZSBtb2RlbCBoYXNuJ3Qgc2VlblxuICogIG1vZGVsLnByZWRpY3QoeCkucHJpbnQoKTtcbiAqICAvLyBvdXRwdXQgc2hhcGUgaXMgbm93IFtiYXRjaCwgMiwgNF1cbiAqIGBgYFxuICpcbiAqIEBkb2Mge2hlYWRpbmc6ICdMYXllcnMnLCBzdWJoZWFkaW5nOiAnQmFzaWMnLCBuYW1lc3BhY2U6ICdsYXllcnMnfVxuICovXG5leHBvcnQgZnVuY3Rpb24gcmVwZWF0VmVjdG9yKGFyZ3M6IFJlcGVhdFZlY3RvckxheWVyQXJncykge1xuICByZXR1cm4gbmV3IFJlcGVhdFZlY3RvcihhcmdzKTtcbn1cblxuLyoqXG4gKiBSZXNoYXBlcyBhbiBpbnB1dCB0byBhIGNlcnRhaW4gc2hhcGUuXG4gKlxuICogYGBganNcbiAqIGNvbnN0IGlucHV0ID0gdGYuaW5wdXQoe3NoYXBlOiBbNCwgM119KTtcbiAqIGNvbnN0IHJlc2hhcGVMYXllciA9IHRmLmxheWVycy5yZXNoYXBlKHt0YXJnZXRTaGFwZTogWzIsIDZdfSk7XG4gKiAvLyBJbnNwZWN0IHRoZSBpbmZlcnJlZCBvdXRwdXQgc2hhcGUgb2YgdGhlIFJlc2hhcGUgbGF5ZXIsIHdoaWNoXG4gKiAvLyBlcXVhbHMgYFtudWxsLCAyLCA2XWAuIChUaGUgMXN0IGRpbWVuc2lvbiBpcyB0aGUgdW5kZXJtaW5lZCBiYXRjaCBzaXplLilcbiAqIGNvbnNvbGUubG9nKEpTT04uc3RyaW5naWZ5KHJlc2hhcGVMYXllci5hcHBseShpbnB1dCkuc2hhcGUpKTtcbiAqIGBgYFxuICpcbiAqIElucHV0IHNoYXBlOlxuICogICBBcmJpdHJhcnksIGFsdGhvdWdoIGFsbCBkaW1lbnNpb25zIGluIHRoZSBpbnB1dCBzaGFwZSBtdXN0IGJlIGZpeGVkLlxuICogICBVc2UgdGhlIGNvbmZpZ3VyYXRpb24gYGlucHV0U2hhcGVgIHdoZW4gdXNpbmcgdGhpcyBsYXllciBhcyB0aGVcbiAqICAgZmlyc3QgbGF5ZXIgaW4gYSBtb2RlbC5cbiAqXG4gKlxuICogT3V0cHV0IHNoYXBlOlxuICogICBbYmF0Y2hTaXplLCB0YXJnZXRTaGFwZVswXSwgdGFyZ2V0U2hhcGVbMV0sIC4uLixcbiAqICAgIHRhcmdldFNoYXBlW3RhcmdldFNoYXBlLmxlbmd0aCAtIDFdXS5cbiAqXG4gKiBAZG9jIHtoZWFkaW5nOiAnTGF5ZXJzJywgc3ViaGVhZGluZzogJ0Jhc2ljJywgbmFtZXNwYWNlOiAnbGF5ZXJzJ31cbiAqL1xuZXhwb3J0IGZ1bmN0aW9uIHJlc2hhcGUoYXJnczogUmVzaGFwZUxheWVyQXJncykge1xuICByZXR1cm4gbmV3IFJlc2hhcGUoYXJncyk7XG59XG5cbi8qKlxuICogUGVybXV0ZXMgdGhlIGRpbWVuc2lvbnMgb2YgdGhlIGlucHV0IGFjY29yZGluZyB0byBhIGdpdmVuIHBhdHRlcm4uXG4gKlxuICogVXNlZnVsIGZvciwgZS5nLiwgY29ubmVjdGluZyBSTk5zIGFuZCBjb252bmV0cyB0b2dldGhlci5cbiAqXG4gKiBFeGFtcGxlOlxuICpcbiAqIGBgYGpzXG4gKiBjb25zdCBtb2RlbCA9IHRmLnNlcXVlbnRpYWwoKTtcbiAqIG1vZGVsLmFkZCh0Zi5sYXllcnMucGVybXV0ZSh7XG4gKiAgIGRpbXM6IFsyLCAxXSxcbiAqICAgaW5wdXRTaGFwZTogWzEwLCA2NF1cbiAqIH0pKTtcbiAqIGNvbnNvbGUubG9nKG1vZGVsLm91dHB1dFNoYXBlKTtcbiAqIC8vIE5vdyBtb2RlbCdzIG91dHB1dCBzaGFwZSBpcyBbbnVsbCwgNjQsIDEwXSwgd2hlcmUgbnVsbCBpcyB0aGVcbiAqIC8vIHVucGVybXV0ZWQgc2FtcGxlIChiYXRjaCkgZGltZW5zaW9uLlxuICogYGBgXG4gKlxuICogSW5wdXQgc2hhcGU6XG4gKiAgIEFyYml0cmFyeS4gVXNlIHRoZSBjb25maWd1cmF0aW9uIGZpZWxkIGBpbnB1dFNoYXBlYCB3aGVuIHVzaW5nIHRoaXNcbiAqICAgbGF5ZXIgYXMgdGhlIGZpcnN0IGxheWVyIGluIGEgbW9kZWwuXG4gKlxuICogT3V0cHV0IHNoYXBlOlxuICogICBTYW1lIHJhbmsgYXMgdGhlIGlucHV0IHNoYXBlLCBidXQgd2l0aCB0aGUgZGltZW5zaW9ucyByZS1vcmRlcmVkIChpLmUuLFxuICogICBwZXJtdXRlZCkgYWNjb3JkaW5nIHRvIHRoZSBgZGltc2AgY29uZmlndXJhdGlvbiBvZiB0aGlzIGxheWVyLlxuICpcbiAqIEBkb2Mge2hlYWRpbmc6ICdMYXllcnMnLCBzdWJoZWFkaW5nOiAnQmFzaWMnLCBuYW1lc3BhY2U6ICdsYXllcnMnfVxuICovXG5leHBvcnQgZnVuY3Rpb24gcGVybXV0ZShhcmdzOiBQZXJtdXRlTGF5ZXJBcmdzKSB7XG4gIHJldHVybiBuZXcgUGVybXV0ZShhcmdzKTtcbn1cblxuLyoqXG4gKiBNYXBzIHBvc2l0aXZlIGludGVnZXJzIChpbmRpY2VzKSBpbnRvIGRlbnNlIHZlY3RvcnMgb2YgZml4ZWQgc2l6ZS5cbiAqIEUuZy4gW1s0XSwgWzIwXV0gLT4gW1swLjI1LCAwLjFdLCBbMC42LCAtMC4yXV1cbiAqXG4gKiAqKklucHV0IHNoYXBlOioqIDJEIHRlbnNvciB3aXRoIHNoYXBlOiBgW2JhdGNoU2l6ZSwgc2VxdWVuY2VMZW5ndGhdYC5cbiAqXG4gKiAqKk91dHB1dCBzaGFwZToqKiAzRCB0ZW5zb3Igd2l0aCBzaGFwZTogYFtiYXRjaFNpemUsIHNlcXVlbmNlTGVuZ3RoLFxuICogb3V0cHV0RGltXWAuXG4gKlxuICogQGRvYyB7aGVhZGluZzogJ0xheWVycycsIHN1YmhlYWRpbmc6ICdCYXNpYycsIG5hbWVzcGFjZTogJ2xheWVycyd9XG4gKi9cbmV4cG9ydCBmdW5jdGlvbiBlbWJlZGRpbmcoYXJnczogRW1iZWRkaW5nTGF5ZXJBcmdzKSB7XG4gIHJldHVybiBuZXcgRW1iZWRkaW5nKGFyZ3MpO1xufVxuXG4vLyBNZXJnZSBMYXllcnMuXG5cbi8qKlxuICogTGF5ZXIgdGhhdCBwZXJmb3JtcyBlbGVtZW50LXdpc2UgYWRkaXRpb24gb24gYW4gYEFycmF5YCBvZiBpbnB1dHMuXG4gKlxuICogSXQgdGFrZXMgYXMgaW5wdXQgYSBsaXN0IG9mIHRlbnNvcnMsIGFsbCBvZiB0aGUgc2FtZSBzaGFwZSwgYW5kIHJldHVybnMgYVxuICogc2luZ2xlIHRlbnNvciAoYWxzbyBvZiB0aGUgc2FtZSBzaGFwZSkuIFRoZSBpbnB1dHMgYXJlIHNwZWNpZmllZCBhcyBhblxuICogYEFycmF5YCB3aGVuIHRoZSBgYXBwbHlgIG1ldGhvZCBvZiB0aGUgYEFkZGAgbGF5ZXIgaW5zdGFuY2UgaXMgY2FsbGVkLiBGb3JcbiAqIGV4YW1wbGU6XG4gKlxuICogYGBganNcbiAqIGNvbnN0IGlucHV0MSA9IHRmLmlucHV0KHtzaGFwZTogWzIsIDJdfSk7XG4gKiBjb25zdCBpbnB1dDIgPSB0Zi5pbnB1dCh7c2hhcGU6IFsyLCAyXX0pO1xuICogY29uc3QgYWRkTGF5ZXIgPSB0Zi5sYXllcnMuYWRkKCk7XG4gKiBjb25zdCBzdW0gPSBhZGRMYXllci5hcHBseShbaW5wdXQxLCBpbnB1dDJdKTtcbiAqIGNvbnNvbGUubG9nKEpTT04uc3RyaW5naWZ5KHN1bS5zaGFwZSkpO1xuICogLy8gWW91IGdldCBbbnVsbCwgMiwgMl0sIHdpdGggdGhlIGZpcnN0IGRpbWVuc2lvbiBhcyB0aGUgdW5kZXRlcm1pbmVkIGJhdGNoXG4gKiAvLyBkaW1lbnNpb24uXG4gKiBgYGBcbiAqXG4gKiBAZG9jIHtoZWFkaW5nOiAnTGF5ZXJzJywgc3ViaGVhZGluZzogJ01lcmdlJywgbmFtZXNwYWNlOiAnbGF5ZXJzJ31cbiAqL1xuZXhwb3J0IGZ1bmN0aW9uIGFkZChhcmdzPzogTGF5ZXJBcmdzKSB7XG4gIHJldHVybiBuZXcgQWRkKGFyZ3MpO1xufVxuXG4vKipcbiAqIExheWVyIHRoYXQgcGVyZm9ybXMgZWxlbWVudC13aXNlIGF2ZXJhZ2luZyBvbiBhbiBgQXJyYXlgIG9mIGlucHV0cy5cbiAqXG4gKiBJdCB0YWtlcyBhcyBpbnB1dCBhIGxpc3Qgb2YgdGVuc29ycywgYWxsIG9mIHRoZSBzYW1lIHNoYXBlLCBhbmQgcmV0dXJucyBhXG4gKiBzaW5nbGUgdGVuc29yIChhbHNvIG9mIHRoZSBzYW1lIHNoYXBlKS4gRm9yIGV4YW1wbGU6XG4gKlxuICogYGBganNcbiAqIGNvbnN0IGlucHV0MSA9IHRmLmlucHV0KHtzaGFwZTogWzIsIDJdfSk7XG4gKiBjb25zdCBpbnB1dDIgPSB0Zi5pbnB1dCh7c2hhcGU6IFsyLCAyXX0pO1xuICogY29uc3QgYXZlcmFnZUxheWVyID0gdGYubGF5ZXJzLmF2ZXJhZ2UoKTtcbiAqIGNvbnN0IGF2ZXJhZ2UgPSBhdmVyYWdlTGF5ZXIuYXBwbHkoW2lucHV0MSwgaW5wdXQyXSk7XG4gKiBjb25zb2xlLmxvZyhKU09OLnN0cmluZ2lmeShhdmVyYWdlLnNoYXBlKSk7XG4gKiAvLyBZb3UgZ2V0IFtudWxsLCAyLCAyXSwgd2l0aCB0aGUgZmlyc3QgZGltZW5zaW9uIGFzIHRoZSB1bmRldGVybWluZWQgYmF0Y2hcbiAqIC8vIGRpbWVuc2lvbi5cbiAqIGBgYFxuICpcbiAqIEBkb2Mge2hlYWRpbmc6ICdMYXllcnMnLCBzdWJoZWFkaW5nOiAnTWVyZ2UnLCBuYW1lc3BhY2U6ICdsYXllcnMnfVxuICovXG5leHBvcnQgZnVuY3Rpb24gYXZlcmFnZShhcmdzPzogTGF5ZXJBcmdzKSB7XG4gIHJldHVybiBuZXcgQXZlcmFnZShhcmdzKTtcbn1cblxuLyoqXG4gKiBMYXllciB0aGF0IGNvbmNhdGVuYXRlcyBhbiBgQXJyYXlgIG9mIGlucHV0cy5cbiAqXG4gKiBJdCB0YWtlcyBhIGxpc3Qgb2YgdGVuc29ycywgYWxsIG9mIHRoZSBzYW1lIHNoYXBlIGV4Y2VwdCBmb3IgdGhlXG4gKiBjb25jYXRlbmF0aW9uIGF4aXMsIGFuZCByZXR1cm5zIGEgc2luZ2xlIHRlbnNvciwgdGhlIGNvbmNhdGVuYXRpb25cbiAqIG9mIGFsbCBpbnB1dHMuIEZvciBleGFtcGxlOlxuICpcbiAqIGBgYGpzXG4gKiBjb25zdCBpbnB1dDEgPSB0Zi5pbnB1dCh7c2hhcGU6IFsyLCAyXX0pO1xuICogY29uc3QgaW5wdXQyID0gdGYuaW5wdXQoe3NoYXBlOiBbMiwgM119KTtcbiAqIGNvbnN0IGNvbmNhdExheWVyID0gdGYubGF5ZXJzLmNvbmNhdGVuYXRlKCk7XG4gKiBjb25zdCBvdXRwdXQgPSBjb25jYXRMYXllci5hcHBseShbaW5wdXQxLCBpbnB1dDJdKTtcbiAqIGNvbnNvbGUubG9nKEpTT04uc3RyaW5naWZ5KG91dHB1dC5zaGFwZSkpO1xuICogLy8gWW91IGdldCBbbnVsbCwgMiwgNV0sIHdpdGggdGhlIGZpcnN0IGRpbWVuc2lvbiBhcyB0aGUgdW5kZXRlcm1pbmVkIGJhdGNoXG4gKiAvLyBkaW1lbnNpb24uIFRoZSBsYXN0IGRpbWVuc2lvbiAoNSkgaXMgdGhlIHJlc3VsdCBvZiBjb25jYXRlbmF0aW5nIHRoZVxuICogLy8gbGFzdCBkaW1lbnNpb25zIG9mIHRoZSBpbnB1dHMgKDIgYW5kIDMpLlxuICogYGBgXG4gKlxuICogQGRvYyB7aGVhZGluZzogJ0xheWVycycsIHN1YmhlYWRpbmc6ICdNZXJnZScsIG5hbWVzcGFjZTogJ2xheWVycyd9XG4gKi9cbmV4cG9ydCBmdW5jdGlvbiBjb25jYXRlbmF0ZShhcmdzPzogQ29uY2F0ZW5hdGVMYXllckFyZ3MpIHtcbiAgcmV0dXJuIG5ldyBDb25jYXRlbmF0ZShhcmdzKTtcbn1cblxuLyoqXG4gKiBMYXllciB0aGF0IGNvbXB1dGVzIHRoZSBlbGVtZW50LXdpc2UgbWF4aW11bSBvZiBhbiBgQXJyYXlgIG9mIGlucHV0cy5cbiAqXG4gKiBJdCB0YWtlcyBhcyBpbnB1dCBhIGxpc3Qgb2YgdGVuc29ycywgYWxsIG9mIHRoZSBzYW1lIHNoYXBlLCBhbmQgcmV0dXJucyBhXG4gKiBzaW5nbGUgdGVuc29yIChhbHNvIG9mIHRoZSBzYW1lIHNoYXBlKS4gRm9yIGV4YW1wbGU6XG4gKlxuICogYGBganNcbiAqIGNvbnN0IGlucHV0MSA9IHRmLmlucHV0KHtzaGFwZTogWzIsIDJdfSk7XG4gKiBjb25zdCBpbnB1dDIgPSB0Zi5pbnB1dCh7c2hhcGU6IFsyLCAyXX0pO1xuICogY29uc3QgbWF4TGF5ZXIgPSB0Zi5sYXllcnMubWF4aW11bSgpO1xuICogY29uc3QgbWF4ID0gbWF4TGF5ZXIuYXBwbHkoW2lucHV0MSwgaW5wdXQyXSk7XG4gKiBjb25zb2xlLmxvZyhKU09OLnN0cmluZ2lmeShtYXguc2hhcGUpKTtcbiAqIC8vIFlvdSBnZXQgW251bGwsIDIsIDJdLCB3aXRoIHRoZSBmaXJzdCBkaW1lbnNpb24gYXMgdGhlIHVuZGV0ZXJtaW5lZCBiYXRjaFxuICogLy8gZGltZW5zaW9uLlxuICogYGBgXG4gKlxuICogQGRvYyB7aGVhZGluZzogJ0xheWVycycsIHN1YmhlYWRpbmc6ICdNZXJnZScsIG5hbWVzcGFjZTogJ2xheWVycyd9XG4gKi9cbmV4cG9ydCBmdW5jdGlvbiBtYXhpbXVtKGFyZ3M/OiBMYXllckFyZ3MpIHtcbiAgcmV0dXJuIG5ldyBNYXhpbXVtKGFyZ3MpO1xufVxuXG4vKipcbiAqIExheWVyIHRoYXQgY29tcHV0ZXMgdGhlIGVsZW1lbnQtd2lzZSBtaW5pbXVtIG9mIGFuIGBBcnJheWAgb2YgaW5wdXRzLlxuICpcbiAqIEl0IHRha2VzIGFzIGlucHV0IGEgbGlzdCBvZiB0ZW5zb3JzLCBhbGwgb2YgdGhlIHNhbWUgc2hhcGUsIGFuZCByZXR1cm5zIGFcbiAqIHNpbmdsZSB0ZW5zb3IgKGFsc28gb2YgdGhlIHNhbWUgc2hhcGUpLiBGb3IgZXhhbXBsZTpcbiAqXG4gKiBgYGBqc1xuICogY29uc3QgaW5wdXQxID0gdGYuaW5wdXQoe3NoYXBlOiBbMiwgMl19KTtcbiAqIGNvbnN0IGlucHV0MiA9IHRmLmlucHV0KHtzaGFwZTogWzIsIDJdfSk7XG4gKiBjb25zdCBtaW5MYXllciA9IHRmLmxheWVycy5taW5pbXVtKCk7XG4gKiBjb25zdCBtaW4gPSBtaW5MYXllci5hcHBseShbaW5wdXQxLCBpbnB1dDJdKTtcbiAqIGNvbnNvbGUubG9nKEpTT04uc3RyaW5naWZ5KG1pbi5zaGFwZSkpO1xuICogLy8gWW91IGdldCBbbnVsbCwgMiwgMl0sIHdpdGggdGhlIGZpcnN0IGRpbWVuc2lvbiBhcyB0aGUgdW5kZXRlcm1pbmVkIGJhdGNoXG4gKiAvLyBkaW1lbnNpb24uXG4gKiBgYGBcbiAqXG4gKiBAZG9jIHtoZWFkaW5nOiAnTGF5ZXJzJywgc3ViaGVhZGluZzogJ01lcmdlJywgbmFtZXNwYWNlOiAnbGF5ZXJzJ31cbiAqL1xuZXhwb3J0IGZ1bmN0aW9uIG1pbmltdW0oYXJncz86IExheWVyQXJncykge1xuICByZXR1cm4gbmV3IE1pbmltdW0oYXJncyk7XG59XG5cbi8qKlxuICogTGF5ZXIgdGhhdCBtdWx0aXBsaWVzIChlbGVtZW50LXdpc2UpIGFuIGBBcnJheWAgb2YgaW5wdXRzLlxuICpcbiAqIEl0IHRha2VzIGFzIGlucHV0IGFuIEFycmF5IG9mIHRlbnNvcnMsIGFsbCBvZiB0aGUgc2FtZVxuICogc2hhcGUsIGFuZCByZXR1cm5zIGEgc2luZ2xlIHRlbnNvciAoYWxzbyBvZiB0aGUgc2FtZSBzaGFwZSkuXG4gKiBGb3IgZXhhbXBsZTpcbiAqXG4gKiBgYGBqc1xuICogY29uc3QgaW5wdXQxID0gdGYuaW5wdXQoe3NoYXBlOiBbMiwgMl19KTtcbiAqIGNvbnN0IGlucHV0MiA9IHRmLmlucHV0KHtzaGFwZTogWzIsIDJdfSk7XG4gKiBjb25zdCBpbnB1dDMgPSB0Zi5pbnB1dCh7c2hhcGU6IFsyLCAyXX0pO1xuICogY29uc3QgbXVsdGlwbHlMYXllciA9IHRmLmxheWVycy5tdWx0aXBseSgpO1xuICogY29uc3QgcHJvZHVjdCA9IG11bHRpcGx5TGF5ZXIuYXBwbHkoW2lucHV0MSwgaW5wdXQyLCBpbnB1dDNdKTtcbiAqIGNvbnNvbGUubG9nKHByb2R1Y3Quc2hhcGUpO1xuICogLy8gWW91IGdldCBbbnVsbCwgMiwgMl0sIHdpdGggdGhlIGZpcnN0IGRpbWVuc2lvbiBhcyB0aGUgdW5kZXRlcm1pbmVkIGJhdGNoXG4gKiAvLyBkaW1lbnNpb24uXG4gKlxuICogQGRvYyB7aGVhZGluZzogJ0xheWVycycsIHN1YmhlYWRpbmc6ICdNZXJnZScsIG5hbWVzcGFjZTogJ2xheWVycyd9XG4gKi9cbmV4cG9ydCBmdW5jdGlvbiBtdWx0aXBseShhcmdzPzogTGF5ZXJBcmdzKSB7XG4gIHJldHVybiBuZXcgTXVsdGlwbHkoYXJncyk7XG59XG5cbi8qKlxuICogTGF5ZXIgdGhhdCBjb21wdXRlcyBhIGRvdCBwcm9kdWN0IGJldHdlZW4gc2FtcGxlcyBpbiB0d28gdGVuc29ycy5cbiAqXG4gKiBFLmcuLCBpZiBhcHBsaWVkIHRvIGEgbGlzdCBvZiB0d28gdGVuc29ycyBgYWAgYW5kIGBiYCBib3RoIG9mIHNoYXBlXG4gKiBgW2JhdGNoU2l6ZSwgbl1gLCB0aGUgb3V0cHV0IHdpbGwgYmUgYSB0ZW5zb3Igb2Ygc2hhcGUgYFtiYXRjaFNpemUsIDFdYCxcbiAqIHdoZXJlIGVhY2ggZW50cnkgYXQgaW5kZXggYFtpLCAwXWAgd2lsbCBiZSB0aGUgZG90IHByb2R1Y3QgYmV0d2VlblxuICogYGFbaSwgOl1gIGFuZCBgYltpLCA6XWAuXG4gKlxuICogRXhhbXBsZTpcbiAqXG4gKiBgYGBqc1xuICogY29uc3QgZG90TGF5ZXIgPSB0Zi5sYXllcnMuZG90KHtheGVzOiAtMX0pO1xuICogY29uc3QgeDEgPSB0Zi50ZW5zb3IyZChbWzEwLCAyMF0sIFszMCwgNDBdXSk7XG4gKiBjb25zdCB4MiA9IHRmLnRlbnNvcjJkKFtbLTEsIC0yXSwgWy0zLCAtNF1dKTtcbiAqXG4gKiAvLyBJbnZva2UgdGhlIGxheWVyJ3MgYXBwbHkoKSBtZXRob2QgaW4gZWFnZXIgKGltcGVyYXRpdmUpIG1vZGUuXG4gKiBjb25zdCB5ID0gZG90TGF5ZXIuYXBwbHkoW3gxLCB4Ml0pO1xuICogeS5wcmludCgpO1xuICogYGBgXG4gKlxuICogQGRvYyB7aGVhZGluZzogJ0xheWVycycsIHN1YmhlYWRpbmc6ICdNZXJnZScsIG5hbWVzcGFjZTogJ2xheWVycyd9XG4gKi9cbmV4cG9ydCBmdW5jdGlvbiBkb3QoYXJnczogRG90TGF5ZXJBcmdzKSB7XG4gIHJldHVybiBuZXcgRG90KGFyZ3MpO1xufVxuXG4vLyBOb3JtYWxpemF0aW9uIExheWVycy5cblxuLyoqXG4gKiBCYXRjaCBub3JtYWxpemF0aW9uIGxheWVyIChJb2ZmZSBhbmQgU3plZ2VkeSwgMjAxNCkuXG4gKlxuICogTm9ybWFsaXplIHRoZSBhY3RpdmF0aW9ucyBvZiB0aGUgcHJldmlvdXMgbGF5ZXIgYXQgZWFjaCBiYXRjaCxcbiAqIGkuZS4gYXBwbGllcyBhIHRyYW5zZm9ybWF0aW9uIHRoYXQgbWFpbnRhaW5zIHRoZSBtZWFuIGFjdGl2YXRpb25cbiAqIGNsb3NlIHRvIDAgYW5kIHRoZSBhY3RpdmF0aW9uIHN0YW5kYXJkIGRldmlhdGlvbiBjbG9zZSB0byAxLlxuICpcbiAqIElucHV0IHNoYXBlOlxuICogICBBcmJpdHJhcnkuIFVzZSB0aGUga2V5d29yZCBhcmd1bWVudCBgaW5wdXRTaGFwZWAgKEFycmF5IG9mIGludGVnZXJzLCBkb2VzXG4gKiAgIG5vdCBpbmNsdWRlIHRoZSBzYW1wbGUgYXhpcykgd2hlbiBjYWxsaW5nIHRoZSBjb25zdHJ1Y3RvciBvZiB0aGlzIGNsYXNzLFxuICogICBpZiB0aGlzIGxheWVyIGlzIHVzZWQgYXMgYSBmaXJzdCBsYXllciBpbiBhIG1vZGVsLlxuICpcbiAqIE91dHB1dCBzaGFwZTpcbiAqICAgU2FtZSBzaGFwZSBhcyBpbnB1dC5cbiAqXG4gKiBSZWZlcmVuY2VzOlxuICogICAtIFtCYXRjaCBOb3JtYWxpemF0aW9uOiBBY2NlbGVyYXRpbmcgRGVlcCBOZXR3b3JrIFRyYWluaW5nIGJ5IFJlZHVjaW5nXG4gKiBJbnRlcm5hbCBDb3ZhcmlhdGUgU2hpZnRdKGh0dHBzOi8vYXJ4aXYub3JnL2Ficy8xNTAyLjAzMTY3KVxuICpcbiAqIEBkb2Mge2hlYWRpbmc6ICdMYXllcnMnLCBzdWJoZWFkaW5nOiAnTm9ybWFsaXphdGlvbicsIG5hbWVzcGFjZTogJ2xheWVycyd9XG4gKi9cbmV4cG9ydCBmdW5jdGlvbiBiYXRjaE5vcm1hbGl6YXRpb24oYXJncz86IEJhdGNoTm9ybWFsaXphdGlvbkxheWVyQXJncykge1xuICByZXR1cm4gbmV3IEJhdGNoTm9ybWFsaXphdGlvbihhcmdzKTtcbn1cblxuLyoqXG4gKiBMYXllci1ub3JtYWxpemF0aW9uIGxheWVyIChCYSBldCBhbC4sIDIwMTYpLlxuICpcbiAqIE5vcm1hbGl6ZXMgdGhlIGFjdGl2YXRpb25zIG9mIHRoZSBwcmV2aW91cyBsYXllciBmb3IgZWFjaCBnaXZlbiBleGFtcGxlIGluIGFcbiAqIGJhdGNoIGluZGVwZW5kZW50bHksIGluc3RlYWQgb2YgYWNyb3NzIGEgYmF0Y2ggbGlrZSBpbiBgYmF0Y2hOb3JtYWxpemF0aW9uYC5cbiAqIEluIG90aGVyIHdvcmRzLCB0aGlzIGxheWVyIGFwcGxpZXMgYSB0cmFuc2Zvcm1hdGlvbiB0aGF0IG1haW50YWlucyB0aGUgbWVhblxuICogYWN0aXZhdGlvbiB3aXRoaW4gZWFjaCBleGFtcGxlIGNsb3NlIHRvIDAgYW5kIGFjdGl2YXRpb24gdmFyaWFuY2UgY2xvc2UgdG8gMS5cbiAqXG4gKiBJbnB1dCBzaGFwZTpcbiAqICAgQXJiaXRyYXJ5LiBVc2UgdGhlIGFyZ3VtZW50IGBpbnB1dFNoYXBlYCB3aGVuIHVzaW5nIHRoaXMgbGF5ZXIgYXMgdGhlIGZpcnN0XG4gKiAgIGxheWVyIGluIGEgbW9kZWwuXG4gKlxuICogT3V0cHV0IHNoYXBlOlxuICogICBTYW1lIGFzIGlucHV0LlxuICpcbiAqIFJlZmVyZW5jZXM6XG4gKiAgIC0gW0xheWVyIE5vcm1hbGl6YXRpb25dKGh0dHBzOi8vYXJ4aXYub3JnL2Ficy8xNjA3LjA2NDUwKVxuICpcbiAqIEBkb2Mge2hlYWRpbmc6ICdMYXllcnMnLCBzdWJoZWFkaW5nOiAnTm9ybWFsaXphdGlvbicsIG5hbWVzcGFjZTogJ2xheWVycyd9XG4gKi9cbmV4cG9ydCBmdW5jdGlvbiBsYXllck5vcm1hbGl6YXRpb24oYXJncz86IExheWVyTm9ybWFsaXphdGlvbkxheWVyQXJncykge1xuICByZXR1cm4gbmV3IExheWVyTm9ybWFsaXphdGlvbihhcmdzKTtcbn1cblxuLy8gUGFkZGluZyBMYXllcnMuXG5cbi8qKlxuICogWmVyby1wYWRkaW5nIGxheWVyIGZvciAyRCBpbnB1dCAoZS5nLiwgaW1hZ2UpLlxuICpcbiAqIFRoaXMgbGF5ZXIgY2FuIGFkZCByb3dzIGFuZCBjb2x1bW5zIG9mIHplcm9zXG4gKiBhdCB0aGUgdG9wLCBib3R0b20sIGxlZnQgYW5kIHJpZ2h0IHNpZGUgb2YgYW4gaW1hZ2UgdGVuc29yLlxuICpcbiAqIElucHV0IHNoYXBlOlxuICogICA0RCB0ZW5zb3Igd2l0aCBzaGFwZTpcbiAqICAgLSBJZiBgZGF0YUZvcm1hdGAgaXMgYFwiY2hhbm5lbHNMYXN0XCJgOlxuICogICAgIGBbYmF0Y2gsIHJvd3MsIGNvbHMsIGNoYW5uZWxzXWBcbiAqICAgLSBJZiBgZGF0YV9mb3JtYXRgIGlzIGBcImNoYW5uZWxzX2ZpcnN0XCJgOlxuICogICAgIGBbYmF0Y2gsIGNoYW5uZWxzLCByb3dzLCBjb2xzXWAuXG4gKlxuICogT3V0cHV0IHNoYXBlOlxuICogICA0RCB3aXRoIHNoYXBlOlxuICogICAtIElmIGBkYXRhRm9ybWF0YCBpcyBgXCJjaGFubmVsc0xhc3RcImA6XG4gKiAgICAgYFtiYXRjaCwgcGFkZGVkUm93cywgcGFkZGVkQ29scywgY2hhbm5lbHNdYFxuICogICAgLSBJZiBgZGF0YUZvcm1hdGAgaXMgYFwiY2hhbm5lbHNGaXJzdFwiYDpcbiAqICAgICBgW2JhdGNoLCBjaGFubmVscywgcGFkZGVkUm93cywgcGFkZGVkQ29sc11gLlxuICpcbiAqIEBkb2Mge2hlYWRpbmc6ICdMYXllcnMnLCBzdWJoZWFkaW5nOiAnUGFkZGluZycsIG5hbWVzcGFjZTogJ2xheWVycyd9XG4gKi9cbmV4cG9ydCBmdW5jdGlvbiB6ZXJvUGFkZGluZzJkKGFyZ3M/OiBaZXJvUGFkZGluZzJETGF5ZXJBcmdzKSB7XG4gIHJldHVybiBuZXcgWmVyb1BhZGRpbmcyRChhcmdzKTtcbn1cblxuLy8gUG9vbGluZyBMYXllcnMuXG5cbi8qKlxuICogQXZlcmFnZSBwb29saW5nIG9wZXJhdGlvbiBmb3Igc3BhdGlhbCBkYXRhLlxuICpcbiAqIElucHV0IHNoYXBlOiBgW2JhdGNoU2l6ZSwgaW5MZW5ndGgsIGNoYW5uZWxzXWBcbiAqXG4gKiBPdXRwdXQgc2hhcGU6IGBbYmF0Y2hTaXplLCBwb29sZWRMZW5ndGgsIGNoYW5uZWxzXWBcbiAqXG4gKiBgdGYuYXZnUG9vbDFkYCBpcyBhbiBhbGlhcy5cbiAqXG4gKiBAZG9jIHtoZWFkaW5nOiAnTGF5ZXJzJywgc3ViaGVhZGluZzogJ1Bvb2xpbmcnLCBuYW1lc3BhY2U6ICdsYXllcnMnfVxuICovXG5leHBvcnQgZnVuY3Rpb24gYXZlcmFnZVBvb2xpbmcxZChhcmdzOiBQb29saW5nMURMYXllckFyZ3MpIHtcbiAgcmV0dXJuIG5ldyBBdmVyYWdlUG9vbGluZzFEKGFyZ3MpO1xufVxuZXhwb3J0IGZ1bmN0aW9uIGF2Z1Bvb2wxZChhcmdzOiBQb29saW5nMURMYXllckFyZ3MpIHtcbiAgcmV0dXJuIGF2ZXJhZ2VQb29saW5nMWQoYXJncyk7XG59XG4vLyBGb3IgYmFja3dhcmRzIGNvbXBhdGliaWxpdHkuXG4vLyBTZWUgaHR0cHM6Ly9naXRodWIuY29tL3RlbnNvcmZsb3cvdGZqcy9pc3N1ZXMvMTUyXG5leHBvcnQgZnVuY3Rpb24gYXZnUG9vbGluZzFkKGFyZ3M6IFBvb2xpbmcxRExheWVyQXJncykge1xuICByZXR1cm4gYXZlcmFnZVBvb2xpbmcxZChhcmdzKTtcbn1cblxuLyoqXG4gKiBBdmVyYWdlIHBvb2xpbmcgb3BlcmF0aW9uIGZvciBzcGF0aWFsIGRhdGEuXG4gKlxuICogSW5wdXQgc2hhcGU6XG4gKiAgLSBJZiBgZGF0YUZvcm1hdCA9PT0gQ0hBTk5FTF9MQVNUYDpcbiAqICAgICAgNEQgdGVuc29yIHdpdGggc2hhcGU6XG4gKiAgICAgIGBbYmF0Y2hTaXplLCByb3dzLCBjb2xzLCBjaGFubmVsc11gXG4gKiAgLSBJZiBgZGF0YUZvcm1hdCA9PT0gQ0hBTk5FTF9GSVJTVGA6XG4gKiAgICAgIDREIHRlbnNvciB3aXRoIHNoYXBlOlxuICogICAgICBgW2JhdGNoU2l6ZSwgY2hhbm5lbHMsIHJvd3MsIGNvbHNdYFxuICpcbiAqIE91dHB1dCBzaGFwZVxuICogIC0gSWYgYGRhdGFGb3JtYXQgPT09IENIQU5ORUxfTEFTVGA6XG4gKiAgICAgIDREIHRlbnNvciB3aXRoIHNoYXBlOlxuICogICAgICBgW2JhdGNoU2l6ZSwgcG9vbGVkUm93cywgcG9vbGVkQ29scywgY2hhbm5lbHNdYFxuICogIC0gSWYgYGRhdGFGb3JtYXQgPT09IENIQU5ORUxfRklSU1RgOlxuICogICAgICA0RCB0ZW5zb3Igd2l0aCBzaGFwZTpcbiAqICAgICAgYFtiYXRjaFNpemUsIGNoYW5uZWxzLCBwb29sZWRSb3dzLCBwb29sZWRDb2xzXWBcbiAqXG4gKiBgdGYuYXZnUG9vbDJkYCBpcyBhbiBhbGlhcy5cbiAqXG4gKiBAZG9jIHtoZWFkaW5nOiAnTGF5ZXJzJywgc3ViaGVhZGluZzogJ1Bvb2xpbmcnLCBuYW1lc3BhY2U6ICdsYXllcnMnfVxuICovXG5leHBvcnQgZnVuY3Rpb24gYXZlcmFnZVBvb2xpbmcyZChhcmdzOiBQb29saW5nMkRMYXllckFyZ3MpIHtcbiAgcmV0dXJuIG5ldyBBdmVyYWdlUG9vbGluZzJEKGFyZ3MpO1xufVxuZXhwb3J0IGZ1bmN0aW9uIGF2Z1Bvb2wyZChhcmdzOiBQb29saW5nMkRMYXllckFyZ3MpIHtcbiAgcmV0dXJuIGF2ZXJhZ2VQb29saW5nMmQoYXJncyk7XG59XG4vLyBGb3IgYmFja3dhcmRzIGNvbXBhdGliaWxpdHkuXG4vLyBTZWUgaHR0cHM6Ly9naXRodWIuY29tL3RlbnNvcmZsb3cvdGZqcy9pc3N1ZXMvMTUyXG5leHBvcnQgZnVuY3Rpb24gYXZnUG9vbGluZzJkKGFyZ3M6IFBvb2xpbmcyRExheWVyQXJncykge1xuICByZXR1cm4gYXZlcmFnZVBvb2xpbmcyZChhcmdzKTtcbn1cblxuLyoqXG4gKiBBdmVyYWdlIHBvb2xpbmcgb3BlcmF0aW9uIGZvciAzRCBkYXRhLlxuICpcbiAqIElucHV0IHNoYXBlXG4gKiAgIC0gSWYgYGRhdGFGb3JtYXQgPT09IGNoYW5uZWxzTGFzdGA6XG4gKiAgICAgICA1RCB0ZW5zb3Igd2l0aCBzaGFwZTpcbiAqICAgICAgIGBbYmF0Y2hTaXplLCBkZXB0aHMsIHJvd3MsIGNvbHMsIGNoYW5uZWxzXWBcbiAqICAgLSBJZiBgZGF0YUZvcm1hdCA9PT0gY2hhbm5lbHNGaXJzdGA6XG4gKiAgICAgIDREIHRlbnNvciB3aXRoIHNoYXBlOlxuICogICAgICAgYFtiYXRjaFNpemUsIGNoYW5uZWxzLCBkZXB0aHMsIHJvd3MsIGNvbHNdYFxuICpcbiAqIE91dHB1dCBzaGFwZVxuICogICAtIElmIGBkYXRhRm9ybWF0PWNoYW5uZWxzTGFzdGA6XG4gKiAgICAgICA1RCB0ZW5zb3Igd2l0aCBzaGFwZTpcbiAqICAgICAgIGBbYmF0Y2hTaXplLCBwb29sZWREZXB0aHMsIHBvb2xlZFJvd3MsIHBvb2xlZENvbHMsIGNoYW5uZWxzXWBcbiAqICAgLSBJZiBgZGF0YUZvcm1hdD1jaGFubmVsc0ZpcnN0YDpcbiAqICAgICAgIDVEIHRlbnNvciB3aXRoIHNoYXBlOlxuICogICAgICAgYFtiYXRjaFNpemUsIGNoYW5uZWxzLCBwb29sZWREZXB0aHMsIHBvb2xlZFJvd3MsIHBvb2xlZENvbHNdYFxuICpcbiAqIEBkb2Mge2hlYWRpbmc6ICdMYXllcnMnLCBzdWJoZWFkaW5nOiAnUG9vbGluZycsIG5hbWVzcGFjZTogJ2xheWVycyd9XG4gKi9cbmV4cG9ydCBmdW5jdGlvbiBhdmVyYWdlUG9vbGluZzNkKGFyZ3M6IFBvb2xpbmczRExheWVyQXJncykge1xuICByZXR1cm4gbmV3IEF2ZXJhZ2VQb29saW5nM0QoYXJncyk7XG59XG5leHBvcnQgZnVuY3Rpb24gYXZnUG9vbDNkKGFyZ3M6IFBvb2xpbmczRExheWVyQXJncykge1xuICByZXR1cm4gYXZlcmFnZVBvb2xpbmczZChhcmdzKTtcbn1cbi8vIEZvciBiYWNrd2FyZHMgY29tcGF0aWJpbGl0eS5cbi8vIFNlZSBodHRwczovL2dpdGh1Yi5jb20vdGVuc29yZmxvdy90ZmpzL2lzc3Vlcy8xNTJcbmV4cG9ydCBmdW5jdGlvbiBhdmdQb29saW5nM2QoYXJnczogUG9vbGluZzNETGF5ZXJBcmdzKSB7XG4gIHJldHVybiBhdmVyYWdlUG9vbGluZzNkKGFyZ3MpO1xufVxuXG4vKipcbiAqIEdsb2JhbCBhdmVyYWdlIHBvb2xpbmcgb3BlcmF0aW9uIGZvciB0ZW1wb3JhbCBkYXRhLlxuICpcbiAqIElucHV0IFNoYXBlOiAzRCB0ZW5zb3Igd2l0aCBzaGFwZTogYFtiYXRjaFNpemUsIHN0ZXBzLCBmZWF0dXJlc11gLlxuICpcbiAqIE91dHB1dCBTaGFwZTogMkQgdGVuc29yIHdpdGggc2hhcGU6IGBbYmF0Y2hTaXplLCBmZWF0dXJlc11gLlxuICpcbiAqIEBkb2Mge2hlYWRpbmc6ICdMYXllcnMnLCBzdWJoZWFkaW5nOiAnUG9vbGluZycsIG5hbWVzcGFjZTogJ2xheWVycyd9XG4gKi9cbmV4cG9ydCBmdW5jdGlvbiBnbG9iYWxBdmVyYWdlUG9vbGluZzFkKGFyZ3M/OiBMYXllckFyZ3MpIHtcbiAgcmV0dXJuIG5ldyBHbG9iYWxBdmVyYWdlUG9vbGluZzFEKGFyZ3MpO1xufVxuXG4vKipcbiAqIEdsb2JhbCBhdmVyYWdlIHBvb2xpbmcgb3BlcmF0aW9uIGZvciBzcGF0aWFsIGRhdGEuXG4gKlxuICogSW5wdXQgc2hhcGU6XG4gKiAgIC0gSWYgYGRhdGFGb3JtYXRgIGlzIGBDSEFOTkVMX0xBU1RgOlxuICogICAgICAgNEQgdGVuc29yIHdpdGggc2hhcGU6IGBbYmF0Y2hTaXplLCByb3dzLCBjb2xzLCBjaGFubmVsc11gLlxuICogICAtIElmIGBkYXRhRm9ybWF0YCBpcyBgQ0hBTk5FTF9GSVJTVGA6XG4gKiAgICAgICA0RCB0ZW5zb3Igd2l0aCBzaGFwZTogYFtiYXRjaFNpemUsIGNoYW5uZWxzLCByb3dzLCBjb2xzXWAuXG4gKlxuICogT3V0cHV0IHNoYXBlOlxuICogICAyRCB0ZW5zb3Igd2l0aCBzaGFwZTogYFtiYXRjaFNpemUsIGNoYW5uZWxzXWAuXG4gKlxuICogQGRvYyB7aGVhZGluZzogJ0xheWVycycsIHN1YmhlYWRpbmc6ICdQb29saW5nJywgbmFtZXNwYWNlOiAnbGF5ZXJzJ31cbiAqL1xuZXhwb3J0IGZ1bmN0aW9uIGdsb2JhbEF2ZXJhZ2VQb29saW5nMmQoYXJnczogR2xvYmFsUG9vbGluZzJETGF5ZXJBcmdzKSB7XG4gIHJldHVybiBuZXcgR2xvYmFsQXZlcmFnZVBvb2xpbmcyRChhcmdzKTtcbn1cblxuLyoqXG4gKiBHbG9iYWwgbWF4IHBvb2xpbmcgb3BlcmF0aW9uIGZvciB0ZW1wb3JhbCBkYXRhLlxuICpcbiAqIElucHV0IFNoYXBlOiAzRCB0ZW5zb3Igd2l0aCBzaGFwZTogYFtiYXRjaFNpemUsIHN0ZXBzLCBmZWF0dXJlc11gLlxuICpcbiAqIE91dHB1dCBTaGFwZTogMkQgdGVuc29yIHdpdGggc2hhcGU6IGBbYmF0Y2hTaXplLCBmZWF0dXJlc11gLlxuICpcbiAqIEBkb2Mge2hlYWRpbmc6ICdMYXllcnMnLCBzdWJoZWFkaW5nOiAnUG9vbGluZycsIG5hbWVzcGFjZTogJ2xheWVycyd9XG4gKi9cbmV4cG9ydCBmdW5jdGlvbiBnbG9iYWxNYXhQb29saW5nMWQoYXJncz86IExheWVyQXJncykge1xuICByZXR1cm4gbmV3IEdsb2JhbE1heFBvb2xpbmcxRChhcmdzKTtcbn1cblxuLyoqXG4gKiBHbG9iYWwgbWF4IHBvb2xpbmcgb3BlcmF0aW9uIGZvciBzcGF0aWFsIGRhdGEuXG4gKlxuICogSW5wdXQgc2hhcGU6XG4gKiAgIC0gSWYgYGRhdGFGb3JtYXRgIGlzIGBDSEFOTkVMX0xBU1RgOlxuICogICAgICAgNEQgdGVuc29yIHdpdGggc2hhcGU6IGBbYmF0Y2hTaXplLCByb3dzLCBjb2xzLCBjaGFubmVsc11gLlxuICogICAtIElmIGBkYXRhRm9ybWF0YCBpcyBgQ0hBTk5FTF9GSVJTVGA6XG4gKiAgICAgICA0RCB0ZW5zb3Igd2l0aCBzaGFwZTogYFtiYXRjaFNpemUsIGNoYW5uZWxzLCByb3dzLCBjb2xzXWAuXG4gKlxuICogT3V0cHV0IHNoYXBlOlxuICogICAyRCB0ZW5zb3Igd2l0aCBzaGFwZTogYFtiYXRjaFNpemUsIGNoYW5uZWxzXWAuXG4gKlxuICogQGRvYyB7aGVhZGluZzogJ0xheWVycycsIHN1YmhlYWRpbmc6ICdQb29saW5nJywgbmFtZXNwYWNlOiAnbGF5ZXJzJ31cbiAqL1xuZXhwb3J0IGZ1bmN0aW9uIGdsb2JhbE1heFBvb2xpbmcyZChhcmdzOiBHbG9iYWxQb29saW5nMkRMYXllckFyZ3MpIHtcbiAgcmV0dXJuIG5ldyBHbG9iYWxNYXhQb29saW5nMkQoYXJncyk7XG59XG5cbi8qKlxuICogTWF4IHBvb2xpbmcgb3BlcmF0aW9uIGZvciB0ZW1wb3JhbCBkYXRhLlxuICpcbiAqIElucHV0IHNoYXBlOiAgYFtiYXRjaFNpemUsIGluTGVuZ3RoLCBjaGFubmVsc11gXG4gKlxuICogT3V0cHV0IHNoYXBlOiBgW2JhdGNoU2l6ZSwgcG9vbGVkTGVuZ3RoLCBjaGFubmVsc11gXG4gKlxuICogQGRvYyB7aGVhZGluZzogJ0xheWVycycsIHN1YmhlYWRpbmc6ICdQb29saW5nJywgbmFtZXNwYWNlOiAnbGF5ZXJzJ31cbiAqL1xuZXhwb3J0IGZ1bmN0aW9uIG1heFBvb2xpbmcxZChhcmdzOiBQb29saW5nMURMYXllckFyZ3MpIHtcbiAgcmV0dXJuIG5ldyBNYXhQb29saW5nMUQoYXJncyk7XG59XG5cbi8qKlxuICogTWF4IHBvb2xpbmcgb3BlcmF0aW9uIGZvciBzcGF0aWFsIGRhdGEuXG4gKlxuICogSW5wdXQgc2hhcGVcbiAqICAgLSBJZiBgZGF0YUZvcm1hdCA9PT0gQ0hBTk5FTF9MQVNUYDpcbiAqICAgICAgIDREIHRlbnNvciB3aXRoIHNoYXBlOlxuICogICAgICAgYFtiYXRjaFNpemUsIHJvd3MsIGNvbHMsIGNoYW5uZWxzXWBcbiAqICAgLSBJZiBgZGF0YUZvcm1hdCA9PT0gQ0hBTk5FTF9GSVJTVGA6XG4gKiAgICAgIDREIHRlbnNvciB3aXRoIHNoYXBlOlxuICogICAgICAgYFtiYXRjaFNpemUsIGNoYW5uZWxzLCByb3dzLCBjb2xzXWBcbiAqXG4gKiBPdXRwdXQgc2hhcGVcbiAqICAgLSBJZiBgZGF0YUZvcm1hdD1DSEFOTkVMX0xBU1RgOlxuICogICAgICAgNEQgdGVuc29yIHdpdGggc2hhcGU6XG4gKiAgICAgICBgW2JhdGNoU2l6ZSwgcG9vbGVkUm93cywgcG9vbGVkQ29scywgY2hhbm5lbHNdYFxuICogICAtIElmIGBkYXRhRm9ybWF0PUNIQU5ORUxfRklSU1RgOlxuICogICAgICAgNEQgdGVuc29yIHdpdGggc2hhcGU6XG4gKiAgICAgICBgW2JhdGNoU2l6ZSwgY2hhbm5lbHMsIHBvb2xlZFJvd3MsIHBvb2xlZENvbHNdYFxuICpcbiAqIEBkb2Mge2hlYWRpbmc6ICdMYXllcnMnLCBzdWJoZWFkaW5nOiAnUG9vbGluZycsIG5hbWVzcGFjZTogJ2xheWVycyd9XG4gKi9cbmV4cG9ydCBmdW5jdGlvbiBtYXhQb29saW5nMmQoYXJnczogUG9vbGluZzJETGF5ZXJBcmdzKSB7XG4gIHJldHVybiBuZXcgTWF4UG9vbGluZzJEKGFyZ3MpO1xufVxuXG4vKipcbiAqIE1heCBwb29saW5nIG9wZXJhdGlvbiBmb3IgM0QgZGF0YS5cbiAqXG4gKiBJbnB1dCBzaGFwZVxuICogICAtIElmIGBkYXRhRm9ybWF0ID09PSBjaGFubmVsc0xhc3RgOlxuICogICAgICAgNUQgdGVuc29yIHdpdGggc2hhcGU6XG4gKiAgICAgICBgW2JhdGNoU2l6ZSwgZGVwdGhzLCByb3dzLCBjb2xzLCBjaGFubmVsc11gXG4gKiAgIC0gSWYgYGRhdGFGb3JtYXQgPT09IGNoYW5uZWxzRmlyc3RgOlxuICogICAgICA1RCB0ZW5zb3Igd2l0aCBzaGFwZTpcbiAqICAgICAgIGBbYmF0Y2hTaXplLCBjaGFubmVscywgZGVwdGhzLCByb3dzLCBjb2xzXWBcbiAqXG4gKiBPdXRwdXQgc2hhcGVcbiAqICAgLSBJZiBgZGF0YUZvcm1hdD1jaGFubmVsc0xhc3RgOlxuICogICAgICAgNUQgdGVuc29yIHdpdGggc2hhcGU6XG4gKiAgICAgICBgW2JhdGNoU2l6ZSwgcG9vbGVkRGVwdGhzLCBwb29sZWRSb3dzLCBwb29sZWRDb2xzLCBjaGFubmVsc11gXG4gKiAgIC0gSWYgYGRhdGFGb3JtYXQ9Y2hhbm5lbHNGaXJzdGA6XG4gKiAgICAgICA1RCB0ZW5zb3Igd2l0aCBzaGFwZTpcbiAqICAgICAgIGBbYmF0Y2hTaXplLCBjaGFubmVscywgcG9vbGVkRGVwdGhzLCBwb29sZWRSb3dzLCBwb29sZWRDb2xzXWBcbiAqXG4gKiBAZG9jIHtoZWFkaW5nOiAnTGF5ZXJzJywgc3ViaGVhZGluZzogJ1Bvb2xpbmcnLCBuYW1lc3BhY2U6ICdsYXllcnMnfVxuICovXG5leHBvcnQgZnVuY3Rpb24gbWF4UG9vbGluZzNkKGFyZ3M6IFBvb2xpbmczRExheWVyQXJncykge1xuICByZXR1cm4gbmV3IE1heFBvb2xpbmczRChhcmdzKTtcbn1cblxuLy8gUmVjdXJyZW50IExheWVycy5cblxuLyoqXG4gKiBHYXRlZCBSZWN1cnJlbnQgVW5pdCAtIENobyBldCBhbC4gMjAxNC5cbiAqXG4gKiBUaGlzIGlzIGFuIGBSTk5gIGxheWVyIGNvbnNpc3Rpbmcgb2Ygb25lIGBHUlVDZWxsYC4gSG93ZXZlciwgdW5saWtlXG4gKiB0aGUgdW5kZXJseWluZyBgR1JVQ2VsbGAsIHRoZSBgYXBwbHlgIG1ldGhvZCBvZiBgU2ltcGxlUk5OYCBvcGVyYXRlc1xuICogb24gYSBzZXF1ZW5jZSBvZiBpbnB1dHMuIFRoZSBzaGFwZSBvZiB0aGUgaW5wdXQgKG5vdCBpbmNsdWRpbmcgdGhlIGZpcnN0LFxuICogYmF0Y2ggZGltZW5zaW9uKSBuZWVkcyB0byBiZSBhdCBsZWFzdCAyLUQsIHdpdGggdGhlIGZpcnN0IGRpbWVuc2lvbiBiZWluZ1xuICogdGltZSBzdGVwcy4gRm9yIGV4YW1wbGU6XG4gKlxuICogYGBganNcbiAqIGNvbnN0IHJubiA9IHRmLmxheWVycy5ncnUoe3VuaXRzOiA4LCByZXR1cm5TZXF1ZW5jZXM6IHRydWV9KTtcbiAqXG4gKiAvLyBDcmVhdGUgYW4gaW5wdXQgd2l0aCAxMCB0aW1lIHN0ZXBzLlxuICogY29uc3QgaW5wdXQgPSB0Zi5pbnB1dCh7c2hhcGU6IFsxMCwgMjBdfSk7XG4gKiBjb25zdCBvdXRwdXQgPSBybm4uYXBwbHkoaW5wdXQpO1xuICpcbiAqIGNvbnNvbGUubG9nKEpTT04uc3RyaW5naWZ5KG91dHB1dC5zaGFwZSkpO1xuICogLy8gW251bGwsIDEwLCA4XTogMXN0IGRpbWVuc2lvbiBpcyB1bmtub3duIGJhdGNoIHNpemU7IDJuZCBkaW1lbnNpb24gaXMgdGhlXG4gKiAvLyBzYW1lIGFzIHRoZSBzZXF1ZW5jZSBsZW5ndGggb2YgYGlucHV0YCwgZHVlIHRvIGByZXR1cm5TZXF1ZW5jZXNgOiBgdHJ1ZWA7XG4gKiAvLyAzcmQgZGltZW5zaW9uIGlzIHRoZSBgR1JVQ2VsbGAncyBudW1iZXIgb2YgdW5pdHMuXG4gKlxuICogQGRvYyB7aGVhZGluZzogJ0xheWVycycsIHN1YmhlYWRpbmc6ICdSZWN1cnJlbnQnLCBuYW1lc3BhY2U6ICdsYXllcnMnfVxuICovXG5leHBvcnQgZnVuY3Rpb24gZ3J1KGFyZ3M6IEdSVUxheWVyQXJncykge1xuICByZXR1cm4gbmV3IEdSVShhcmdzKTtcbn1cblxuLyoqXG4gKiBDZWxsIGNsYXNzIGZvciBgR1JVYC5cbiAqXG4gKiBgR1JVQ2VsbGAgaXMgZGlzdGluY3QgZnJvbSB0aGUgYFJOTmAgc3ViY2xhc3MgYEdSVWAgaW4gdGhhdCBpdHNcbiAqIGBhcHBseWAgbWV0aG9kIHRha2VzIHRoZSBpbnB1dCBkYXRhIG9mIG9ubHkgYSBzaW5nbGUgdGltZSBzdGVwIGFuZCByZXR1cm5zXG4gKiB0aGUgY2VsbCdzIG91dHB1dCBhdCB0aGUgdGltZSBzdGVwLCB3aGlsZSBgR1JVYCB0YWtlcyB0aGUgaW5wdXQgZGF0YVxuICogb3ZlciBhIG51bWJlciBvZiB0aW1lIHN0ZXBzLiBGb3IgZXhhbXBsZTpcbiAqXG4gKiBgYGBqc1xuICogY29uc3QgY2VsbCA9IHRmLmxheWVycy5ncnVDZWxsKHt1bml0czogMn0pO1xuICogY29uc3QgaW5wdXQgPSB0Zi5pbnB1dCh7c2hhcGU6IFsxMF19KTtcbiAqIGNvbnN0IG91dHB1dCA9IGNlbGwuYXBwbHkoaW5wdXQpO1xuICpcbiAqIGNvbnNvbGUubG9nKEpTT04uc3RyaW5naWZ5KG91dHB1dC5zaGFwZSkpO1xuICogLy8gW251bGwsIDEwXTogVGhpcyBpcyB0aGUgY2VsbCdzIG91dHB1dCBhdCBhIHNpbmdsZSB0aW1lIHN0ZXAuIFRoZSAxc3RcbiAqIC8vIGRpbWVuc2lvbiBpcyB0aGUgdW5rbm93biBiYXRjaCBzaXplLlxuICogYGBgXG4gKlxuICogSW5zdGFuY2Uocykgb2YgYEdSVUNlbGxgIGNhbiBiZSB1c2VkIHRvIGNvbnN0cnVjdCBgUk5OYCBsYXllcnMuIFRoZVxuICogbW9zdCB0eXBpY2FsIHVzZSBvZiB0aGlzIHdvcmtmbG93IGlzIHRvIGNvbWJpbmUgYSBudW1iZXIgb2YgY2VsbHMgaW50byBhXG4gKiBzdGFja2VkIFJOTiBjZWxsIChpLmUuLCBgU3RhY2tlZFJOTkNlbGxgIGludGVybmFsbHkpIGFuZCB1c2UgaXQgdG8gY3JlYXRlIGFuXG4gKiBSTk4uIEZvciBleGFtcGxlOlxuICpcbiAqIGBgYGpzXG4gKiBjb25zdCBjZWxscyA9IFtcbiAqICAgdGYubGF5ZXJzLmdydUNlbGwoe3VuaXRzOiA0fSksXG4gKiAgIHRmLmxheWVycy5ncnVDZWxsKHt1bml0czogOH0pLFxuICogXTtcbiAqIGNvbnN0IHJubiA9IHRmLmxheWVycy5ybm4oe2NlbGw6IGNlbGxzLCByZXR1cm5TZXF1ZW5jZXM6IHRydWV9KTtcbiAqXG4gKiAvLyBDcmVhdGUgYW4gaW5wdXQgd2l0aCAxMCB0aW1lIHN0ZXBzIGFuZCBhIGxlbmd0aC0yMCB2ZWN0b3IgYXQgZWFjaCBzdGVwLlxuICogY29uc3QgaW5wdXQgPSB0Zi5pbnB1dCh7c2hhcGU6IFsxMCwgMjBdfSk7XG4gKiBjb25zdCBvdXRwdXQgPSBybm4uYXBwbHkoaW5wdXQpO1xuICpcbiAqIGNvbnNvbGUubG9nKEpTT04uc3RyaW5naWZ5KG91dHB1dC5zaGFwZSkpO1xuICogLy8gW251bGwsIDEwLCA4XTogMXN0IGRpbWVuc2lvbiBpcyB1bmtub3duIGJhdGNoIHNpemU7IDJuZCBkaW1lbnNpb24gaXMgdGhlXG4gKiAvLyBzYW1lIGFzIHRoZSBzZXF1ZW5jZSBsZW5ndGggb2YgYGlucHV0YCwgZHVlIHRvIGByZXR1cm5TZXF1ZW5jZXNgOiBgdHJ1ZWA7XG4gKiAvLyAzcmQgZGltZW5zaW9uIGlzIHRoZSBsYXN0IGBncnVDZWxsYCdzIG51bWJlciBvZiB1bml0cy5cbiAqIGBgYFxuICpcbiAqIFRvIGNyZWF0ZSBhbiBgUk5OYCBjb25zaXN0aW5nIG9mIG9ubHkgKm9uZSogYEdSVUNlbGxgLCB1c2UgdGhlXG4gKiBgdGYubGF5ZXJzLmdydWAuXG4gKlxuICogQGRvYyB7aGVhZGluZzogJ0xheWVycycsIHN1YmhlYWRpbmc6ICdSZWN1cnJlbnQnLCBuYW1lc3BhY2U6ICdsYXllcnMnfVxuICovXG5leHBvcnQgZnVuY3Rpb24gZ3J1Q2VsbChhcmdzOiBHUlVDZWxsTGF5ZXJBcmdzKSB7XG4gIHJldHVybiBuZXcgR1JVQ2VsbChhcmdzKTtcbn1cblxuLyoqXG4gKiBMb25nLVNob3J0IFRlcm0gTWVtb3J5IGxheWVyIC0gSG9jaHJlaXRlciAxOTk3LlxuICpcbiAqIFRoaXMgaXMgYW4gYFJOTmAgbGF5ZXIgY29uc2lzdGluZyBvZiBvbmUgYExTVE1DZWxsYC4gSG93ZXZlciwgdW5saWtlXG4gKiB0aGUgdW5kZXJseWluZyBgTFNUTUNlbGxgLCB0aGUgYGFwcGx5YCBtZXRob2Qgb2YgYExTVE1gIG9wZXJhdGVzXG4gKiBvbiBhIHNlcXVlbmNlIG9mIGlucHV0cy4gVGhlIHNoYXBlIG9mIHRoZSBpbnB1dCAobm90IGluY2x1ZGluZyB0aGUgZmlyc3QsXG4gKiBiYXRjaCBkaW1lbnNpb24pIG5lZWRzIHRvIGJlIGF0IGxlYXN0IDItRCwgd2l0aCB0aGUgZmlyc3QgZGltZW5zaW9uIGJlaW5nXG4gKiB0aW1lIHN0ZXBzLiBGb3IgZXhhbXBsZTpcbiAqXG4gKiBgYGBqc1xuICogY29uc3QgbHN0bSA9IHRmLmxheWVycy5sc3RtKHt1bml0czogOCwgcmV0dXJuU2VxdWVuY2VzOiB0cnVlfSk7XG4gKlxuICogLy8gQ3JlYXRlIGFuIGlucHV0IHdpdGggMTAgdGltZSBzdGVwcy5cbiAqIGNvbnN0IGlucHV0ID0gdGYuaW5wdXQoe3NoYXBlOiBbMTAsIDIwXX0pO1xuICogY29uc3Qgb3V0cHV0ID0gbHN0bS5hcHBseShpbnB1dCk7XG4gKlxuICogY29uc29sZS5sb2coSlNPTi5zdHJpbmdpZnkob3V0cHV0LnNoYXBlKSk7XG4gKiAvLyBbbnVsbCwgMTAsIDhdOiAxc3QgZGltZW5zaW9uIGlzIHVua25vd24gYmF0Y2ggc2l6ZTsgMm5kIGRpbWVuc2lvbiBpcyB0aGVcbiAqIC8vIHNhbWUgYXMgdGhlIHNlcXVlbmNlIGxlbmd0aCBvZiBgaW5wdXRgLCBkdWUgdG8gYHJldHVyblNlcXVlbmNlc2A6IGB0cnVlYDtcbiAqIC8vIDNyZCBkaW1lbnNpb24gaXMgdGhlIGBMU1RNQ2VsbGAncyBudW1iZXIgb2YgdW5pdHMuXG4gKlxuICogQGRvYyB7aGVhZGluZzogJ0xheWVycycsIHN1YmhlYWRpbmc6ICdSZWN1cnJlbnQnLCBuYW1lc3BhY2U6ICdsYXllcnMnfVxuICovXG5leHBvcnQgZnVuY3Rpb24gbHN0bShhcmdzOiBMU1RNTGF5ZXJBcmdzKSB7XG4gIHJldHVybiBuZXcgTFNUTShhcmdzKTtcbn1cblxuLyoqXG4gKiBDZWxsIGNsYXNzIGZvciBgTFNUTWAuXG4gKlxuICogYExTVE1DZWxsYCBpcyBkaXN0aW5jdCBmcm9tIHRoZSBgUk5OYCBzdWJjbGFzcyBgTFNUTWAgaW4gdGhhdCBpdHNcbiAqIGBhcHBseWAgbWV0aG9kIHRha2VzIHRoZSBpbnB1dCBkYXRhIG9mIG9ubHkgYSBzaW5nbGUgdGltZSBzdGVwIGFuZCByZXR1cm5zXG4gKiB0aGUgY2VsbCdzIG91dHB1dCBhdCB0aGUgdGltZSBzdGVwLCB3aGlsZSBgTFNUTWAgdGFrZXMgdGhlIGlucHV0IGRhdGFcbiAqIG92ZXIgYSBudW1iZXIgb2YgdGltZSBzdGVwcy4gRm9yIGV4YW1wbGU6XG4gKlxuICogYGBganNcbiAqIGNvbnN0IGNlbGwgPSB0Zi5sYXllcnMubHN0bUNlbGwoe3VuaXRzOiAyfSk7XG4gKiBjb25zdCBpbnB1dCA9IHRmLmlucHV0KHtzaGFwZTogWzEwXX0pO1xuICogY29uc3Qgb3V0cHV0ID0gY2VsbC5hcHBseShpbnB1dCk7XG4gKlxuICogY29uc29sZS5sb2coSlNPTi5zdHJpbmdpZnkob3V0cHV0LnNoYXBlKSk7XG4gKiAvLyBbbnVsbCwgMTBdOiBUaGlzIGlzIHRoZSBjZWxsJ3Mgb3V0cHV0IGF0IGEgc2luZ2xlIHRpbWUgc3RlcC4gVGhlIDFzdFxuICogLy8gZGltZW5zaW9uIGlzIHRoZSB1bmtub3duIGJhdGNoIHNpemUuXG4gKiBgYGBcbiAqXG4gKiBJbnN0YW5jZShzKSBvZiBgTFNUTUNlbGxgIGNhbiBiZSB1c2VkIHRvIGNvbnN0cnVjdCBgUk5OYCBsYXllcnMuIFRoZVxuICogbW9zdCB0eXBpY2FsIHVzZSBvZiB0aGlzIHdvcmtmbG93IGlzIHRvIGNvbWJpbmUgYSBudW1iZXIgb2YgY2VsbHMgaW50byBhXG4gKiBzdGFja2VkIFJOTiBjZWxsIChpLmUuLCBgU3RhY2tlZFJOTkNlbGxgIGludGVybmFsbHkpIGFuZCB1c2UgaXQgdG8gY3JlYXRlIGFuXG4gKiBSTk4uIEZvciBleGFtcGxlOlxuICpcbiAqIGBgYGpzXG4gKiBjb25zdCBjZWxscyA9IFtcbiAqICAgdGYubGF5ZXJzLmxzdG1DZWxsKHt1bml0czogNH0pLFxuICogICB0Zi5sYXllcnMubHN0bUNlbGwoe3VuaXRzOiA4fSksXG4gKiBdO1xuICogY29uc3Qgcm5uID0gdGYubGF5ZXJzLnJubih7Y2VsbDogY2VsbHMsIHJldHVyblNlcXVlbmNlczogdHJ1ZX0pO1xuICpcbiAqIC8vIENyZWF0ZSBhbiBpbnB1dCB3aXRoIDEwIHRpbWUgc3RlcHMgYW5kIGEgbGVuZ3RoLTIwIHZlY3RvciBhdCBlYWNoIHN0ZXAuXG4gKiBjb25zdCBpbnB1dCA9IHRmLmlucHV0KHtzaGFwZTogWzEwLCAyMF19KTtcbiAqIGNvbnN0IG91dHB1dCA9IHJubi5hcHBseShpbnB1dCk7XG4gKlxuICogY29uc29sZS5sb2coSlNPTi5zdHJpbmdpZnkob3V0cHV0LnNoYXBlKSk7XG4gKiAvLyBbbnVsbCwgMTAsIDhdOiAxc3QgZGltZW5zaW9uIGlzIHVua25vd24gYmF0Y2ggc2l6ZTsgMm5kIGRpbWVuc2lvbiBpcyB0aGVcbiAqIC8vIHNhbWUgYXMgdGhlIHNlcXVlbmNlIGxlbmd0aCBvZiBgaW5wdXRgLCBkdWUgdG8gYHJldHVyblNlcXVlbmNlc2A6IGB0cnVlYDtcbiAqIC8vIDNyZCBkaW1lbnNpb24gaXMgdGhlIGxhc3QgYGxzdG1DZWxsYCdzIG51bWJlciBvZiB1bml0cy5cbiAqIGBgYFxuICpcbiAqIFRvIGNyZWF0ZSBhbiBgUk5OYCBjb25zaXN0aW5nIG9mIG9ubHkgKm9uZSogYExTVE1DZWxsYCwgdXNlIHRoZVxuICogYHRmLmxheWVycy5sc3RtYC5cbiAqXG4gKiBAZG9jIHtoZWFkaW5nOiAnTGF5ZXJzJywgc3ViaGVhZGluZzogJ1JlY3VycmVudCcsIG5hbWVzcGFjZTogJ2xheWVycyd9XG4gKi9cbmV4cG9ydCBmdW5jdGlvbiBsc3RtQ2VsbChhcmdzOiBMU1RNQ2VsbExheWVyQXJncykge1xuICByZXR1cm4gbmV3IExTVE1DZWxsKGFyZ3MpO1xufVxuXG4vKipcbiAqIEZ1bGx5LWNvbm5lY3RlZCBSTk4gd2hlcmUgdGhlIG91dHB1dCBpcyB0byBiZSBmZWQgYmFjayB0byBpbnB1dC5cbiAqXG4gKiBUaGlzIGlzIGFuIGBSTk5gIGxheWVyIGNvbnNpc3Rpbmcgb2Ygb25lIGBTaW1wbGVSTk5DZWxsYC4gSG93ZXZlciwgdW5saWtlXG4gKiB0aGUgdW5kZXJseWluZyBgU2ltcGxlUk5OQ2VsbGAsIHRoZSBgYXBwbHlgIG1ldGhvZCBvZiBgU2ltcGxlUk5OYCBvcGVyYXRlc1xuICogb24gYSBzZXF1ZW5jZSBvZiBpbnB1dHMuIFRoZSBzaGFwZSBvZiB0aGUgaW5wdXQgKG5vdCBpbmNsdWRpbmcgdGhlIGZpcnN0LFxuICogYmF0Y2ggZGltZW5zaW9uKSBuZWVkcyB0byBiZSBhdCBsZWFzdCAyLUQsIHdpdGggdGhlIGZpcnN0IGRpbWVuc2lvbiBiZWluZ1xuICogdGltZSBzdGVwcy4gRm9yIGV4YW1wbGU6XG4gKlxuICogYGBganNcbiAqIGNvbnN0IHJubiA9IHRmLmxheWVycy5zaW1wbGVSTk4oe3VuaXRzOiA4LCByZXR1cm5TZXF1ZW5jZXM6IHRydWV9KTtcbiAqXG4gKiAvLyBDcmVhdGUgYW4gaW5wdXQgd2l0aCAxMCB0aW1lIHN0ZXBzLlxuICogY29uc3QgaW5wdXQgPSB0Zi5pbnB1dCh7c2hhcGU6IFsxMCwgMjBdfSk7XG4gKiBjb25zdCBvdXRwdXQgPSBybm4uYXBwbHkoaW5wdXQpO1xuICpcbiAqIGNvbnNvbGUubG9nKEpTT04uc3RyaW5naWZ5KG91dHB1dC5zaGFwZSkpO1xuICogLy8gW251bGwsIDEwLCA4XTogMXN0IGRpbWVuc2lvbiBpcyB1bmtub3duIGJhdGNoIHNpemU7IDJuZCBkaW1lbnNpb24gaXMgdGhlXG4gKiAvLyBzYW1lIGFzIHRoZSBzZXF1ZW5jZSBsZW5ndGggb2YgYGlucHV0YCwgZHVlIHRvIGByZXR1cm5TZXF1ZW5jZXNgOiBgdHJ1ZWA7XG4gKiAvLyAzcmQgZGltZW5zaW9uIGlzIHRoZSBgU2ltcGxlUk5OQ2VsbGAncyBudW1iZXIgb2YgdW5pdHMuXG4gKiBgYGBcbiAqXG4gKiBAZG9jIHtoZWFkaW5nOiAnTGF5ZXJzJywgc3ViaGVhZGluZzogJ1JlY3VycmVudCcsIG5hbWVzcGFjZTogJ2xheWVycyd9XG4gKi9cbmV4cG9ydCBmdW5jdGlvbiBzaW1wbGVSTk4oYXJnczogU2ltcGxlUk5OTGF5ZXJBcmdzKSB7XG4gIHJldHVybiBuZXcgU2ltcGxlUk5OKGFyZ3MpO1xufVxuXG4vKipcbiAqIENlbGwgY2xhc3MgZm9yIGBTaW1wbGVSTk5gLlxuICpcbiAqIGBTaW1wbGVSTk5DZWxsYCBpcyBkaXN0aW5jdCBmcm9tIHRoZSBgUk5OYCBzdWJjbGFzcyBgU2ltcGxlUk5OYCBpbiB0aGF0IGl0c1xuICogYGFwcGx5YCBtZXRob2QgdGFrZXMgdGhlIGlucHV0IGRhdGEgb2Ygb25seSBhIHNpbmdsZSB0aW1lIHN0ZXAgYW5kIHJldHVybnNcbiAqIHRoZSBjZWxsJ3Mgb3V0cHV0IGF0IHRoZSB0aW1lIHN0ZXAsIHdoaWxlIGBTaW1wbGVSTk5gIHRha2VzIHRoZSBpbnB1dCBkYXRhXG4gKiBvdmVyIGEgbnVtYmVyIG9mIHRpbWUgc3RlcHMuIEZvciBleGFtcGxlOlxuICpcbiAqIGBgYGpzXG4gKiBjb25zdCBjZWxsID0gdGYubGF5ZXJzLnNpbXBsZVJOTkNlbGwoe3VuaXRzOiAyfSk7XG4gKiBjb25zdCBpbnB1dCA9IHRmLmlucHV0KHtzaGFwZTogWzEwXX0pO1xuICogY29uc3Qgb3V0cHV0ID0gY2VsbC5hcHBseShpbnB1dCk7XG4gKlxuICogY29uc29sZS5sb2coSlNPTi5zdHJpbmdpZnkob3V0cHV0LnNoYXBlKSk7XG4gKiAvLyBbbnVsbCwgMTBdOiBUaGlzIGlzIHRoZSBjZWxsJ3Mgb3V0cHV0IGF0IGEgc2luZ2xlIHRpbWUgc3RlcC4gVGhlIDFzdFxuICogLy8gZGltZW5zaW9uIGlzIHRoZSB1bmtub3duIGJhdGNoIHNpemUuXG4gKiBgYGBcbiAqXG4gKiBJbnN0YW5jZShzKSBvZiBgU2ltcGxlUk5OQ2VsbGAgY2FuIGJlIHVzZWQgdG8gY29uc3RydWN0IGBSTk5gIGxheWVycy4gVGhlXG4gKiBtb3N0IHR5cGljYWwgdXNlIG9mIHRoaXMgd29ya2Zsb3cgaXMgdG8gY29tYmluZSBhIG51bWJlciBvZiBjZWxscyBpbnRvIGFcbiAqIHN0YWNrZWQgUk5OIGNlbGwgKGkuZS4sIGBTdGFja2VkUk5OQ2VsbGAgaW50ZXJuYWxseSkgYW5kIHVzZSBpdCB0byBjcmVhdGUgYW5cbiAqIFJOTi4gRm9yIGV4YW1wbGU6XG4gKlxuICogYGBganNcbiAqIGNvbnN0IGNlbGxzID0gW1xuICogICB0Zi5sYXllcnMuc2ltcGxlUk5OQ2VsbCh7dW5pdHM6IDR9KSxcbiAqICAgdGYubGF5ZXJzLnNpbXBsZVJOTkNlbGwoe3VuaXRzOiA4fSksXG4gKiBdO1xuICogY29uc3Qgcm5uID0gdGYubGF5ZXJzLnJubih7Y2VsbDogY2VsbHMsIHJldHVyblNlcXVlbmNlczogdHJ1ZX0pO1xuICpcbiAqIC8vIENyZWF0ZSBhbiBpbnB1dCB3aXRoIDEwIHRpbWUgc3RlcHMgYW5kIGEgbGVuZ3RoLTIwIHZlY3RvciBhdCBlYWNoIHN0ZXAuXG4gKiBjb25zdCBpbnB1dCA9IHRmLmlucHV0KHtzaGFwZTogWzEwLCAyMF19KTtcbiAqIGNvbnN0IG91dHB1dCA9IHJubi5hcHBseShpbnB1dCk7XG4gKlxuICogY29uc29sZS5sb2coSlNPTi5zdHJpbmdpZnkob3V0cHV0LnNoYXBlKSk7XG4gKiAvLyBbbnVsbCwgMTAsIDhdOiAxc3QgZGltZW5zaW9uIGlzIHVua25vd24gYmF0Y2ggc2l6ZTsgMm5kIGRpbWVuc2lvbiBpcyB0aGVcbiAqIC8vIHNhbWUgYXMgdGhlIHNlcXVlbmNlIGxlbmd0aCBvZiBgaW5wdXRgLCBkdWUgdG8gYHJldHVyblNlcXVlbmNlc2A6IGB0cnVlYDtcbiAqIC8vIDNyZCBkaW1lbnNpb24gaXMgdGhlIGxhc3QgYFNpbXBsZVJOTkNlbGxgJ3MgbnVtYmVyIG9mIHVuaXRzLlxuICogYGBgXG4gKlxuICogVG8gY3JlYXRlIGFuIGBSTk5gIGNvbnNpc3Rpbmcgb2Ygb25seSAqb25lKiBgU2ltcGxlUk5OQ2VsbGAsIHVzZSB0aGVcbiAqIGB0Zi5sYXllcnMuc2ltcGxlUk5OYC5cbiAqXG4gKiBAZG9jIHtoZWFkaW5nOiAnTGF5ZXJzJywgc3ViaGVhZGluZzogJ1JlY3VycmVudCcsIG5hbWVzcGFjZTogJ2xheWVycyd9XG4gKi9cbmV4cG9ydCBmdW5jdGlvbiBzaW1wbGVSTk5DZWxsKGFyZ3M6IFNpbXBsZVJOTkNlbGxMYXllckFyZ3MpIHtcbiAgcmV0dXJuIG5ldyBTaW1wbGVSTk5DZWxsKGFyZ3MpO1xufVxuXG4vKipcbiAqIENvbnZvbHV0aW9uYWwgTFNUTSBsYXllciAtIFhpbmdqaWFuIFNoaSAyMDE1LlxuICpcbiAqIFRoaXMgaXMgYSBgQ29udlJOTjJEYCBsYXllciBjb25zaXN0aW5nIG9mIG9uZSBgQ29udkxTVE0yRENlbGxgLiBIb3dldmVyLFxuICogdW5saWtlIHRoZSB1bmRlcmx5aW5nIGBDb252TFNUTTJEQ2VsbGAsIHRoZSBgYXBwbHlgIG1ldGhvZCBvZiBgQ29udkxTVE0yRGBcbiAqIG9wZXJhdGVzIG9uIGEgc2VxdWVuY2Ugb2YgaW5wdXRzLiBUaGUgc2hhcGUgb2YgdGhlIGlucHV0IChub3QgaW5jbHVkaW5nIHRoZVxuICogZmlyc3QsIGJhdGNoIGRpbWVuc2lvbikgbmVlZHMgdG8gYmUgNC1ELCB3aXRoIHRoZSBmaXJzdCBkaW1lbnNpb24gYmVpbmcgdGltZVxuICogc3RlcHMuIEZvciBleGFtcGxlOlxuICpcbiAqIGBgYGpzXG4gKiBjb25zdCBmaWx0ZXJzID0gMztcbiAqIGNvbnN0IGtlcm5lbFNpemUgPSAzO1xuICpcbiAqIGNvbnN0IGJhdGNoU2l6ZSA9IDQ7XG4gKiBjb25zdCBzZXF1ZW5jZUxlbmd0aCA9IDI7XG4gKiBjb25zdCBzaXplID0gNTtcbiAqIGNvbnN0IGNoYW5uZWxzID0gMztcbiAqXG4gKiBjb25zdCBpbnB1dFNoYXBlID0gW2JhdGNoU2l6ZSwgc2VxdWVuY2VMZW5ndGgsIHNpemUsIHNpemUsIGNoYW5uZWxzXTtcbiAqIGNvbnN0IGlucHV0ID0gdGYub25lcyhpbnB1dFNoYXBlKTtcbiAqXG4gKiBjb25zdCBsYXllciA9IHRmLmxheWVycy5jb252THN0bTJkKHtmaWx0ZXJzLCBrZXJuZWxTaXplfSk7XG4gKlxuICogY29uc3Qgb3V0cHV0ID0gbGF5ZXIuYXBwbHkoaW5wdXQpO1xuICogYGBgXG4gKi9cbi8qKiBAZG9jIHtoZWFkaW5nOiAnTGF5ZXJzJywgc3ViaGVhZGluZzogJ1JlY3VycmVudCcsIG5hbWVzcGFjZTogJ2xheWVycyd9ICovXG5leHBvcnQgZnVuY3Rpb24gY29udkxzdG0yZChhcmdzOiBDb252TFNUTTJEQXJncykge1xuICByZXR1cm4gbmV3IENvbnZMU1RNMkQoYXJncyk7XG59XG5cbi8qKlxuICogQ2VsbCBjbGFzcyBmb3IgYENvbnZMU1RNMkRgLlxuICpcbiAqIGBDb252TFNUTTJEQ2VsbGAgaXMgZGlzdGluY3QgZnJvbSB0aGUgYENvbnZSTk4yRGAgc3ViY2xhc3MgYENvbnZMU1RNMkRgIGluXG4gKiB0aGF0IGl0cyBgY2FsbGAgbWV0aG9kIHRha2VzIHRoZSBpbnB1dCBkYXRhIG9mIG9ubHkgYSBzaW5nbGUgdGltZSBzdGVwIGFuZFxuICogcmV0dXJucyB0aGUgY2VsbCdzIG91dHB1dCBhdCB0aGUgdGltZSBzdGVwLCB3aGlsZSBgQ29udkxTVE0yRGAgdGFrZXMgdGhlXG4gKiBpbnB1dCBkYXRhIG92ZXIgYSBudW1iZXIgb2YgdGltZSBzdGVwcy4gRm9yIGV4YW1wbGU6XG4gKlxuICogYGBganNcbiAqIGNvbnN0IGZpbHRlcnMgPSAzO1xuICogY29uc3Qga2VybmVsU2l6ZSA9IDM7XG4gKlxuICogY29uc3Qgc2VxdWVuY2VMZW5ndGggPSAxO1xuICogY29uc3Qgc2l6ZSA9IDU7XG4gKiBjb25zdCBjaGFubmVscyA9IDM7XG4gKlxuICogY29uc3QgaW5wdXRTaGFwZSA9IFtzZXF1ZW5jZUxlbmd0aCwgc2l6ZSwgc2l6ZSwgY2hhbm5lbHNdO1xuICogY29uc3QgaW5wdXQgPSB0Zi5vbmVzKGlucHV0U2hhcGUpO1xuICpcbiAqIGNvbnN0IGNlbGwgPSB0Zi5sYXllcnMuY29udkxzdG0yZENlbGwoe2ZpbHRlcnMsIGtlcm5lbFNpemV9KTtcbiAqXG4gKiBjZWxsLmJ1aWxkKGlucHV0LnNoYXBlKTtcbiAqXG4gKiBjb25zdCBvdXRwdXRTaXplID0gc2l6ZSAtIGtlcm5lbFNpemUgKyAxO1xuICogY29uc3Qgb3V0U2hhcGUgPSBbc2VxdWVuY2VMZW5ndGgsIG91dHB1dFNpemUsIG91dHB1dFNpemUsIGZpbHRlcnNdO1xuICpcbiAqIGNvbnN0IGluaXRpYWxIID0gdGYuemVyb3Mob3V0U2hhcGUpO1xuICogY29uc3QgaW5pdGlhbEMgPSB0Zi56ZXJvcyhvdXRTaGFwZSk7XG4gKlxuICogY29uc3QgW28sIGgsIGNdID0gY2VsbC5jYWxsKFtpbnB1dCwgaW5pdGlhbEgsIGluaXRpYWxDXSwge30pO1xuICogYGBgXG4gKi9cbi8qKiBAZG9jIHtoZWFkaW5nOiAnTGF5ZXJzJywgc3ViaGVhZGluZzogJ1JlY3VycmVudCcsIG5hbWVzcGFjZTogJ2xheWVycyd9ICovXG5leHBvcnQgZnVuY3Rpb24gY29udkxzdG0yZENlbGwoYXJnczogQ29udkxTVE0yRENlbGxBcmdzKSB7XG4gIHJldHVybiBuZXcgQ29udkxTVE0yRENlbGwoYXJncyk7XG59XG5cbi8qKlxuICogQmFzZSBjbGFzcyBmb3IgcmVjdXJyZW50IGxheWVycy5cbiAqXG4gKiBJbnB1dCBzaGFwZTpcbiAqICAgM0QgdGVuc29yIHdpdGggc2hhcGUgYFtiYXRjaFNpemUsIHRpbWVTdGVwcywgaW5wdXREaW1dYC5cbiAqXG4gKiBPdXRwdXQgc2hhcGU6XG4gKiAgIC0gaWYgYHJldHVyblN0YXRlYCwgYW4gQXJyYXkgb2YgdGVuc29ycyAoaS5lLiwgYHRmLlRlbnNvcmBzKS4gVGhlIGZpcnN0XG4gKiAgICAgdGVuc29yIGlzIHRoZSBvdXRwdXQuIFRoZSByZW1haW5pbmcgdGVuc29ycyBhcmUgdGhlIHN0YXRlcyBhdCB0aGVcbiAqICAgICBsYXN0IHRpbWUgc3RlcCwgZWFjaCB3aXRoIHNoYXBlIGBbYmF0Y2hTaXplLCB1bml0c11gLlxuICogICAtIGlmIGByZXR1cm5TZXF1ZW5jZXNgLCB0aGUgb3V0cHV0IHdpbGwgaGF2ZSBzaGFwZVxuICogICAgIGBbYmF0Y2hTaXplLCB0aW1lU3RlcHMsIHVuaXRzXWAuXG4gKiAgIC0gZWxzZSwgdGhlIG91dHB1dCB3aWxsIGhhdmUgc2hhcGUgYFtiYXRjaFNpemUsIHVuaXRzXWAuXG4gKlxuICogTWFza2luZzpcbiAqICAgVGhpcyBsYXllciBzdXBwb3J0cyBtYXNraW5nIGZvciBpbnB1dCBkYXRhIHdpdGggYSB2YXJpYWJsZSBudW1iZXJcbiAqICAgb2YgdGltZXN0ZXBzLiBUbyBpbnRyb2R1Y2UgbWFza3MgdG8geW91ciBkYXRhLFxuICogICB1c2UgYW4gZW1iZWRkaW5nIGxheWVyIHdpdGggdGhlIGBtYXNrX3plcm9gIHBhcmFtZXRlclxuICogICBzZXQgdG8gYFRydWVgLlxuICpcbiAqIE5vdGVzIG9uIHVzaW5nIHN0YXRlZnVsbmVzcyBpbiBSTk5zOlxuICogICBZb3UgY2FuIHNldCBSTk4gbGF5ZXJzIHRvIGJlICdzdGF0ZWZ1bCcsIHdoaWNoIG1lYW5zIHRoYXQgdGhlIHN0YXRlc1xuICogICBjb21wdXRlZCBmb3IgdGhlIHNhbXBsZXMgaW4gb25lIGJhdGNoIHdpbGwgYmUgcmV1c2VkIGFzIGluaXRpYWwgc3RhdGVzXG4gKiAgIGZvciB0aGUgc2FtcGxlcyBpbiB0aGUgbmV4dCBiYXRjaC4gVGhpcyBhc3N1bWVzIGEgb25lLXRvLW9uZSBtYXBwaW5nXG4gKiAgIGJldHdlZW4gc2FtcGxlcyBpbiBkaWZmZXJlbnQgc3VjY2Vzc2l2ZSBiYXRjaGVzLlxuICpcbiAqICAgVG8gZW5hYmxlIHN0YXRlZnVsbmVzczpcbiAqICAgICAtIHNwZWNpZnkgYHN0YXRlZnVsOiB0cnVlYCBpbiB0aGUgbGF5ZXIgY29uc3RydWN0b3IuXG4gKiAgICAgLSBzcGVjaWZ5IGEgZml4ZWQgYmF0Y2ggc2l6ZSBmb3IgeW91ciBtb2RlbCwgYnkgcGFzc2luZ1xuICogICAgICAgaWYgc2VxdWVudGlhbCBtb2RlbDpcbiAqICAgICAgICAgYGJhdGNoSW5wdXRTaGFwZT1bLi4uXWAgdG8gdGhlIGZpcnN0IGxheWVyIGluIHlvdXIgbW9kZWwuXG4gKiAgICAgICBlbHNlIGZvciBmdW5jdGlvbmFsIG1vZGVsIHdpdGggMSBvciBtb3JlIElucHV0IGxheWVyczpcbiAqICAgICAgICAgYGJhdGNoU2hhcGU9Wy4uLl1gIHRvIGFsbCB0aGUgZmlyc3QgbGF5ZXJzIGluIHlvdXIgbW9kZWwuXG4gKiAgICAgICBUaGlzIGlzIHRoZSBleHBlY3RlZCBzaGFwZSBvZiB5b3VyIGlucHV0cyAqaW5jbHVkaW5nIHRoZSBiYXRjaCBzaXplKi5cbiAqICAgICAgIEl0IHNob3VsZCBiZSBhIHR1cGxlIG9mIGludGVnZXJzLCBlLmcuIGAoMzIsIDEwLCAxMDApYC5cbiAqICAgICAtIHNwZWNpZnkgYHNodWZmbGU9RmFsc2VgIHdoZW4gY2FsbGluZyBmaXQoKS5cbiAqXG4gKiAgIFRvIHJlc2V0IHRoZSBzdGF0ZXMgb2YgeW91ciBtb2RlbCwgY2FsbCBgLnJlc2V0U3RhdGVzKClgIG9uIGVpdGhlclxuICogICBhIHNwZWNpZmljIGxheWVyLCBvciBvbiB5b3VyIGVudGlyZSBtb2RlbC5cbiAqXG4gKiBOb3RlIG9uIHNwZWNpZnlpbmcgdGhlIGluaXRpYWwgc3RhdGUgb2YgUk5Oc1xuICogICBZb3UgY2FuIHNwZWNpZnkgdGhlIGluaXRpYWwgc3RhdGUgb2YgUk5OIGxheWVycyBzeW1ib2xpY2FsbHkgYnlcbiAqICAgY2FsbGluZyB0aGVtIHdpdGggdGhlIG9wdGlvbiBgaW5pdGlhbFN0YXRlYC4gVGhlIHZhbHVlIG9mXG4gKiAgIGBpbml0aWFsU3RhdGVgIHNob3VsZCBiZSBhIHRlbnNvciBvciBsaXN0IG9mIHRlbnNvcnMgcmVwcmVzZW50aW5nXG4gKiAgIHRoZSBpbml0aWFsIHN0YXRlIG9mIHRoZSBSTk4gbGF5ZXIuXG4gKlxuICogICBZb3UgY2FuIHNwZWNpZnkgdGhlIGluaXRpYWwgc3RhdGUgb2YgUk5OIGxheWVycyBudW1lcmljYWxseSBieVxuICogICBjYWxsaW5nIGByZXNldFN0YXRlc2Agd2l0aCB0aGUga2V5d29yZCBhcmd1bWVudCBgc3RhdGVzYC4gVGhlIHZhbHVlIG9mXG4gKiAgIGBzdGF0ZXNgIHNob3VsZCBiZSBhIG51bXB5IGFycmF5IG9yIGxpc3Qgb2YgbnVtcHkgYXJyYXlzIHJlcHJlc2VudGluZ1xuICogICB0aGUgaW5pdGlhbCBzdGF0ZSBvZiB0aGUgUk5OIGxheWVyLlxuICpcbiAqIE5vdGUgb24gcGFzc2luZyBleHRlcm5hbCBjb25zdGFudHMgdG8gUk5Oc1xuICogICBZb3UgY2FuIHBhc3MgXCJleHRlcm5hbFwiIGNvbnN0YW50cyB0byB0aGUgY2VsbCB1c2luZyB0aGUgYGNvbnN0YW50c2BcbiAqICAga2V5d29yZCBhcmd1bWVudCBvZiBgUk5OLmNhbGxgIG1ldGhvZC4gVGhpcyByZXF1aXJlcyB0aGF0IHRoZSBgY2VsbC5jYWxsYFxuICogICBtZXRob2QgYWNjZXB0cyB0aGUgc2FtZSBrZXl3b3JkIGFyZ3VtZW50IGBjb25zdGFudHNgLiBTdWNoIGNvbnN0YW50c1xuICogICBjYW4gYmUgdXNlZCB0byBjb25kaXRpb24gdGhlIGNlbGwgdHJhbnNmb3JtYXRpb24gb24gYWRkaXRpb25hbCBzdGF0aWNcbiAqICAgaW5wdXRzIChub3QgY2hhbmdpbmcgb3ZlciB0aW1lKSwgYS5rLmEuIGFuIGF0dGVudGlvbiBtZWNoYW5pc20uXG4gKlxuICogQGRvYyB7aGVhZGluZzogJ0xheWVycycsIHN1YmhlYWRpbmc6ICdSZWN1cnJlbnQnLCBuYW1lc3BhY2U6ICdsYXllcnMnfVxuICovXG5leHBvcnQgZnVuY3Rpb24gcm5uKGFyZ3M6IFJOTkxheWVyQXJncykge1xuICByZXR1cm4gbmV3IFJOTihhcmdzKTtcbn1cblxuLyoqXG4gKiBXcmFwcGVyIGFsbG93aW5nIGEgc3RhY2sgb2YgUk5OIGNlbGxzIHRvIGJlaGF2ZSBhcyBhIHNpbmdsZSBjZWxsLlxuICpcbiAqIFVzZWQgdG8gaW1wbGVtZW50IGVmZmljaWVudCBzdGFja2VkIFJOTnMuXG4gKlxuICogQGRvYyB7aGVhZGluZzogJ0xheWVycycsIHN1YmhlYWRpbmc6ICdSZWN1cnJlbnQnLCBuYW1lc3BhY2U6ICdsYXllcnMnfVxuICovXG5leHBvcnQgZnVuY3Rpb24gc3RhY2tlZFJOTkNlbGxzKGFyZ3M6IFN0YWNrZWRSTk5DZWxsc0FyZ3Mpe1xuICByZXR1cm4gbmV3IFN0YWNrZWRSTk5DZWxscyhhcmdzKTtcbn1cblxuLy8gV3JhcHBlciBMYXllcnMuXG5cbi8qKiBAZG9jIHtoZWFkaW5nOiAnTGF5ZXJzJywgc3ViaGVhZGluZzogJ1dyYXBwZXInLCBuYW1lc3BhY2U6ICdsYXllcnMnfSAqL1xuZXhwb3J0IGZ1bmN0aW9uIGJpZGlyZWN0aW9uYWwoYXJnczogQmlkaXJlY3Rpb25hbExheWVyQXJncykge1xuICByZXR1cm4gbmV3IEJpZGlyZWN0aW9uYWwoYXJncyk7XG59XG5cbi8qKlxuICogVGhpcyB3cmFwcGVyIGFwcGxpZXMgYSBsYXllciB0byBldmVyeSB0ZW1wb3JhbCBzbGljZSBvZiBhbiBpbnB1dC5cbiAqXG4gKiBUaGUgaW5wdXQgc2hvdWxkIGJlIGF0IGxlYXN0IDNELCAgYW5kIHRoZSBkaW1lbnNpb24gb2YgdGhlIGluZGV4IGAxYCB3aWxsIGJlXG4gKiBjb25zaWRlcmVkIHRvIGJlIHRoZSB0ZW1wb3JhbCBkaW1lbnNpb24uXG4gKlxuICogQ29uc2lkZXIgYSBiYXRjaCBvZiAzMiBzYW1wbGVzLCB3aGVyZSBlYWNoIHNhbXBsZSBpcyBhIHNlcXVlbmNlIG9mIDEwIHZlY3RvcnNcbiAqIG9mIDE2IGRpbWVuc2lvbnMuIFRoZSBiYXRjaCBpbnB1dCBzaGFwZSBvZiB0aGUgbGF5ZXIgaXMgdGhlbiBgWzMyLCAgMTAsXG4gKiAxNl1gLCBhbmQgdGhlIGBpbnB1dFNoYXBlYCwgbm90IGluY2x1ZGluZyB0aGUgc2FtcGxlIGRpbWVuc2lvbiwgaXNcbiAqIGBbMTAsIDE2XWAuXG4gKlxuICogWW91IGNhbiB0aGVuIHVzZSBgVGltZURpc3RyaWJ1dGVkYCB0byBhcHBseSBhIGBEZW5zZWAgbGF5ZXIgdG8gZWFjaCBvZiB0aGUgMTBcbiAqIHRpbWVzdGVwcywgaW5kZXBlbmRlbnRseTpcbiAqXG4gKiBgYGBqc1xuICogY29uc3QgbW9kZWwgPSB0Zi5zZXF1ZW50aWFsKCk7XG4gKiBtb2RlbC5hZGQodGYubGF5ZXJzLnRpbWVEaXN0cmlidXRlZCh7XG4gKiAgIGxheWVyOiB0Zi5sYXllcnMuZGVuc2Uoe3VuaXRzOiA4fSksXG4gKiAgIGlucHV0U2hhcGU6IFsxMCwgMTZdLFxuICogfSkpO1xuICpcbiAqIC8vIE5vdyBtb2RlbC5vdXRwdXRTaGFwZSA9IFtudWxsLCAxMCwgOF0uXG4gKiAvLyBUaGUgb3V0cHV0IHdpbGwgdGhlbiBoYXZlIHNoYXBlIGBbMzIsIDEwLCA4XWAuXG4gKlxuICogLy8gSW4gc3Vic2VxdWVudCBsYXllcnMsIHRoZXJlIGlzIG5vIG5lZWQgZm9yIGBpbnB1dFNoYXBlYDpcbiAqIG1vZGVsLmFkZCh0Zi5sYXllcnMudGltZURpc3RyaWJ1dGVkKHtsYXllcjogdGYubGF5ZXJzLmRlbnNlKHt1bml0czogMzJ9KX0pKTtcbiAqIGNvbnNvbGUubG9nKEpTT04uc3RyaW5naWZ5KG1vZGVsLm91dHB1dHNbMF0uc2hhcGUpKTtcbiAqIC8vIE5vdyBtb2RlbC5vdXRwdXRTaGFwZSA9IFtudWxsLCAxMCwgMzJdLlxuICogYGBgXG4gKlxuICogVGhlIG91dHB1dCB3aWxsIHRoZW4gaGF2ZSBzaGFwZSBgWzMyLCAxMCwgMzJdYC5cbiAqXG4gKiBgVGltZURpc3RyaWJ1dGVkYCBjYW4gYmUgdXNlZCB3aXRoIGFyYml0cmFyeSBsYXllcnMsIG5vdCBqdXN0IGBEZW5zZWAsIGZvclxuICogaW5zdGFuY2UgYSBgQ29udjJEYCBsYXllci5cbiAqXG4gKiBgYGBqc1xuICogY29uc3QgbW9kZWwgPSB0Zi5zZXF1ZW50aWFsKCk7XG4gKiBtb2RlbC5hZGQodGYubGF5ZXJzLnRpbWVEaXN0cmlidXRlZCh7XG4gKiAgIGxheWVyOiB0Zi5sYXllcnMuY29udjJkKHtmaWx0ZXJzOiA2NCwga2VybmVsU2l6ZTogWzMsIDNdfSksXG4gKiAgIGlucHV0U2hhcGU6IFsxMCwgMjk5LCAyOTksIDNdLFxuICogfSkpO1xuICogY29uc29sZS5sb2coSlNPTi5zdHJpbmdpZnkobW9kZWwub3V0cHV0c1swXS5zaGFwZSkpO1xuICogYGBgXG4gKlxuICogQGRvYyB7aGVhZGluZzogJ0xheWVycycsIHN1YmhlYWRpbmc6ICdXcmFwcGVyJywgbmFtZXNwYWNlOiAnbGF5ZXJzJ31cbiAqL1xuZXhwb3J0IGZ1bmN0aW9uIHRpbWVEaXN0cmlidXRlZChhcmdzOiBXcmFwcGVyTGF5ZXJBcmdzKSB7XG4gIHJldHVybiBuZXcgVGltZURpc3RyaWJ1dGVkKGFyZ3MpO1xufVxuXG4vLyBBbGlhc2VzIGZvciBwb29saW5nLlxuZXhwb3J0IGNvbnN0IGdsb2JhbE1heFBvb2wxZCA9IGdsb2JhbE1heFBvb2xpbmcxZDtcbmV4cG9ydCBjb25zdCBnbG9iYWxNYXhQb29sMmQgPSBnbG9iYWxNYXhQb29saW5nMmQ7XG5leHBvcnQgY29uc3QgbWF4UG9vbDFkID0gbWF4UG9vbGluZzFkO1xuZXhwb3J0IGNvbnN0IG1heFBvb2wyZCA9IG1heFBvb2xpbmcyZDtcblxuZXhwb3J0IHtMYXllciwgUk5OLCBSTk5DZWxsLCBpbnB1dCAvKiBhbGlhcyBmb3IgdGYuaW5wdXQgKi99O1xuXG4vKipcbiAqIEFwcGx5IGFkZGl0aXZlIHplcm8tY2VudGVyZWQgR2F1c3NpYW4gbm9pc2UuXG4gKlxuICogQXMgaXQgaXMgYSByZWd1bGFyaXphdGlvbiBsYXllciwgaXQgaXMgb25seSBhY3RpdmUgYXQgdHJhaW5pbmcgdGltZS5cbiAqXG4gKiBUaGlzIGlzIHVzZWZ1bCB0byBtaXRpZ2F0ZSBvdmVyZml0dGluZ1xuICogKHlvdSBjb3VsZCBzZWUgaXQgYXMgYSBmb3JtIG9mIHJhbmRvbSBkYXRhIGF1Z21lbnRhdGlvbikuXG4gKiBHYXVzc2lhbiBOb2lzZSAoR1MpIGlzIGEgbmF0dXJhbCBjaG9pY2UgYXMgY29ycnVwdGlvbiBwcm9jZXNzXG4gKiBmb3IgcmVhbCB2YWx1ZWQgaW5wdXRzLlxuICpcbiAqICMgQXJndW1lbnRzXG4gKiBzdGRkZXY6IGZsb2F0LCBzdGFuZGFyZCBkZXZpYXRpb24gb2YgdGhlIG5vaXNlIGRpc3RyaWJ1dGlvbi5cbiAqXG4gKiAjIElucHV0IHNoYXBlXG4gKiBBcmJpdHJhcnkuIFVzZSB0aGUga2V5d29yZCBhcmd1bWVudCBgaW5wdXRfc2hhcGVgXG4gKiAodHVwbGUgb2YgaW50ZWdlcnMsIGRvZXMgbm90IGluY2x1ZGUgdGhlIHNhbXBsZXMgYXhpcylcbiAqIHdoZW4gdXNpbmcgdGhpcyBsYXllciBhcyB0aGUgZmlyc3QgbGF5ZXIgaW4gYSBtb2RlbC5cbiAqXG4gKiAjIE91dHB1dCBzaGFwZVxuICogU2FtZSBzaGFwZSBhcyBpbnB1dC5cbiAqXG4gKiBAZG9jIHtoZWFkaW5nOiAnTGF5ZXJzJywgc3ViaGVhZGluZzogJ05vaXNlJywgbmFtZXNwYWNlOiAnbGF5ZXJzJ31cbiAqL1xuZXhwb3J0IGZ1bmN0aW9uIGdhdXNzaWFuTm9pc2UoYXJnczogR2F1c3NpYW5Ob2lzZUFyZ3MpIHtcbiAgcmV0dXJuIG5ldyBHYXVzc2lhbk5vaXNlKGFyZ3MpO1xufVxuXG4vKipcbiAqIEFwcGx5IG11bHRpcGxpY2F0aXZlIDEtY2VudGVyZWQgR2F1c3NpYW4gbm9pc2UuXG4gKlxuICogQXMgaXQgaXMgYSByZWd1bGFyaXphdGlvbiBsYXllciwgaXQgaXMgb25seSBhY3RpdmUgYXQgdHJhaW5pbmcgdGltZS5cbiAqXG4gKiBBcmd1bWVudHM6XG4gKiAgIC0gYHJhdGVgOiBmbG9hdCwgZHJvcCBwcm9iYWJpbGl0eSAoYXMgd2l0aCBgRHJvcG91dGApLlxuICogICAgIFRoZSBtdWx0aXBsaWNhdGl2ZSBub2lzZSB3aWxsIGhhdmVcbiAqICAgICBzdGFuZGFyZCBkZXZpYXRpb24gYHNxcnQocmF0ZSAvICgxIC0gcmF0ZSkpYC5cbiAqXG4gKiBJbnB1dCBzaGFwZTpcbiAqICAgQXJiaXRyYXJ5LiBVc2UgdGhlIGtleXdvcmQgYXJndW1lbnQgYGlucHV0U2hhcGVgXG4gKiAgICh0dXBsZSBvZiBpbnRlZ2VycywgZG9lcyBub3QgaW5jbHVkZSB0aGUgc2FtcGxlcyBheGlzKVxuICogICB3aGVuIHVzaW5nIHRoaXMgbGF5ZXIgYXMgdGhlIGZpcnN0IGxheWVyIGluIGEgbW9kZWwuXG4gKlxuICogT3V0cHV0IHNoYXBlOlxuICogICBTYW1lIHNoYXBlIGFzIGlucHV0LlxuICpcbiAqIFJlZmVyZW5jZXM6XG4gKiAgIC0gW0Ryb3BvdXQ6IEEgU2ltcGxlIFdheSB0byBQcmV2ZW50IE5ldXJhbCBOZXR3b3JrcyBmcm9tIE92ZXJmaXR0aW5nXShcbiAqICAgICAgaHR0cDovL3d3dy5jcy50b3JvbnRvLmVkdS9+cnNhbGFraHUvcGFwZXJzL3NyaXZhc3RhdmExNGEucGRmKVxuICpcbiAqIEBkb2Mge2hlYWRpbmc6ICdMYXllcnMnLCBzdWJoZWFkaW5nOiAnTm9pc2UnLCBuYW1lc3BhY2U6ICdsYXllcnMnfVxuICovXG5leHBvcnQgZnVuY3Rpb24gZ2F1c3NpYW5Ecm9wb3V0KGFyZ3M6IEdhdXNzaWFuRHJvcG91dEFyZ3MpIHtcbiAgcmV0dXJuIG5ldyBHYXVzc2lhbkRyb3BvdXQoYXJncyk7XG59XG5cbi8qKlxuICogQXBwbGllcyBBbHBoYSBEcm9wb3V0IHRvIHRoZSBpbnB1dC5cbiAqXG4gKiBBcyBpdCBpcyBhIHJlZ3VsYXJpemF0aW9uIGxheWVyLCBpdCBpcyBvbmx5IGFjdGl2ZSBhdCB0cmFpbmluZyB0aW1lLlxuICpcbiAqIEFscGhhIERyb3BvdXQgaXMgYSBgRHJvcG91dGAgdGhhdCBrZWVwcyBtZWFuIGFuZCB2YXJpYW5jZSBvZiBpbnB1dHNcbiAqIHRvIHRoZWlyIG9yaWdpbmFsIHZhbHVlcywgaW4gb3JkZXIgdG8gZW5zdXJlIHRoZSBzZWxmLW5vcm1hbGl6aW5nIHByb3BlcnR5XG4gKiBldmVuIGFmdGVyIHRoaXMgZHJvcG91dC5cbiAqIEFscGhhIERyb3BvdXQgZml0cyB3ZWxsIHRvIFNjYWxlZCBFeHBvbmVudGlhbCBMaW5lYXIgVW5pdHNcbiAqIGJ5IHJhbmRvbWx5IHNldHRpbmcgYWN0aXZhdGlvbnMgdG8gdGhlIG5lZ2F0aXZlIHNhdHVyYXRpb24gdmFsdWUuXG4gKlxuICogQXJndW1lbnRzOlxuICogICAtIGByYXRlYDogZmxvYXQsIGRyb3AgcHJvYmFiaWxpdHkgKGFzIHdpdGggYERyb3BvdXRgKS5cbiAqICAgICBUaGUgbXVsdGlwbGljYXRpdmUgbm9pc2Ugd2lsbCBoYXZlXG4gKiAgICAgc3RhbmRhcmQgZGV2aWF0aW9uIGBzcXJ0KHJhdGUgLyAoMSAtIHJhdGUpKWAuXG4gKiAgIC0gYG5vaXNlX3NoYXBlYDogQSAxLUQgYFRlbnNvcmAgb2YgdHlwZSBgaW50MzJgLCByZXByZXNlbnRpbmcgdGhlXG4gKiAgICAgc2hhcGUgZm9yIHJhbmRvbWx5IGdlbmVyYXRlZCBrZWVwL2Ryb3AgZmxhZ3MuXG4gKlxuICogSW5wdXQgc2hhcGU6XG4gKiAgIEFyYml0cmFyeS4gVXNlIHRoZSBrZXl3b3JkIGFyZ3VtZW50IGBpbnB1dFNoYXBlYFxuICogICAodHVwbGUgb2YgaW50ZWdlcnMsIGRvZXMgbm90IGluY2x1ZGUgdGhlIHNhbXBsZXMgYXhpcylcbiAqICAgd2hlbiB1c2luZyB0aGlzIGxheWVyIGFzIHRoZSBmaXJzdCBsYXllciBpbiBhIG1vZGVsLlxuICpcbiAqIE91dHB1dCBzaGFwZTpcbiAqICAgU2FtZSBzaGFwZSBhcyBpbnB1dC5cbiAqXG4gKiBSZWZlcmVuY2VzOlxuICogICAtIFtTZWxmLU5vcm1hbGl6aW5nIE5ldXJhbCBOZXR3b3Jrc10oaHR0cHM6Ly9hcnhpdi5vcmcvYWJzLzE3MDYuMDI1MTUpXG4gKlxuICogQGRvYyB7aGVhZGluZzogJ0xheWVycycsIHN1YmhlYWRpbmc6ICdOb2lzZScsIG5hbWVzcGFjZTogJ2xheWVycyd9XG4gKi9cbmV4cG9ydCBmdW5jdGlvbiBhbHBoYURyb3BvdXQoYXJnczogQWxwaGFEcm9wb3V0QXJncykge1xuICByZXR1cm4gbmV3IEFscGhhRHJvcG91dChhcmdzKTtcbn1cblxuLyoqXG4gKiBNYXNrcyBhIHNlcXVlbmNlIGJ5IHVzaW5nIGEgbWFzayB2YWx1ZSB0byBza2lwIHRpbWVzdGVwcy5cbiAqXG4gKiBJZiBhbGwgZmVhdHVyZXMgZm9yIGEgZ2l2ZW4gc2FtcGxlIHRpbWVzdGVwIGFyZSBlcXVhbCB0byBgbWFza192YWx1ZWAsXG4gKiB0aGVuIHRoZSBzYW1wbGUgdGltZXN0ZXAgd2lsbCBiZSBtYXNrZWQgKHNraXBwZWQpIGluIGFsbCBkb3duc3RyZWFtIGxheWVyc1xuICogKGFzIGxvbmcgYXMgdGhleSBzdXBwb3J0IG1hc2tpbmcpLlxuICpcbiAqIElmIGFueSBkb3duc3RyZWFtIGxheWVyIGRvZXMgbm90IHN1cHBvcnQgbWFza2luZyB5ZXQgcmVjZWl2ZXMgc3VjaFxuICogYW4gaW5wdXQgbWFzaywgYW4gZXhjZXB0aW9uIHdpbGwgYmUgcmFpc2VkLlxuICpcbiAqIEFyZ3VtZW50czpcbiAqICAgLSBgbWFza1ZhbHVlYDogRWl0aGVyIE5vbmUgb3IgbWFzayB2YWx1ZSB0byBza2lwLlxuICpcbiAqIElucHV0IHNoYXBlOlxuICogICBBcmJpdHJhcnkuIFVzZSB0aGUga2V5d29yZCBhcmd1bWVudCBgaW5wdXRTaGFwZWBcbiAqICAgKHR1cGxlIG9mIGludGVnZXJzLCBkb2VzIG5vdCBpbmNsdWRlIHRoZSBzYW1wbGVzIGF4aXMpXG4gKiAgIHdoZW4gdXNpbmcgdGhpcyBsYXllciBhcyB0aGUgZmlyc3QgbGF5ZXIgaW4gYSBtb2RlbC5cbiAqXG4gKiBPdXRwdXQgc2hhcGU6XG4gKiAgIFNhbWUgc2hhcGUgYXMgaW5wdXQuXG4gKlxuICogQGRvYyB7aGVhZGluZzogJ0xheWVycycsIHN1YmhlYWRpbmc6ICdNYXNrJywgbmFtZXNwYWNlOiAnbGF5ZXJzJ31cbiAqL1xuZXhwb3J0IGZ1bmN0aW9uIG1hc2tpbmcoYXJncz86IE1hc2tpbmdBcmdzKSB7XG4gIHJldHVybiBuZXcgTWFza2luZyhhcmdzKTtcbn1cblxuLyoqXG4gKiBBIHByZXByb2Nlc3NpbmcgbGF5ZXIgd2hpY2ggcmVzY2FsZXMgaW5wdXQgdmFsdWVzIHRvIGEgbmV3IHJhbmdlLlxuICpcbiAqIFRoaXMgbGF5ZXIgcmVzY2FsZXMgZXZlcnkgdmFsdWUgb2YgYW4gaW5wdXQgKG9mdGVuIGFuIGltYWdlKSBieSBtdWx0aXBseWluZ1xuICogYnkgYHNjYWxlYCBhbmQgYWRkaW5nIGBvZmZzZXRgLlxuICpcbiAqIEZvciBpbnN0YW5jZTpcbiAqIDEuIFRvIHJlc2NhbGUgYW4gaW5wdXQgaW4gdGhlIGBgWzAsIDI1NV1gYCByYW5nZVxuICogdG8gYmUgaW4gdGhlIGBbMCwgMV1gIHJhbmdlLCB5b3Ugd291bGQgcGFzcyBgc2NhbGU9MS8yNTVgLlxuICogMi4gVG8gcmVzY2FsZSBhbiBpbnB1dCBpbiB0aGUgYGBbMCwgMjU1XWBgIHJhbmdlIHRvIGJlIGluIHRoZSBgWy0xLCAxXWBcbiAqIHJhbmdlLCB5b3Ugd291bGQgcGFzcyBgc2NhbGU9MS4vMTI3LjUsIG9mZnNldD0tMWAuXG4gKiBUaGUgcmVzY2FsaW5nIGlzIGFwcGxpZWQgYm90aCBkdXJpbmcgdHJhaW5pbmcgYW5kIGluZmVyZW5jZS4gSW5wdXRzIGNhbiBiZVxuICogb2YgaW50ZWdlciBvciBmbG9hdGluZyBwb2ludCBkdHlwZSwgYW5kIGJ5IGRlZmF1bHQgdGhlIGxheWVyIHdpbGwgb3V0cHV0XG4gKiBmbG9hdHMuXG4gKlxuICogQXJndW1lbnRzOlxuICogICAtIGBzY2FsZWA6IEZsb2F0LCB0aGUgc2NhbGUgdG8gYXBwbHkgdG8gdGhlIGlucHV0cy5cbiAqICAgLSBgb2Zmc2V0YDogRmxvYXQsIHRoZSBvZmZzZXQgdG8gYXBwbHkgdG8gdGhlIGlucHV0cy5cbiAqXG4gKiBJbnB1dCBzaGFwZTpcbiAqICAgQXJiaXRyYXJ5LlxuICpcbiAqIE91dHB1dCBzaGFwZTpcbiAqICAgU2FtZSBhcyBpbnB1dC5cbiAqXG4gKiBAZG9jIHtoZWFkaW5nOiAnTGF5ZXJzJywgc3ViaGVhZGluZzogJ1Jlc2NhbGluZycsIG5hbWVzcGFjZTogJ2xheWVycyd9XG4gKi9cbmV4cG9ydCBmdW5jdGlvbiByZXNjYWxpbmcoYXJncz86IFJlc2NhbGluZ0FyZ3MpIHtcbiAgcmV0dXJuIG5ldyBSZXNjYWxpbmcoYXJncyk7XG59XG5cbi8qKlxuICogIEEgcHJlcHJvY2Vzc2luZyBsYXllciB3aGljaCBjZW50ZXIgY3JvcHMgaW1hZ2VzLlxuICpcbiAqICAgVGhpcyBsYXllcnMgY3JvcHMgdGhlIGNlbnRyYWwgcG9ydGlvbiBvZiB0aGUgaW1hZ2VzIHRvIGEgdGFyZ2V0IHNpemUuIElmIGFuXG4gKiAgIGltYWdlIGlzIHNtYWxsZXIgdGhhbiB0aGUgdGFyZ2V0IHNpemUsIGl0IHdpbGwgYmUgcmVzaXplZCBhbmQgY3JvcHBlZCBzbyBhc1xuICogICB0byByZXR1cm4gdGhlIGxhcmdlc3QgcG9zc2libGUgd2luZG93IGluIHRoZSBpbWFnZSB0aGF0IG1hdGNoZXMgdGhlIHRhcmdldFxuICogICBhc3BlY3QgcmF0aW8uXG4gKlxuICogICBJbnB1dCBwaXhlbCB2YWx1ZXMgY2FuIGJlIG9mIGFueSByYW5nZSAoZS5nLiBgWzAuLCAxLilgIG9yIGBbMCwgMjU1XWApIGFuZFxuICogICBvZiBpbnRlZ2VyIG9yIGZsb2F0aW5nIHBvaW50IGR0eXBlLlxuICpcbiAqICAgSWYgdGhlIGlucHV0IGhlaWdodC93aWR0aCBpcyBldmVuIGFuZCB0aGUgdGFyZ2V0IGhlaWdodC93aWR0aCBpcyBvZGQgKG9yXG4gKiAgIGludmVyc2VseSksIHRoZSBpbnB1dCBpbWFnZSBpcyBsZWZ0LXBhZGRlZCBieSAxIHBpeGVsLlxuICpcbiAqICAgQXJndW1lbnRzOlxuICogICAgIGBoZWlnaHRgOiBJbnRlZ2VyLCB0aGUgaGVpZ2h0IG9mIHRoZSBvdXRwdXQgc2hhcGUuXG4gKiAgICAgYHdpZHRoYDogSW50ZWdlciwgdGhlIHdpZHRoIG9mIHRoZSBvdXRwdXQgc2hhcGUuXG4gKlxuICogICBJbnB1dCBzaGFwZTpcbiAqICAgICAzRCAodW5iYXRjaGVkKSBvciA0RCAoYmF0Y2hlZCkgdGVuc29yIHdpdGggc2hhcGU6XG4gKiAgICAgYCguLi4sIGhlaWdodCwgd2lkdGgsIGNoYW5uZWxzKWAsIGluIGBjaGFubmVsc0xhc3RgIGZvcm1hdC5cbiAqXG4gKiAgIE91dHB1dCBzaGFwZTpcbiAqICAgICAzRCAodW5iYXRjaGVkKSBvciA0RCAoYmF0Y2hlZCkgdGVuc29yIHdpdGggc2hhcGU6XG4gKiAgICAgYCguLi4sIHRhcmdldEhlaWdodCwgdGFyZ2V0V2lkdGgsIGNoYW5uZWxzKWAuXG4gKlxuICpcbiAqICBAZG9jIHtoZWFkaW5nOiAnTGF5ZXJzJywgc3ViaGVhZGluZzogJ0NlbnRlckNyb3AnLCBuYW1lc3BhY2U6ICdsYXllcnMnfVxuICovXG5leHBvcnQgZnVuY3Rpb24gY2VudGVyQ3JvcChhcmdzPzogQ2VudGVyQ3JvcEFyZ3MpIHtcbiAgIHJldHVybiBuZXcgQ2VudGVyQ3JvcChhcmdzKTtcbiAgfVxuXG4vKipcbiAqIEEgcHJlcHJvY2Vzc2luZyBsYXllciB3aGljaCByZXNpemVzIGltYWdlcy5cbiAqIFRoaXMgbGF5ZXIgcmVzaXplcyBhbiBpbWFnZSBpbnB1dCB0byBhIHRhcmdldCBoZWlnaHQgYW5kIHdpZHRoLiBUaGUgaW5wdXRcbiAqIHNob3VsZCBiZSBhIDREIChiYXRjaGVkKSBvciAzRCAodW5iYXRjaGVkKSB0ZW5zb3IgaW4gYFwiY2hhbm5lbHNfbGFzdFwiYFxuICogZm9ybWF0LiAgSW5wdXQgcGl4ZWwgdmFsdWVzIGNhbiBiZSBvZiBhbnkgcmFuZ2UgKGUuZy4gYFswLiwgMS4pYCBvciBgWzAsXG4gKiAyNTVdYCkgYW5kIG9mIGludGVyZ2VyIG9yIGZsb2F0aW5nIHBvaW50IGR0eXBlLiBCeSBkZWZhdWx0LCB0aGUgbGF5ZXIgd2lsbFxuICogb3V0cHV0IGZsb2F0cy5cbiAqXG4gKiBBcmd1bWVudHM6XG4gKiAgIC0gYGhlaWdodGA6IG51bWJlciwgdGhlIGhlaWdodCBmb3IgdGhlIG91dHB1dCB0ZW5zb3IuXG4gKiAgIC0gYHdpZHRoYDogbnVtYmVyLCB0aGUgd2lkdGggZm9yIHRoZSBvdXRwdXQgdGVuc29yLlxuICogICAtIGBpbnRlcnBvbGF0aW9uYDogc3RyaW5nLCB0aGUgbWV0aG9kIGZvciBpbWFnZSByZXNpemluZyBpbnRlcnBvbGF0aW9uLlxuICogICAtIGBjcm9wVG9Bc3BlY3RSYXRpb2A6IGJvb2xlYW4sIHdoZXRoZXIgdG8ga2VlcCBpbWFnZSBhc3BlY3QgcmF0aW8uXG4gKlxuICogSW5wdXQgc2hhcGU6XG4gKiAgIEFyYml0cmFyeS5cbiAqXG4gKiBPdXRwdXQgc2hhcGU6XG4gKiAgIGhlaWdodCwgd2lkdGgsIG51bSBjaGFubmVscy5cbiAqXG4gKiBAZG9jIHtoZWFkaW5nOiAnTGF5ZXJzJywgc3ViaGVhZGluZzogJ1Jlc2l6aW5nJywgbmFtZXNwYWNlOiAnbGF5ZXJzJ31cbiAqL1xuZXhwb3J0IGZ1bmN0aW9uIHJlc2l6aW5nKGFyZ3M/OiBSZXNpemluZ0FyZ3MpIHtcbiAgcmV0dXJuIG5ldyBSZXNpemluZyhhcmdzKTtcbn1cblxuLyoqXG4gKiBBIHByZXByb2Nlc3NpbmcgbGF5ZXIgd2hpY2ggZW5jb2RlcyBpbnRlZ2VyIGZlYXR1cmVzLlxuICpcbiAqIFRoaXMgbGF5ZXIgcHJvdmlkZXMgb3B0aW9ucyBmb3IgY29uZGVuc2luZyBkYXRhIGludG8gYSBjYXRlZ29yaWNhbCBlbmNvZGluZ1xuICogd2hlbiB0aGUgdG90YWwgbnVtYmVyIG9mIHRva2VucyBhcmUga25vd24gaW4gYWR2YW5jZS4gSXQgYWNjZXB0cyBpbnRlZ2VyXG4gKiB2YWx1ZXMgYXMgaW5wdXRzLCBhbmQgaXQgb3V0cHV0cyBhIGRlbnNlIHJlcHJlc2VudGF0aW9uIG9mIHRob3NlXG4gKiBpbnB1dHMuXG4gKlxuICogQXJndW1lbnRzOlxuICpcbiAqIG51bVRva2VuczogVGhlIHRvdGFsIG51bWJlciBvZiB0b2tlbnMgdGhlIGxheWVyIHNob3VsZCBzdXBwb3J0LiBBbGxcbiAqICBpbnB1dHMgdG8gdGhlIGxheWVyIG11c3QgaW50ZWdlcnMgaW4gdGhlIHJhbmdlIGAwIDw9IHZhbHVlIDxcbiAqICBudW1Ub2tlbnNgLCBvciBhbiBlcnJvciB3aWxsIGJlIHRocm93bi5cbiAqXG4gKiBvdXRwdXRNb2RlOiBTcGVjaWZpY2F0aW9uIGZvciB0aGUgb3V0cHV0IG9mIHRoZSBsYXllci5cbiAqICBEZWZhdWx0cyB0byBgbXVsdGlIb3RgLiBWYWx1ZXMgY2FuIGJlIGBvbmVIb3RgLCBgbXVsdGlIb3RgIG9yXG4gKiAgYGNvdW50YCwgY29uZmlndXJpbmcgdGhlIGxheWVyIGFzIGZvbGxvd3M6XG4gKlxuICogICAgb25lSG90OiBFbmNvZGVzIGVhY2ggaW5kaXZpZHVhbCBlbGVtZW50IGluIHRoZSBpbnB1dCBpbnRvIGFuXG4gKiAgICAgIGFycmF5IG9mIGBudW1Ub2tlbnNgIHNpemUsIGNvbnRhaW5pbmcgYSAxIGF0IHRoZSBlbGVtZW50IGluZGV4LiBJZlxuICogICAgICB0aGUgbGFzdCBkaW1lbnNpb24gaXMgc2l6ZSAxLCB3aWxsIGVuY29kZSBvbiB0aGF0IGRpbWVuc2lvbi4gSWYgdGhlXG4gKiAgICAgIGxhc3QgZGltZW5zaW9uIGlzIG5vdCBzaXplIDEsIHdpbGwgYXBwZW5kIGEgbmV3IGRpbWVuc2lvbiBmb3IgdGhlXG4gKiAgICAgIGVuY29kZWQgb3V0cHV0LlxuICpcbiAqICAgIG11bHRpSG90OiBFbmNvZGVzIGVhY2ggc2FtcGxlIGluIHRoZSBpbnB1dCBpbnRvIGEgc2luZ2xlIGFycmF5XG4gKiAgICAgb2YgYG51bVRva2Vuc2Agc2l6ZSwgY29udGFpbmluZyBhIDEgZm9yIGVhY2ggdm9jYWJ1bGFyeSB0ZXJtXG4gKiAgICAgcHJlc2VudCBpbiB0aGUgc2FtcGxlLiBUcmVhdHMgdGhlIGxhc3QgZGltZW5zaW9uIGFzIHRoZSBzYW1wbGVcbiAqICAgICBkaW1lbnNpb24sIGlmIGlucHV0IHNoYXBlIGlzIGAoLi4uLCBzYW1wbGVMZW5ndGgpYCwgb3V0cHV0IHNoYXBlXG4gKiAgICAgd2lsbCBiZSBgKC4uLiwgbnVtVG9rZW5zKWAuXG4gKlxuICogICAgY291bnQ6IExpa2UgYG11bHRpSG90YCwgYnV0IHRoZSBpbnQgYXJyYXkgY29udGFpbnMgYSBjb3VudCBvZlxuICogICAgIHRoZSBudW1iZXIgb2YgdGltZXMgdGhlIHRva2VuIGF0IHRoYXQgaW5kZXggYXBwZWFyZWQgaW4gdGhlIHNhbXBsZS5cbiAqXG4gKiAgRm9yIGFsbCBvdXRwdXQgbW9kZXMsIGN1cnJlbnRseSBvbmx5IG91dHB1dCB1cCB0byByYW5rIDIgaXMgc3VwcG9ydGVkLlxuICogICBDYWxsIGFyZ3VtZW50czpcbiAqICAgIGlucHV0czogQSAxRCBvciAyRCB0ZW5zb3Igb2YgaW50ZWdlciBpbnB1dHMuXG4gKiAgICBjb3VudFdlaWdodHM6IEEgdGVuc29yIGluIHRoZSBzYW1lIHNoYXBlIGFzIGBpbnB1dHNgIGluZGljYXRpbmcgdGhlXG4gKiAgICB3ZWlnaHQgZm9yIGVhY2ggc2FtcGxlIHZhbHVlIHdoZW4gc3VtbWluZyB1cCBpbiBgY291bnRgIG1vZGUuIE5vdCB1c2VkXG4gKiAgICBpbiBgbXVsdGlIb3RgIG9yIGBvbmVIb3RgIG1vZGVzLlxuICpcbiAqXG4gKiBAZG9jIHtoZWFkaW5nOiAnTGF5ZXJzJywgc3ViaGVhZGluZzogJ0NhdGVnb3J5RW5jb2RpbmcnLCBuYW1lc3BhY2U6ICdsYXllcnMnfVxuICovXG5leHBvcnQgZnVuY3Rpb24gY2F0ZWdvcnlFbmNvZGluZyhhcmdzOiBDYXRlZ29yeUVuY29kaW5nQXJncykge1xuICByZXR1cm4gbmV3IENhdGVnb3J5RW5jb2RpbmcoYXJncyk7XG59XG5cbiAvKipcbiAgKiBBIHByZXByb2Nlc3NpbmcgbGF5ZXIgd2hpY2ggcmFuZG9tbHkgdmFyaWVzIGltYWdlIHdpZHRoIGR1cmluZyB0cmFpbmluZy5cbiAgKlxuICAqIFRoaXMgbGF5ZXIgd2lsbCByYW5kb21seSBhZGp1c3RzIHRoZSB3aWR0aCBvZiBhIGJhdGNoIG9mIGltYWdlcyBvZiBhIGJhdGNoXG4gICogb2YgaW1hZ2VzIGJ5IGEgcmFuZG9tIGZhY3Rvci5cbiAgKlxuICAqIFRoZSBpbnB1dCBzaG91bGQgYmUgYSAzRCAodW5iYXRjaGVkKSBvciA0RCAoYmF0Y2hlZCkgdGVuc29yIGluXG4gICogdGhlIGBcImNoYW5uZWxzX2xhc3RcImAgaW1hZ2UgZGF0YSBmb3JtYXQuIElucHV0IHBpeGVsIHZhbHVlcyBjYW4gYmUgb2YgYW55XG4gICogcmFuZ2UgKGUuZy4gYFswLiwgMS4pYCBvciBgWzAsIDI1NV1gKSBhbmQgb2YgaW50ZWdlciBvciBmbG9hdGluZyBwb2ludFxuICAqIGR0eXBlLiBCeSBkZWZhdWx0LCB0aGUgbGF5ZXIgd2lsbCBvdXRwdXQgZmxvYXRzLiBCeSBkZWZhdWx0LCB0aGlzIGxheWVyIGlzXG4gICogaW5hY3RpdmUgZHVyaW5nIGluZmVyZW5jZS4gRm9yIGFuIG92ZXJ2aWV3IGFuZCBmdWxsIGxpc3Qgb2YgcHJlcHJvY2Vzc2luZ1xuICAqIGxheWVycywgc2VlIHRoZSBwcmVwcm9jZXNzaW5nIFtndWlkZV1cbiAgKiAoaHR0cHM6Ly93d3cudGVuc29yZmxvdy5vcmcvZ3VpZGUva2VyYXMvcHJlcHJvY2Vzc2luZ19sYXllcnMpLlxuICAqXG4gICogQXJndW1lbnRzOlxuICAqXG4gICogZmFjdG9yOlxuICAqICAgQSBwb3NpdGl2ZSBmbG9hdCAoZnJhY3Rpb24gb2Ygb3JpZ2luYWwgd2lkdGgpLCBvciBhIHR1cGxlIG9mIHNpemUgMlxuICAqICAgcmVwcmVzZW50aW5nIGxvd2VyIGFuZCB1cHBlciBib3VuZCBmb3IgcmVzaXppbmcgdmVydGljYWxseS5cbiAgKiAgIFdoZW4gcmVwcmVzZW50ZWQgYXMgYSBzaW5nbGUgZmxvYXQsIHRoaXMgdmFsdWUgaXMgdXNlZCBmb3IgYm90aCB0aGUgdXBwZXJcbiAgKiAgIGFuZCBsb3dlciBib3VuZC4gRm9yIGluc3RhbmNlLCBgZmFjdG9yPSgwLjIsIDAuMylgIHJlc3VsdHMgaW4gYW4gb3V0cHV0XG4gICogICB3aXRoIHdpZHRoIGNoYW5nZWQgYnkgYSByYW5kb20gYW1vdW50IGluIHRoZSByYW5nZSBgWzIwJSwgMzAlXWAuXG4gICogICBgZmFjdG9yPSgtMC4yLCAwLjMpYCByZXN1bHRzIGluIGFuIG91dHB1dCB3aXRoIHdpZHRoIGNoYW5nZWQgYnkgYSByYW5kb21cbiAgKiAgIGFtb3VudCBpbiB0aGUgcmFuZ2UgYFstMjAlLCArMzAlXWAuIGBmYWN0b3I9MC4yYCByZXN1bHRzIGluIGFuIG91dHB1dFxuICAqICAgd2l0aCB3aWR0aCBjaGFuZ2VkIGJ5IGEgcmFuZG9tIGFtb3VudCBpbiB0aGUgcmFuZ2UgYFstMjAlLCArMjAlXWAuXG4gICogaW50ZXJwb2xhdGlvbjpcbiAgKiAgIFN0cmluZywgdGhlIGludGVycG9sYXRpb24gbWV0aG9kLlxuICAqICAgRGVmYXVsdHMgdG8gYGJpbGluZWFyYC5cbiAgKiAgIFN1cHBvcnRzIGBcImJpbGluZWFyXCJgLCBgXCJuZWFyZXN0XCJgLlxuICAqICAgVGhlIHRmIG1ldGhvZHMgYFwiYmljdWJpY1wiYCwgYFwiYXJlYVwiYCwgYFwibGFuY3pvczNcImAsIGBcImxhbmN6b3M1XCJgLFxuICAqICAgYFwiZ2F1c3NpYW5cImAsIGBcIm1pdGNoZWxsY3ViaWNcImAgYXJlIHVuaW1wbGVtZW50ZWQgaW4gdGZqcy5cbiAgKiBzZWVkOlxuICAqICAgSW50ZWdlci4gVXNlZCB0byBjcmVhdGUgYSByYW5kb20gc2VlZC5cbiAgKlxuICAqIElucHV0IHNoYXBlOlxuICAqICAgICAzRCAodW5iYXRjaGVkKSBvciA0RCAoYmF0Y2hlZCkgdGVuc29yIHdpdGggc2hhcGU6XG4gICogICAgIGAoLi4uLCBoZWlnaHQsIHdpZHRoLCBjaGFubmVscylgLCBpbiBgXCJjaGFubmVsc19sYXN0XCJgIGZvcm1hdC5cbiAgKiBPdXRwdXQgc2hhcGU6XG4gICogICAgIDNEICh1bmJhdGNoZWQpIG9yIDREIChiYXRjaGVkKSB0ZW5zb3Igd2l0aCBzaGFwZTpcbiAgKiAgICAgYCguLi4sIGhlaWdodCwgcmFuZG9tX3dpZHRoLCBjaGFubmVscylgLlxuICAqXG4gICpcbiAgKiBAZG9jIHtoZWFkaW5nOiAnTGF5ZXJzJywgc3ViaGVhZGluZzogJ1JhbmRvbVdpZHRoJywgbmFtZXNwYWNlOiAnbGF5ZXJzJ31cbiAgKi9cbiAgZXhwb3J0IGZ1bmN0aW9uIHJhbmRvbVdpZHRoKGFyZ3M6IFJhbmRvbVdpZHRoQXJncykge1xuICAgIHJldHVybiBuZXcgUmFuZG9tV2lkdGgoYXJncyk7XG4gIH1cbiJdfQ==