gx
chenyc
2025-06-12 7b72ac13a83764a662159d4a49b7fffb90476ecb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
/**
 * @license
 * Copyright 2018 Google LLC
 *
 * Use of this source code is governed by an MIT-style
 * license that can be found in the LICENSE file or at
 * https://opensource.org/licenses/MIT.
 * =============================================================================
 */
/**
 * TensorFlow.js Layers: Merge Layers.
 */
import * as tfc from '@tensorflow/tfjs-core';
import { serialization, tidy, util } from '@tensorflow/tfjs-core';
import * as K from '../backend/tfjs_backend';
import { Layer } from '../engine/topology';
import { NotImplementedError, ValueError } from '../errors';
import { l2Normalize } from '../losses';
import * as generic_utils from '../utils/generic_utils';
import * as mathUtils from '../utils/math_utils';
import { getExactlyOneShape } from '../utils/types_utils';
/**
 * Generic Merge layer for element-wise merge functions.
 *
 * Used to implement `Sum`, `Average`, `Concatenate`, etc.
 */
export class Merge extends Layer {
    constructor(args) {
        super(args || {});
        this.supportsMasking = true;
    }
    /**
     * Logic for merging multiple tensors, to be overridden by subclasses.
     * @param inputs
     */
    mergeFunction(inputs) {
        throw new NotImplementedError();
    }
    /**
     * Computes the shape of the result of an elementwise operation.
     *
     * @param shape1: Shape of the first tensor.
     * @param shape2: Shape of the second tensor.
     * @returns Expected output shape when an elementwise operation is carried
     *   out on 2 tensors with shapes `shape1` and `shape2`.
     * @throws ValueError: If `shape1` and `shape2` are not compatible for
     *   element-wise operations.
     */
    computeElementwiseOpOutputShape(shape1, shape2) {
        if (shape1 == null || shape2 == null) {
            return null;
        }
        else if (shape1.length < shape2.length) {
            return this.computeElementwiseOpOutputShape(shape2, shape1);
        }
        else if (shape2.length === 0) {
            return shape1;
        }
        const outputShape = shape1.slice(0, shape1.length - shape2.length);
        for (let k = 0; k < shape2.length; ++k) {
            const i = shape1[shape1.length - shape2.length + k];
            const j = shape2[k];
            if (i == null || j == null || i < 0 || j < 0) {
                outputShape.push(null);
            }
            else if (i === 1) {
                outputShape.push(j);
            }
            else if (j === 1) {
                outputShape.push(i);
            }
            else {
                if (i !== j) {
                    throw new ValueError('Operands could not be broadcast together with shapes ' +
                        JSON.stringify(shape1) + ' ' + JSON.stringify(shape2));
                }
                outputShape.push(i);
            }
        }
        return outputShape;
    }
    build(inputShape) {
        // Used purely for shape validation.
        if (Array.isArray(inputShape) && !Array.isArray(inputShape[0])) {
            // Make sure that inputShape is an Array of shape.
            inputShape = [getExactlyOneShape(inputShape)];
        }
        inputShape = inputShape;
        if (inputShape.length < 2) {
            throw new ValueError('A merge layer should be called on an Array of at least 2 inputs.' +
                ` Got ${inputShape.length} input(s).`);
        }
        // Make sure that there is at most one unique batch size among the input
        // shapes.
        let batchSizes = [];
        for (const shape of inputShape) {
            if (shape != null && shape[0] !== null) {
                batchSizes.push(shape[0]);
            }
        }
        batchSizes = generic_utils.unique(batchSizes);
        if (batchSizes.length > 1) {
            throw new ValueError(`Can not merge tensors with different batch sizes. ` +
                `Got tensors with shapes: ${JSON.stringify(inputShape)}.`);
        }
        let outputShape = inputShape[0] == null ? null : inputShape[0].slice(1);
        for (let i = 1; i < inputShape.length; ++i) {
            const shape = inputShape[i] == null ? null : inputShape[i].slice(1);
            outputShape = this.computeElementwiseOpOutputShape(outputShape, shape);
        }
        // If the inputs have different ranks, we have to reshape them to make them
        // broadcastable.
        const allRanks = inputShape.map(shape => shape.length);
        if (inputShape.indexOf(null) === -1 &&
            generic_utils.unique(allRanks).length === 1) {
            this.reshapeRequired = false;
        }
        else {
            this.reshapeRequired = true;
        }
    }
    call(inputs, kwargs) {
        return tidy(() => {
            inputs = inputs;
            if (this.reshapeRequired) {
                const reshapedInputs = [];
                const inputDims = inputs.map(input => input.rank);
                if (inputDims.indexOf(null) === -1) {
                    // If ranks of all inputs are available, we simply expand each of them
                    // at axis=1 until all of them have the same rank.
                    const maxNDim = mathUtils.max(inputDims);
                    for (let x of inputs) {
                        const xNDim = x.rank;
                        for (let k = 0; k < maxNDim - xNDim; ++k) {
                            x = K.expandDims(x, 1);
                        }
                        reshapedInputs.push(x);
                    }
                    return this.mergeFunction(reshapedInputs);
                }
                else {
                    // Transpose all inputs so that batch size is the last dimension.
                    // [batchSize, dim1, dim2, ...] -> [dim1, dim2, ..., batchSize]
                    let transposed = false;
                    for (const x of inputs) {
                        const xNDim = x.rank;
                        if (xNDim == null) {
                            const xShape = x.shape;
                            const batchSize = xShape[0];
                            const newShape = xShape.slice(1).concat([batchSize]);
                            let xTransposed = tfc.reshape(x, [batchSize].concat(mathUtils.arrayProd(xShape.slice(1))));
                            xTransposed = tfc.transpose(xTransposed, [1, 0]);
                            xTransposed = tfc.reshape(xTransposed, newShape);
                            reshapedInputs.push(xTransposed);
                            transposed = true;
                        }
                        else if (xNDim > 1) {
                            const dims = mathUtils.range(1, xNDim).concat([0]);
                            reshapedInputs.push(tfc.transpose(x, dims));
                            transposed = true;
                        }
                        else {
                            // We don't transpose inputs if they are 1D vectors or scalars.
                            reshapedInputs.push(x);
                        }
                    }
                    let y = this.mergeFunction(reshapedInputs);
                    const yNDim = y.rank;
                    if (transposed) {
                        // If inputs have been transposed, we have to transpose the output
                        // too.
                        if (yNDim == null) {
                            const yShape = y.shape;
                            const yNDim = yShape.length;
                            const batchSize = yShape[yNDim - 1];
                            const newShape = [batchSize].concat(yShape.slice(0, yShape.length - 1));
                            y = tfc.reshape(tfc.transpose(tfc.reshape(y, [-1, batchSize]), [1, 0]), newShape);
                        }
                        else if (yNDim > 1) {
                            const dims = [yNDim - 1].concat(mathUtils.range(0, yNDim - 1));
                            y = tfc.transpose(y, dims);
                        }
                    }
                    return y;
                }
            }
            else {
                return this.mergeFunction(inputs);
            }
        });
    }
    computeOutputShape(inputShape) {
        inputShape = inputShape;
        let outputShape;
        if (inputShape[0] == null) {
            outputShape = null;
        }
        else {
            outputShape = inputShape[0].slice(1);
        }
        for (let i = 1; i < inputShape.length; ++i) {
            const shape = inputShape[i] == null ? null : inputShape[i].slice(1);
            outputShape = this.computeElementwiseOpOutputShape(outputShape, shape);
        }
        let batchSizes = [];
        for (const shape of inputShape) {
            if (shape != null && shape[0] !== null) {
                batchSizes.push(shape[0]);
            }
        }
        batchSizes = generic_utils.unique(batchSizes);
        if (batchSizes.length === 1) {
            outputShape = batchSizes.concat(outputShape);
        }
        else {
            outputShape = [null].concat(outputShape);
        }
        return outputShape;
    }
    computeMask(inputs, mask) {
        return tfc.tidy(() => {
            if (mask == null) {
                return null;
            }
            if (!Array.isArray(mask)) {
                throw new ValueError('`mask` should be an Array');
            }
            if (!Array.isArray(inputs)) {
                throw new ValueError('`inputs` should be an Array');
            }
            if (mask.length !== inputs.length) {
                throw new ValueError(`The Array 'inputs' and 'mask' are expected to have the same ` +
                    `length, but have different lengths ` +
                    `(${inputs.length} vs ${mask.length})`);
            }
            if (mask.every(m => m == null)) {
                return null;
            }
            mask = mask.map(m => m == null ? m : tfc.expandDims(m, 0));
            let output = mask[0];
            for (let i = 1; i < mask.length - 1; ++i) {
                output = tfc.logicalAnd(output, mask[i]);
            }
            return output;
        });
    }
}
class Add extends Merge {
    constructor(args) {
        super(args);
    }
    mergeFunction(inputs) {
        return tidy(() => {
            let output = inputs[0].clone();
            for (let i = 1; i < inputs.length; ++i) {
                output = tfc.add(output, inputs[i]);
            }
            return output;
        });
    }
}
/** @nocollapse */
Add.className = 'Add';
export { Add };
serialization.registerClass(Add);
/**
 * Calculate the element-wise sum of inputs, which all have the same shape.
 *
 * This function can be invoked in three ways.
 *
 * 1. Construct an instance of `Add` layer, by using no input argument
 *    or a single configuration argument. The resultant `Add` layer can then
 *    be used on `tf.SymbolicTensor`s or `tf.Tensor`s. For example:
 *
 * ```js
 * const addLayer = tf.layers.add();
 *
 * // The layer can be applied to inputs.
 * const input1 = tf.input({shape: [2, 2]});
 * const input2 = tf.input({shape: [2, 2]});
 * const output = addLayer.apply([input1, input2]);
 * console.log(output.shape);
 * // You get [null, 2, 2], with the first dimension as the undetermined batch
 * // dimension.
 * ```
 *
 * 2. Invoke directly on an `Array` of `tf.SymbolicTensor`s. This constructs
 *    an `Layer` object internally and calls its `apply` method on the inputs,
 *    generating a new `tf.SymbolicTensor`. For example:
 *
 * ```js
 * const input1 = tf.input({shape: [2, 2]});
 * const input2 = tf.input({shape: [2, 2]});
 * const output = tf.layers.add([input1, input2]);
 * console.log(output.shape);
 * // You get [null, 2, 2], with the first dimension as the undetermined batch
 * // dimension.
 * ```
 *
 * 3. Invoke directly on `tf.Tensor`s, i.e., concrete values. This constructs
 *    an `Layer` object internally and calls its `apply` method on the inputs,
 *    generating a new `tf.Tensor` as the result of the computation. For
 * example:
 *
 * ```js
 * const input1 = tf.tensor2d([1, 2, 3, 4], [2, 2]);
 * const input2 = tf.tensor2d([10, 20, 30, 40], [2, 2]);
 * tf.layers.add([input1, input2]).print();
 * // Gives [[11, 22], [33, 44]].
 *
 */
export function add(config) {
    if (Array.isArray(config)) {
        const layer = new Add({});
        return layer.apply(config);
    }
    else {
        return new Add(config);
    }
}
class Multiply extends Merge {
    constructor(args) {
        super(args);
    }
    mergeFunction(inputs) {
        return tidy(() => {
            let output = inputs[0].clone();
            for (let i = 1; i < inputs.length; ++i) {
                output = tfc.mul(output, inputs[i]);
            }
            return output;
        });
    }
}
/** @nocollapse */
Multiply.className = 'Multiply';
export { Multiply };
serialization.registerClass(Multiply);
/**
 * Calculate the element-wise product of inputs, which all have the same shape.
 *
 * This function can be invoked in three ways.
 *
 * 1. Construct an instance of `Multiply` layer, by using no input argument
 *    or a single configuration argument. The resultant `Multiply` layer can
 *    then be used on `tf.SymbolicTensor`s or `tf.Tensor`s. For example:
 *
 * ```js
 * const multiplyLayer = tf.layers.multiply();
 *
 * // The layer can be applied to inputs.
 * const input1 = tf.input({shape: [2, 2]});
 * const input2 = tf.input({shape: [2, 2]});
 * const output = multiplyLayer.apply([input1, input2]);
 * console.log(output.shape);
 * // You get [null, 2, 2], with the first dimension as the undetermined batch
 * // dimension.
 * ```
 *
 * 2. Invoke directly on an `Array` of `tf.SymbolicTensor`s. This constructs
 *    an `Layer` object internally and calls its `apply` method on the inputs,
 *    generating a new `tf.SymbolicTensor`. For example:
 *
 * ```js
 * const input1 = tf.input({shape: [2, 2]});
 * const input2 = tf.input({shape: [2, 2]});
 * const output = tf.layers.multiply([input1, input2]);
 * console.log(output.shape);
 * // You get [null, 2, 2], with the first dimension as the undetermined batch
 * // dimension.
 * ```
 *
 * 3. Invoke directly on `tf.Tensor`s, i.e., concrete values. This constructs
 *    an `Layer` object internally and calls its `apply` method on the inputs,
 *    generating a new `tf.Tensor` as the result of the computation. For
 * example:
 *
 * ```js
 * const input1 = tf.tensor2d([1, 2, 3, 4], [2, 2]);
 * const input2 = tf.tensor2d([10, 20, 30, 40], [2, 2]);
 * tf.layers.multiply([input1, input2]).print();
 * // Gives [[10, 40], [90, 160]].
 *
 */
export function multiply(config) {
    if (Array.isArray(config)) {
        const layer = new Multiply({});
        return layer.apply(config);
    }
    else {
        return new Multiply(config);
    }
}
class Average extends Merge {
    constructor(args) {
        super(args);
    }
    mergeFunction(inputs) {
        return tidy(() => {
            let output = inputs[0].clone();
            for (let i = 1; i < inputs.length; ++i) {
                output = tfc.add(output, inputs[i]);
            }
            return tfc.mul(1 / inputs.length, output);
        });
    }
}
/** @nocollapse */
Average.className = 'Average';
export { Average };
serialization.registerClass(Average);
/**
 * Calculate the element-wise arithmetic mean of inputs, which all have the same
 * shape.
 *
 * This function can be invoked in three ways.
 *
 * 1. Construct an instance of `Average` layer, by using no input argument
 *    or a single configuration argument. The resultant `Average` layer can then
 *    be used on `tf.SymbolicTensor`s or `tf.Tensor`s. For example:
 *
 * ```js
 * const averageLayer = tf.layers.average();
 *
 * // The layer can be applied to inputs.
 * const input1 = tf.input({shape: [2, 2]});
 * const input2 = tf.input({shape: [2, 2]});
 * const output = averageLayer.apply([input1, input2]);
 * console.log(output.shape);
 * // You get [null, 2, 2], with the first dimension as the undetermined batch
 * // dimension.
 * ```
 *
 * 2. Invoke directly on an `Array` of `tf.SymbolicTensor`s. This constructs
 *    an `Layer` object internally and calls its `apply` method on the inputs,
 *    generating a new `tf.SymbolicTensor`. For example:
 *
 * ```js
 * const input1 = tf.input({shape: [2, 2]});
 * const input2 = tf.input({shape: [2, 2]});
 * const output = tf.layers.average([input1, input2]);
 * console.log(output.shape);
 * // You get [null, 2, 2], with the first dimension as the undetermined batch
 * // dimension.
 * ```
 *
 * 3. Invoke directly on `tf.Tensor`s, i.e., concrete values. This constructs
 *    an `Layer` object internally and calls its `apply` method on the inputs,
 *    generating a new `tf.Tensor` as the result of the computation. For
 * example:
 *
 * ```js
 * const input1 = tf.tensor2d([1, 2, 3, 4], [2, 2]);
 * const input2 = tf.tensor2d([10, 20, 30, 40], [2, 2]);
 * tf.layers.average([input1, input2]).print();
 * // Gives [[5.5, 11], [16.5, 22]].
 *
 */
export function average(config) {
    if (Array.isArray(config)) {
        const layer = new Average({});
        return layer.apply(config);
    }
    else {
        return new Average(config);
    }
}
class Maximum extends Merge {
    constructor(args) {
        super(args);
    }
    mergeFunction(inputs) {
        return tidy(() => {
            let output = inputs[0];
            for (let i = 1; i < inputs.length; ++i) {
                output = tfc.maximum(output, inputs[i]);
            }
            return output;
        });
    }
}
/** @nocollapse */
Maximum.className = 'Maximum';
export { Maximum };
serialization.registerClass(Maximum);
/**
 * Calculate the element-wise maximum of inputs, which all have the same shape.
 *
 * This function can be invoked in three ways.
 *
 * 1. Construct an instance of `Maximum` layer, by using no input argument
 *    or a single configuration argument. The resultant `Maximum` layer can then
 *    be used on `tf.SymbolicTensor`s or `tf.Tensor`s. For example:
 *
 * ```js
 * const maximumLayer = tf.layers.maximum();
 *
 * // The layer can be applied to inputs.
 * const input1 = tf.input({shape: [2, 2]});
 * const input2 = tf.input({shape: [2, 2]});
 * const output = maximumLayer.apply([input1, input2]);
 * console.log(output.shape);
 * // You get [null, 2, 2], with the first dimension as the undetermined batch
 * // dimension.
 * ```
 *
 * 2. Invoke directly on an `Array` of `tf.SymbolicTensor`s. This constructs
 *    an `Layer` object internally and calls its `apply` method on the inputs,
 *    generating a new `tf.SymbolicTensor`. For example:
 *
 * ```js
 * const input1 = tf.input({shape: [2, 2]});
 * const input2 = tf.input({shape: [2, 2]});
 * const output = tf.layers.maximum([input1, input2]);
 * console.log(output.shape);
 * // You get [null, 2, 2], with the first dimension as the undetermined batch
 * // dimension.
 * ```
 *
 * 3. Invoke directly on `tf.Tensor`s, i.e., concrete values. This constructs
 *    an `Layer` object internally and calls its `apply` method on the inputs,
 *    generating a new `tf.Tensor` as the result of the computation. For
 * example:
 *
 * ```js
 * const input1 = tf.tensor2d([1, 20, 3, 40], [2, 2]);
 * const input2 = tf.tensor2d([10, 2, 30, 4], [2, 2]);
 * tf.layers.maximum([input1, input2]).print();
 * // Gives [[10, 20], [30, 40]].
 *
 */
export function maximum(config) {
    if (Array.isArray(config)) {
        const layer = new Maximum({});
        return layer.apply(config);
    }
    else {
        return new Maximum(config);
    }
}
class Minimum extends Merge {
    constructor(args) {
        super(args);
    }
    mergeFunction(inputs) {
        return tidy(() => {
            let output = inputs[0];
            for (let i = 1; i < inputs.length; ++i) {
                output = tfc.minimum(output, inputs[i]);
            }
            return output;
        });
    }
}
/** @nocollapse */
Minimum.className = 'Minimum';
export { Minimum };
serialization.registerClass(Minimum);
/**
 * Calculate the element-wise minimum of inputs, which all have the same shape.
 *
 * This function can be invoked in three ways.
 *
 * 1. Construct an instance of `Minimum` layer, by using no input argument
 *    or a single configuration argument. The resultant `Minimum` layer can then
 *    be used on `tf.SymbolicTensor`s or `tf.Tensor`s. For example:
 *
 * ```js
 * const minimumLayer = tf.layers.minimum();
 *
 * // The layer can be applied to inputs.
 * const input1 = tf.input({shape: [2, 2]});
 * const input2 = tf.input({shape: [2, 2]});
 * const output = minimumLayer.apply([input1, input2]);
 * console.log(output.shape);
 * // You get [null, 2, 2], with the first dimension as the undetermined batch
 * // dimension.
 * ```
 *
 * 2. Invoke directly on an `Array` of `tf.SymbolicTensor`s. This constructs
 *    an `Layer` object internally and calls its `apply` method on the inputs,
 *    generating a new `tf.SymbolicTensor`. For example:
 *
 * ```js
 * const input1 = tf.input({shape: [2, 2]});
 * const input2 = tf.input({shape: [2, 2]});
 * const output = tf.layers.minimum([input1, input2]);
 * console.log(output.shape);
 * // You get [null, 2, 2], with the first dimension as the undetermined batch
 * // dimension.
 * ```
 *
 * 3. Invoke directly on `tf.Tensor`s, i.e., concrete values. This constructs
 *    an `Layer` object internally and calls its `apply` method on the inputs,
 *    generating a new `tf.Tensor` as the result of the computation. For
 * example:
 *
 * ```js
 * const input1 = tf.tensor2d([1, 20, 3, 40], [2, 2]);
 * const input2 = tf.tensor2d([10, 2, 30, 4], [2, 2]);
 * tf.layers.minimum([input1, input2]).print();
 * // Gives [[1, 2], [3, 4]].
 *
 */
export function minimum(config) {
    if (Array.isArray(config)) {
        const layer = new Minimum({});
        return layer.apply(config);
    }
    else {
        return new Minimum(config);
    }
}
class Concatenate extends Merge {
    constructor(args) {
        super(args);
        this.DEFAULT_AXIS = -1;
        if (args == null) {
            args = {};
        }
        this.axis = args.axis == null ? this.DEFAULT_AXIS : args.axis;
        this.supportsMasking = true;
        this.reshapeRequired = false;
    }
    build(inputShape) {
        // Used purely for shape validation.]
        if (!(Array.isArray(inputShape) && Array.isArray(inputShape[0])) ||
            inputShape.length === 1) {
            throw new ValueError('A `Concatenate` layer should be called on a list of at least 2 ' +
                'inputs');
        }
        inputShape = inputShape;
        let allNoneShape = true;
        for (const shape of inputShape) {
            if (shape != null) {
                allNoneShape = false;
                break;
            }
        }
        if (allNoneShape) {
            return;
        }
        const shapeSet = [];
        for (let i = 0; i < inputShape.length; ++i) {
            const shapeWithoutConcatAxis = inputShape[i].slice();
            shapeWithoutConcatAxis.splice(this.axis, 1);
            let exists = false;
            for (const shape of shapeSet) {
                if (util.arraysEqual(shape, shapeWithoutConcatAxis)) {
                    exists = true;
                    break;
                }
            }
            if (!exists) {
                shapeSet.push(shapeWithoutConcatAxis);
            }
        }
        if (shapeSet.length > 1) {
            throw new ValueError('A `Concatenate` layer requires inputs with matching shapes ' +
                'except for the concat axis. Got input shapes: ' +
                JSON.stringify(inputShape));
        }
    }
    mergeFunction(inputs) {
        return tidy(() => {
            return K.concatenate(inputs, this.axis);
        });
    }
    computeOutputShape(inputShape) {
        if (!(Array.isArray(inputShape) && Array.isArray(inputShape[0]))) {
            throw new ValueError('A `Concatenate` layer should be called on a list of inputs.');
        }
        const inputShapes = inputShape;
        const outputShape = inputShapes[0].slice();
        const axis = this.axis < 0 ? outputShape.length + this.axis : this.axis;
        // Porting Note: the line above is because TypeScript doesn't support
        //   negative indices.
        for (const shape of inputShapes.slice(1)) {
            if (outputShape[axis] == null || shape[axis] == null) {
                outputShape[axis] = null;
                break;
            }
            outputShape[axis] += shape[axis];
        }
        return outputShape;
    }
    computeMask(inputs, mask) {
        if (mask == null) {
            return null;
        }
        if (!Array.isArray(mask)) {
            throw new ValueError('`mask` should be an array for Concatenate');
        }
        if (!Array.isArray(inputs)) {
            throw new ValueError('`inputs` should be an array for Concatenate');
        }
        if (mask.length !== inputs.length) {
            throw new ValueError(`Mismatch in the length of mask (${mask.length}) ` +
                `and the legnth of inputs (${inputs.length})`);
        }
        return tfc.tidy(() => {
            let allNullMasks = true;
            mask.forEach(m => {
                if (m != null) {
                    allNullMasks = false;
                    return;
                }
            });
            if (allNullMasks) {
                return null;
            }
            const outputMasks = [];
            for (let i = 0; i < inputs.length; ++i) {
                if (mask[i] == null) {
                    // Input is unmasked. Append all 1's to masks.
                    outputMasks.push(tfc.cast(tfc.onesLike(inputs[i]), 'bool'));
                }
                else if (mask[i].rank < inputs[i].rank) {
                    // Mask is smaller than the input, expand it.
                    outputMasks.push(tfc.expandDims(mask[i], -1));
                }
                else {
                    outputMasks.push(mask[i]);
                }
            }
            const concatenatedMasks = tfc.concat(outputMasks, this.axis);
            return tfc.all(concatenatedMasks, -1, false);
        });
    }
    getConfig() {
        const config = {
            'axis': this.axis,
        };
        const baseConfig = super.getConfig();
        Object.assign(config, baseConfig);
        return config;
    }
}
/** @nocollapse */
Concatenate.className = 'Concatenate';
export { Concatenate };
serialization.registerClass(Concatenate);
/**
 * Concatenate an `Array` of inputs.
 *
 * This function can be invoked in three ways.
 *
 * 1. Construct an instance of `Concatenate` layer, by using no input argument
 *    or a single configuration argument. The resultant `Concatenate` layer can
 *    then be used on `tf.SymbolicTensor`s or `tf.Tensor`s. For example:
 *
 * ```js
 * const concatLayer = tf.layers.concatenate();
 *
 * // The layer can be applied to inputs.
 * const input1 = tf.input({shape: [2, 3]});
 * const input2 = tf.input({shape: [2, 4]});
 * const output = concatLayer.apply([input1, input2]);
 * console.log(output.shape);
 * // You get [null, 2, 7], with the first dimension as the undetermined batch
 * // dimension and the last dimension as the result of concatenating the
 * // last dimensions of the two inputs.
 * ```
 *
 * 2. Invoke directly on an `Array` of `tf.SymbolicTensor`s. This constructs
 *    an `Layer` object internally and calls its `apply` method on the inputs,
 *    generating a new `tf.SymbolicTensor`. For example:
 *
 * ```js
 * const input1 = tf.input({shape: [2, 3]});
 * const input2 = tf.input({shape: [2, 4]});
 * const output = tf.layers.concatenate([input1, input2]);
 * console.log(output.shape);
 * // You get [null, 2, 2], with the first dimension as the undetermined batch
 * // dimension and the last dimension as the result of concatenating the
 * // last dimensions of the two inputs.
 * ```
 *
 * 3. Invoke directly on `tf.Tensor`s, i.e., concrete values. This constructs
 *    an `Layer` object internally and calls its `apply` method on the inputs,
 *    generating a new `tf.Tensor` as the result of the computation. For
 * example:
 *
 * ```js
 * const input1 = tf.tensor2d([[1, 2], [3, 4]], [2, 2]);
 * const input2 = tf.tensor2d([[10, 20], [30, 40]], [2, 2]);
 * tf.layers.concatenate([input1, input2]).print();
 * // Gives [[1, 2, 10, 20], [3, 4, 30, 40]].
 *
 */
export function concatenate(config) {
    if (Array.isArray(config)) {
        const layer = new Concatenate({});
        return layer.apply(config);
    }
    else {
        return new Concatenate(config);
    }
}
/**
 * Interpretable potentially negative axis index.
 *
 * For example, given axis = -1, and dim = 3, this function will return 2.
 *
 * @param axis The axis index, may be a positive, zero or negative integer.
 * @param dim Total number of dimensions, a positive integer.
 * @returns A non-negative axis index equivalent to the input `axis`.
 */
function interpretAxis(axis, dim) {
    while (axis < 0) {
        axis += dim;
    }
    return axis;
}
function batchDot(x, y, axes) {
    if (x.shape.length > 3 || y.shape.length > 3) {
        throw new NotImplementedError('batchDot is not implemented for tensors of 4D or higher rank yet');
    }
    tfc.util.assert(x.shape.length >= 2, () => `batchDot requires the rank of x to be >= 2, ` +
        `but got ${x.shape.length}`);
    tfc.util.assert(x.shape.length >= 2, () => `batchDot requires the rank of y to be >= 2, ` +
        `but got ${y.shape.length}`);
    if (typeof axes === 'number') {
        axes = [axes, axes];
    }
    if (x.dtype === 'complex64' || y.dtype === 'complex64') {
        throw new NotImplementedError('batchDot is not implemented for complex64-type Tensors yet.');
    }
    const xNDim = x.shape.length;
    const yNDim = y.shape.length;
    if (axes == null) {
        // Behave like batchMatmul by default.
        axes = [xNDim - 1, yNDim - 2];
    }
    const axesArray = axes;
    return tfc.tidy(() => {
        let diff;
        if (xNDim > yNDim) {
            diff = xNDim - yNDim;
            const diffShape = [];
            for (let i = 0; i < diff; ++i) {
                diffShape.push(1);
            }
            y = tfc.reshape(y, y.shape.concat(diffShape));
        }
        else if (yNDim > xNDim) {
            diff = yNDim - xNDim;
            const diffShape = [];
            for (let i = 0; i < diff; ++i) {
                diffShape.push(1);
            }
            x = tfc.reshape(x, x.shape.concat(diffShape));
        }
        else {
            diff = 0;
        }
        let out;
        if (x.shape.length === 2 && y.shape.length === 2) {
            if (axesArray[0] === axesArray[1]) {
                out = tfc.sum(tfc.mul(x, y), axesArray[0]);
            }
            else {
                out = tfc.sum(tfc.mul(tfc.transpose(x, [1, 0]), y), axesArray[1]);
            }
        }
        else {
            const adjX = axesArray[0] !== x.shape.length - 1;
            const adjY = axesArray[1] === y.shape.length - 1;
            out = tfc.matMul(x, y, adjX, adjY);
        }
        if (diff > 0) {
            let idx;
            if (xNDim > yNDim) {
                idx = xNDim + yNDim - 3;
            }
            else {
                idx = xNDim - 1;
            }
            const squeezeAxes = [];
            for (let i = idx; i < idx + diff; ++i) {
                squeezeAxes.push(i);
            }
            out = tfc.squeeze(out, squeezeAxes);
        }
        if (out.shape.length === 1) {
            out = tfc.expandDims(out, 1);
        }
        return out;
    });
}
class Dot extends Merge {
    constructor(args) {
        super(args);
        this.axes = args.axes;
        this.normalize = args.normalize == null ? false : args.normalize;
        this.supportsMasking = true;
        this.reshapeRequired = false;
    }
    build(inputShape) {
        tfc.util.assert(Array.isArray(inputShape) && inputShape.length === 2 &&
            Array.isArray(inputShape[0]) && Array.isArray(inputShape[1]), () => 'A `Dot` layer should be called on a list of exactly 2 inputs.');
        const shape1 = inputShape[0];
        const shape2 = inputShape[1];
        if (shape1.length > 3 || shape2.length > 3) {
            throw new NotImplementedError('Dot layer does not support tensors of 4D or higher rank yet.');
        }
        const axes = this.interpretAxes(shape1, shape2);
        if (shape1[axes[0]] !== shape2[axes[1]]) {
            throw new ValueError(`Dimension incompatibility: ` +
                `${shape1[axes[0]]} !== ${shape2[axes[1]]}`);
        }
    }
    mergeFunction(inputs) {
        if (inputs.length !== 2) {
            throw new ValueError('A `Dot` layer must be called on exactly 2 inputs, ' +
                `but received ${inputs.length} input(s).`);
        }
        let x1 = inputs[0];
        let x2 = inputs[1];
        let axes;
        if (!Array.isArray(this.axes)) {
            axes = [
                interpretAxis(this.axes, x1.shape.length),
                interpretAxis(this.axes, x2.shape.length)
            ];
        }
        else {
            axes = this.axes.map((axis, i) => interpretAxis(axis, inputs[i].shape.length));
        }
        if (this.normalize) {
            x1 = l2Normalize(x1, axes[0]);
            x2 = l2Normalize(x2, axes[1]);
        }
        return batchDot(x1, x2, axes);
    }
    interpretAxes(shape1, shape2) {
        let axes;
        if (!Array.isArray(this.axes)) {
            // `this.axes` is a single integer.
            axes = [
                interpretAxis(this.axes, shape1.length),
                interpretAxis(this.axes, shape2.length)
            ];
        }
        else {
            // `this.axes` is an Array of integers.
            axes = this.axes;
        }
        return axes;
    }
    computeOutputShape(inputShape) {
        tfc.util.assert(Array.isArray(inputShape) && inputShape.length === 2 &&
            Array.isArray(inputShape[0]) && Array.isArray(inputShape[1]), () => 'A `Dot` layer should be called on a list of exactly 2 inputs.');
        const shape1 = inputShape[0].slice();
        const shape2 = inputShape[1].slice();
        if (shape1.length > 3 || shape2.length > 3) {
            throw new NotImplementedError('Dot layer does not support tensors of 4D or higher rank yet.');
        }
        const axes = this.interpretAxes(shape1, shape2);
        shape1.splice(axes[0], 1);
        shape2.splice(axes[1], 1);
        shape2.splice(0, 1);
        const outputShape = shape1.concat(shape2);
        if (outputShape.length === 1) {
            outputShape.push(1);
        }
        return outputShape;
    }
    computeMask(inputs, mask) {
        return null;
    }
    getConfig() {
        const config = {
            'axes': this.axes,
            'normalize': this.normalize
        };
        const baseConfig = super.getConfig();
        Object.assign(config, baseConfig);
        return config;
    }
}
/** @nocollapse */
Dot.className = 'Dot';
export { Dot };
serialization.registerClass(Dot);
// TODO(cais): Add functional interfaces for the merge layers.
//# sourceMappingURL=data:application/json;base64,eyJ2ZXJzaW9uIjozLCJmaWxlIjoibWVyZ2UuanMiLCJzb3VyY2VSb290IjoiIiwic291cmNlcyI6WyIuLi8uLi8uLi8uLi8uLi8uLi90ZmpzLWxheWVycy9zcmMvbGF5ZXJzL21lcmdlLnRzIl0sIm5hbWVzIjpbXSwibWFwcGluZ3MiOiJBQUFBOzs7Ozs7OztHQVFHO0FBRUg7O0dBRUc7QUFFSCxPQUFPLEtBQUssR0FBRyxNQUFNLHVCQUF1QixDQUFDO0FBQzdDLE9BQU8sRUFBQyxhQUFhLEVBQVUsSUFBSSxFQUFFLElBQUksRUFBQyxNQUFNLHVCQUF1QixDQUFDO0FBQ3hFLE9BQU8sS0FBSyxDQUFDLE1BQU0seUJBQXlCLENBQUM7QUFDN0MsT0FBTyxFQUFDLEtBQUssRUFBNEIsTUFBTSxvQkFBb0IsQ0FBQztBQUNwRSxPQUFPLEVBQUMsbUJBQW1CLEVBQUUsVUFBVSxFQUFDLE1BQU0sV0FBVyxDQUFDO0FBRTFELE9BQU8sRUFBQyxXQUFXLEVBQUMsTUFBTSxXQUFXLENBQUM7QUFFdEMsT0FBTyxLQUFLLGFBQWEsTUFBTSx3QkFBd0IsQ0FBQztBQUN4RCxPQUFPLEtBQUssU0FBUyxNQUFNLHFCQUFxQixDQUFDO0FBQ2pELE9BQU8sRUFBQyxrQkFBa0IsRUFBQyxNQUFNLHNCQUFzQixDQUFDO0FBRXhEOzs7O0dBSUc7QUFDSCxNQUFNLE9BQWdCLEtBQU0sU0FBUSxLQUFLO0lBR3ZDLFlBQVksSUFBZ0I7UUFDMUIsS0FBSyxDQUFDLElBQUksSUFBSSxFQUFFLENBQUMsQ0FBQztRQUNsQixJQUFJLENBQUMsZUFBZSxHQUFHLElBQUksQ0FBQztJQUM5QixDQUFDO0lBRUQ7OztPQUdHO0lBQ08sYUFBYSxDQUFDLE1BQWdCO1FBQ3RDLE1BQU0sSUFBSSxtQkFBbUIsRUFBRSxDQUFDO0lBQ2xDLENBQUM7SUFFRDs7Ozs7Ozs7O09BU0c7SUFDSywrQkFBK0IsQ0FBQyxNQUFhLEVBQUUsTUFBYTtRQUNsRSxJQUFJLE1BQU0sSUFBSSxJQUFJLElBQUksTUFBTSxJQUFJLElBQUksRUFBRTtZQUNwQyxPQUFPLElBQUksQ0FBQztTQUNiO2FBQU0sSUFBSSxNQUFNLENBQUMsTUFBTSxHQUFHLE1BQU0sQ0FBQyxNQUFNLEVBQUU7WUFDeEMsT0FBTyxJQUFJLENBQUMsK0JBQStCLENBQUMsTUFBTSxFQUFFLE1BQU0sQ0FBQyxDQUFDO1NBQzdEO2FBQU0sSUFBSSxNQUFNLENBQUMsTUFBTSxLQUFLLENBQUMsRUFBRTtZQUM5QixPQUFPLE1BQU0sQ0FBQztTQUNmO1FBQ0QsTUFBTSxXQUFXLEdBQVUsTUFBTSxDQUFDLEtBQUssQ0FBQyxDQUFDLEVBQUUsTUFBTSxDQUFDLE1BQU0sR0FBRyxNQUFNLENBQUMsTUFBTSxDQUFDLENBQUM7UUFDMUUsS0FBSyxJQUFJLENBQUMsR0FBRyxDQUFDLEVBQUUsQ0FBQyxHQUFHLE1BQU0sQ0FBQyxNQUFNLEVBQUUsRUFBRSxDQUFDLEVBQUU7WUFDdEMsTUFBTSxDQUFDLEdBQUcsTUFBTSxDQUFDLE1BQU0sQ0FBQyxNQUFNLEdBQUcsTUFBTSxDQUFDLE1BQU0sR0FBRyxDQUFDLENBQUMsQ0FBQztZQUNwRCxNQUFNLENBQUMsR0FBRyxNQUFNLENBQUMsQ0FBQyxDQUFDLENBQUM7WUFDcEIsSUFBSSxDQUFDLElBQUksSUFBSSxJQUFJLENBQUMsSUFBSSxJQUFJLElBQUksQ0FBQyxHQUFHLENBQUMsSUFBSSxDQUFDLEdBQUcsQ0FBQyxFQUFFO2dCQUM1QyxXQUFXLENBQUMsSUFBSSxDQUFDLElBQUksQ0FBQyxDQUFDO2FBQ3hCO2lCQUFNLElBQUksQ0FBQyxLQUFLLENBQUMsRUFBRTtnQkFDbEIsV0FBVyxDQUFDLElBQUksQ0FBQyxDQUFDLENBQUMsQ0FBQzthQUNyQjtpQkFBTSxJQUFJLENBQUMsS0FBSyxDQUFDLEVBQUU7Z0JBQ2xCLFdBQVcsQ0FBQyxJQUFJLENBQUMsQ0FBQyxDQUFDLENBQUM7YUFDckI7aUJBQU07Z0JBQ0wsSUFBSSxDQUFDLEtBQUssQ0FBQyxFQUFFO29CQUNYLE1BQU0sSUFBSSxVQUFVLENBQ2hCLHVEQUF1RDt3QkFDdkQsSUFBSSxDQUFDLFNBQVMsQ0FBQyxNQUFNLENBQUMsR0FBRyxHQUFHLEdBQUcsSUFBSSxDQUFDLFNBQVMsQ0FBQyxNQUFNLENBQUMsQ0FBQyxDQUFDO2lCQUM1RDtnQkFDRCxXQUFXLENBQUMsSUFBSSxDQUFDLENBQUMsQ0FBQyxDQUFDO2FBQ3JCO1NBQ0Y7UUFDRCxPQUFPLFdBQVcsQ0FBQztJQUNyQixDQUFDO0lBRVEsS0FBSyxDQUFDLFVBQXlCO1FBQ3RDLG9DQUFvQztRQUNwQyxJQUFJLEtBQUssQ0FBQyxPQUFPLENBQUMsVUFBVSxDQUFDLElBQUksQ0FBQyxLQUFLLENBQUMsT0FBTyxDQUFDLFVBQVUsQ0FBQyxDQUFDLENBQUMsQ0FBQyxFQUFFO1lBQzlELGtEQUFrRDtZQUNsRCxVQUFVLEdBQUcsQ0FBQyxrQkFBa0IsQ0FBQyxVQUFVLENBQUMsQ0FBQyxDQUFDO1NBQy9DO1FBQ0QsVUFBVSxHQUFHLFVBQXFCLENBQUM7UUFDbkMsSUFBSSxVQUFVLENBQUMsTUFBTSxHQUFHLENBQUMsRUFBRTtZQUN6QixNQUFNLElBQUksVUFBVSxDQUNoQixrRUFBa0U7Z0JBQ2xFLFFBQVEsVUFBVSxDQUFDLE1BQU0sWUFBWSxDQUFDLENBQUM7U0FDNUM7UUFFRCx3RUFBd0U7UUFDeEUsVUFBVTtRQUNWLElBQUksVUFBVSxHQUFhLEVBQUUsQ0FBQztRQUM5QixLQUFLLE1BQU0sS0FBSyxJQUFJLFVBQVUsRUFBRTtZQUM5QixJQUFJLEtBQUssSUFBSSxJQUFJLElBQUksS0FBSyxDQUFDLENBQUMsQ0FBQyxLQUFLLElBQUksRUFBRTtnQkFDdEMsVUFBVSxDQUFDLElBQUksQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQzthQUMzQjtTQUNGO1FBQ0QsVUFBVSxHQUFHLGFBQWEsQ0FBQyxNQUFNLENBQUMsVUFBVSxDQUFDLENBQUM7UUFDOUMsSUFBSSxVQUFVLENBQUMsTUFBTSxHQUFHLENBQUMsRUFBRTtZQUN6QixNQUFNLElBQUksVUFBVSxDQUNoQixvREFBb0Q7Z0JBQ3BELDRCQUE0QixJQUFJLENBQUMsU0FBUyxDQUFDLFVBQVUsQ0FBQyxHQUFHLENBQUMsQ0FBQztTQUNoRTtRQUVELElBQUksV0FBVyxHQUNYLFVBQVUsQ0FBQyxDQUFDLENBQUMsSUFBSSxJQUFJLENBQUMsQ0FBQyxDQUFDLElBQUksQ0FBQyxDQUFDLENBQUMsVUFBVSxDQUFDLENBQUMsQ0FBQyxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUMxRCxLQUFLLElBQUksQ0FBQyxHQUFHLENBQUMsRUFBRSxDQUFDLEdBQUcsVUFBVSxDQUFDLE1BQU0sRUFBRSxFQUFFLENBQUMsRUFBRTtZQUMxQyxNQUFNLEtBQUssR0FBRyxVQUFVLENBQUMsQ0FBQyxDQUFDLElBQUksSUFBSSxDQUFDLENBQUMsQ0FBQyxJQUFJLENBQUMsQ0FBQyxDQUFDLFVBQVUsQ0FBQyxDQUFDLENBQUMsQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLENBQUM7WUFDcEUsV0FBVyxHQUFHLElBQUksQ0FBQywrQkFBK0IsQ0FBQyxXQUFXLEVBQUUsS0FBSyxDQUFDLENBQUM7U0FDeEU7UUFDRCwyRUFBMkU7UUFDM0UsaUJBQWlCO1FBQ2pCLE1BQU0sUUFBUSxHQUFHLFVBQVUsQ0FBQyxHQUFHLENBQUMsS0FBSyxDQUFDLEVBQUUsQ0FBQyxLQUFLLENBQUMsTUFBTSxDQUFDLENBQUM7UUFDdkQsSUFBSSxVQUFVLENBQUMsT0FBTyxDQUFDLElBQUksQ0FBQyxLQUFLLENBQUMsQ0FBQztZQUMvQixhQUFhLENBQUMsTUFBTSxDQUFDLFFBQVEsQ0FBQyxDQUFDLE1BQU0sS0FBSyxDQUFDLEVBQUU7WUFDL0MsSUFBSSxDQUFDLGVBQWUsR0FBRyxLQUFLLENBQUM7U0FDOUI7YUFBTTtZQUNMLElBQUksQ0FBQyxlQUFlLEdBQUcsSUFBSSxDQUFDO1NBQzdCO0lBQ0gsQ0FBQztJQUVRLElBQUksQ0FBQyxNQUF1QixFQUFFLE1BQWM7UUFDbkQsT0FBTyxJQUFJLENBQUMsR0FBRyxFQUFFO1lBQ2YsTUFBTSxHQUFHLE1BQWtCLENBQUM7WUFDNUIsSUFBSSxJQUFJLENBQUMsZUFBZSxFQUFFO2dCQUN4QixNQUFNLGNBQWMsR0FBYSxFQUFFLENBQUM7Z0JBQ3BDLE1BQU0sU0FBUyxHQUFHLE1BQU0sQ0FBQyxHQUFHLENBQUMsS0FBSyxDQUFDLEVBQUUsQ0FBQyxLQUFLLENBQUMsSUFBSSxDQUFDLENBQUM7Z0JBQ2xELElBQUksU0FBUyxDQUFDLE9BQU8sQ0FBQyxJQUFJLENBQUMsS0FBSyxDQUFDLENBQUMsRUFBRTtvQkFDbEMsc0VBQXNFO29CQUN0RSxrREFBa0Q7b0JBQ2xELE1BQU0sT0FBTyxHQUFHLFNBQVMsQ0FBQyxHQUFHLENBQUMsU0FBUyxDQUFDLENBQUM7b0JBQ3pDLEtBQUssSUFBSSxDQUFDLElBQUksTUFBTSxFQUFFO3dCQUNwQixNQUFNLEtBQUssR0FBRyxDQUFDLENBQUMsSUFBSSxDQUFDO3dCQUNyQixLQUFLLElBQUksQ0FBQyxHQUFHLENBQUMsRUFBRSxDQUFDLEdBQUcsT0FBTyxHQUFHLEtBQUssRUFBRSxFQUFFLENBQUMsRUFBRTs0QkFDeEMsQ0FBQyxHQUFHLENBQUMsQ0FBQyxVQUFVLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDO3lCQUN4Qjt3QkFDRCxjQUFjLENBQUMsSUFBSSxDQUFDLENBQUMsQ0FBQyxDQUFDO3FCQUN4QjtvQkFDRCxPQUFPLElBQUksQ0FBQyxhQUFhLENBQUMsY0FBYyxDQUFDLENBQUM7aUJBQzNDO3FCQUFNO29CQUNMLGlFQUFpRTtvQkFDakUsK0RBQStEO29CQUMvRCxJQUFJLFVBQVUsR0FBRyxLQUFLLENBQUM7b0JBQ3ZCLEtBQUssTUFBTSxDQUFDLElBQUksTUFBTSxFQUFFO3dCQUN0QixNQUFNLEtBQUssR0FBRyxDQUFDLENBQUMsSUFBSSxDQUFDO3dCQUNyQixJQUFJLEtBQUssSUFBSSxJQUFJLEVBQUU7NEJBQ2pCLE1BQU0sTUFBTSxHQUFHLENBQUMsQ0FBQyxLQUFLLENBQUM7NEJBQ3ZCLE1BQU0sU0FBUyxHQUFHLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQzs0QkFDNUIsTUFBTSxRQUFRLEdBQUcsTUFBTSxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsQ0FBQyxNQUFNLENBQUMsQ0FBQyxTQUFTLENBQUMsQ0FBQyxDQUFDOzRCQUNyRCxJQUFJLFdBQVcsR0FBRyxHQUFHLENBQUMsT0FBTyxDQUN6QixDQUFDLEVBQUUsQ0FBQyxTQUFTLENBQUMsQ0FBQyxNQUFNLENBQUMsU0FBUyxDQUFDLFNBQVMsQ0FBQyxNQUFNLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDOzRCQUNqRSxXQUFXLEdBQUcsR0FBRyxDQUFDLFNBQVMsQ0FBQyxXQUFXLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQzs0QkFDakQsV0FBVyxHQUFHLEdBQUcsQ0FBQyxPQUFPLENBQUMsV0FBVyxFQUFFLFFBQVEsQ0FBQyxDQUFDOzRCQUNqRCxjQUFjLENBQUMsSUFBSSxDQUFDLFdBQVcsQ0FBQyxDQUFDOzRCQUNqQyxVQUFVLEdBQUcsSUFBSSxDQUFDO3lCQUNuQjs2QkFBTSxJQUFJLEtBQUssR0FBRyxDQUFDLEVBQUU7NEJBQ3BCLE1BQU0sSUFBSSxHQUFHLFNBQVMsQ0FBQyxLQUFLLENBQUMsQ0FBQyxFQUFFLEtBQUssQ0FBQyxDQUFDLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUM7NEJBQ25ELGNBQWMsQ0FBQyxJQUFJLENBQUMsR0FBRyxDQUFDLFNBQVMsQ0FBQyxDQUFDLEVBQUUsSUFBSSxDQUFDLENBQUMsQ0FBQzs0QkFDNUMsVUFBVSxHQUFHLElBQUksQ0FBQzt5QkFDbkI7NkJBQU07NEJBQ0wsK0RBQStEOzRCQUMvRCxjQUFjLENBQUMsSUFBSSxDQUFDLENBQUMsQ0FBQyxDQUFDO3lCQUN4QjtxQkFDRjtvQkFDRCxJQUFJLENBQUMsR0FBRyxJQUFJLENBQUMsYUFBYSxDQUFDLGNBQWMsQ0FBQyxDQUFDO29CQUMzQyxNQUFNLEtBQUssR0FBRyxDQUFDLENBQUMsSUFBSSxDQUFDO29CQUNyQixJQUFJLFVBQVUsRUFBRTt3QkFDZCxrRUFBa0U7d0JBQ2xFLE9BQU87d0JBQ1AsSUFBSSxLQUFLLElBQUksSUFBSSxFQUFFOzRCQUNqQixNQUFNLE1BQU0sR0FBRyxDQUFDLENBQUMsS0FBSyxDQUFDOzRCQUN2QixNQUFNLEtBQUssR0FBRyxNQUFNLENBQUMsTUFBTSxDQUFDOzRCQUM1QixNQUFNLFNBQVMsR0FBRyxNQUFNLENBQUMsS0FBSyxHQUFHLENBQUMsQ0FBQyxDQUFDOzRCQUNwQyxNQUFNLFFBQVEsR0FDVixDQUFDLFNBQVMsQ0FBQyxDQUFDLE1BQU0sQ0FBQyxNQUFNLENBQUMsS0FBSyxDQUFDLENBQUMsRUFBRSxNQUFNLENBQUMsTUFBTSxHQUFHLENBQUMsQ0FBQyxDQUFDLENBQUM7NEJBQzNELENBQUMsR0FBRyxHQUFHLENBQUMsT0FBTyxDQUNYLEdBQUcsQ0FBQyxTQUFTLENBQUMsR0FBRyxDQUFDLE9BQU8sQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsRUFBRSxTQUFTLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLEVBQ3RELFFBQVEsQ0FBQyxDQUFDO3lCQUNmOzZCQUFNLElBQUksS0FBSyxHQUFHLENBQUMsRUFBRTs0QkFDcEIsTUFBTSxJQUFJLEdBQUcsQ0FBQyxLQUFLLEdBQUcsQ0FBQyxDQUFDLENBQUMsTUFBTSxDQUFDLFNBQVMsQ0FBQyxLQUFLLENBQUMsQ0FBQyxFQUFFLEtBQUssR0FBRyxDQUFDLENBQUMsQ0FBQyxDQUFDOzRCQUMvRCxDQUFDLEdBQUcsR0FBRyxDQUFDLFNBQVMsQ0FBQyxDQUFDLEVBQUUsSUFBSSxDQUFDLENBQUM7eUJBQzVCO3FCQUNGO29CQUNELE9BQU8sQ0FBQyxDQUFDO2lCQUNWO2FBQ0Y7aUJBQU07Z0JBQ0wsT0FBTyxJQUFJLENBQUMsYUFBYSxDQUFDLE1BQU0sQ0FBQyxDQUFDO2FBQ25DO1FBQ0gsQ0FBQyxDQUFDLENBQUM7SUFDTCxDQUFDO0lBRVEsa0JBQWtCLENBQUMsVUFBeUI7UUFDbkQsVUFBVSxHQUFHLFVBQXFCLENBQUM7UUFDbkMsSUFBSSxXQUFrQixDQUFDO1FBQ3ZCLElBQUksVUFBVSxDQUFDLENBQUMsQ0FBQyxJQUFJLElBQUksRUFBRTtZQUN6QixXQUFXLEdBQUcsSUFBSSxDQUFDO1NBQ3BCO2FBQU07WUFDTCxXQUFXLEdBQUcsVUFBVSxDQUFDLENBQUMsQ0FBQyxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsQ0FBQztTQUN0QztRQUNELEtBQUssSUFBSSxDQUFDLEdBQUcsQ0FBQyxFQUFFLENBQUMsR0FBRyxVQUFVLENBQUMsTUFBTSxFQUFFLEVBQUUsQ0FBQyxFQUFFO1lBQzFDLE1BQU0sS0FBSyxHQUFHLFVBQVUsQ0FBQyxDQUFDLENBQUMsSUFBSSxJQUFJLENBQUMsQ0FBQyxDQUFDLElBQUksQ0FBQyxDQUFDLENBQUMsVUFBVSxDQUFDLENBQUMsQ0FBQyxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsQ0FBQztZQUNwRSxXQUFXLEdBQUcsSUFBSSxDQUFDLCtCQUErQixDQUFDLFdBQVcsRUFBRSxLQUFLLENBQUMsQ0FBQztTQUN4RTtRQUVELElBQUksVUFBVSxHQUFhLEVBQUUsQ0FBQztRQUM5QixLQUFLLE1BQU0sS0FBSyxJQUFJLFVBQVUsRUFBRTtZQUM5QixJQUFJLEtBQUssSUFBSSxJQUFJLElBQUksS0FBSyxDQUFDLENBQUMsQ0FBQyxLQUFLLElBQUksRUFBRTtnQkFDdEMsVUFBVSxDQUFDLElBQUksQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQzthQUMzQjtTQUNGO1FBQ0QsVUFBVSxHQUFHLGFBQWEsQ0FBQyxNQUFNLENBQUMsVUFBVSxDQUFDLENBQUM7UUFDOUMsSUFBSSxVQUFVLENBQUMsTUFBTSxLQUFLLENBQUMsRUFBRTtZQUMzQixXQUFXLEdBQUcsVUFBVSxDQUFDLE1BQU0sQ0FBQyxXQUFXLENBQUMsQ0FBQztTQUM5QzthQUFNO1lBQ0wsV0FBVyxHQUFHLENBQUMsSUFBSSxDQUFDLENBQUMsTUFBTSxDQUFDLFdBQVcsQ0FBQyxDQUFDO1NBQzFDO1FBQ0QsT0FBTyxXQUFXLENBQUM7SUFDckIsQ0FBQztJQUVRLFdBQVcsQ0FBQyxNQUF1QixFQUFFLElBQXNCO1FBRWxFLE9BQU8sR0FBRyxDQUFDLElBQUksQ0FBQyxHQUFHLEVBQUU7WUFDbkIsSUFBSSxJQUFJLElBQUksSUFBSSxFQUFFO2dCQUNoQixPQUFPLElBQUksQ0FBQzthQUNiO1lBQ0QsSUFBSSxDQUFDLEtBQUssQ0FBQyxPQUFPLENBQUMsSUFBSSxDQUFDLEVBQUU7Z0JBQ3hCLE1BQU0sSUFBSSxVQUFVLENBQUMsMkJBQTJCLENBQUMsQ0FBQzthQUNuRDtZQUNELElBQUksQ0FBQyxLQUFLLENBQUMsT0FBTyxDQUFDLE1BQU0sQ0FBQyxFQUFFO2dCQUMxQixNQUFNLElBQUksVUFBVSxDQUFDLDZCQUE2QixDQUFDLENBQUM7YUFDckQ7WUFDRCxJQUFJLElBQUksQ0FBQyxNQUFNLEtBQUssTUFBTSxDQUFDLE1BQU0sRUFBRTtnQkFDakMsTUFBTSxJQUFJLFVBQVUsQ0FDaEIsOERBQThEO29CQUM5RCxxQ0FBcUM7b0JBQ3JDLElBQUksTUFBTSxDQUFDLE1BQU0sT0FBTyxJQUFJLENBQUMsTUFBTSxHQUFHLENBQUMsQ0FBQzthQUM3QztZQUNELElBQUksSUFBSSxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsSUFBSSxJQUFJLENBQUMsRUFBRTtnQkFDOUIsT0FBTyxJQUFJLENBQUM7YUFDYjtZQUNELElBQUksR0FBRyxJQUFJLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxJQUFJLElBQUksQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLENBQUMsVUFBVSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDO1lBQzNELElBQUksTUFBTSxHQUFHLElBQUksQ0FBQyxDQUFDLENBQUMsQ0FBQztZQUNyQixLQUFLLElBQUksQ0FBQyxHQUFHLENBQUMsRUFBRSxDQUFDLEdBQUcsSUFBSSxDQUFDLE1BQU0sR0FBRyxDQUFDLEVBQUUsRUFBRSxDQUFDLEVBQUU7Z0JBQ3hDLE1BQU0sR0FBRyxHQUFHLENBQUMsVUFBVSxDQUFDLE1BQU0sRUFBRSxJQUFJLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQzthQUMxQztZQUNELE9BQU8sTUFBTSxDQUFDO1FBQ2hCLENBQUMsQ0FBQyxDQUFDO0lBQ0wsQ0FBQztDQUNGO0FBRUQsTUFBYSxHQUFJLFNBQVEsS0FBSztJQUc1QixZQUFZLElBQWdCO1FBQzFCLEtBQUssQ0FBQyxJQUFJLENBQUMsQ0FBQztJQUNkLENBQUM7SUFFa0IsYUFBYSxDQUFDLE1BQWdCO1FBQy9DLE9BQU8sSUFBSSxDQUFDLEdBQUcsRUFBRTtZQUNmLElBQUksTUFBTSxHQUFHLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQyxLQUFLLEVBQUUsQ0FBQztZQUMvQixLQUFLLElBQUksQ0FBQyxHQUFHLENBQUMsRUFBRSxDQUFDLEdBQUcsTUFBTSxDQUFDLE1BQU0sRUFBRSxFQUFFLENBQUMsRUFBRTtnQkFDdEMsTUFBTSxHQUFHLEdBQUcsQ0FBQyxHQUFHLENBQUMsTUFBTSxFQUFFLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO2FBQ3JDO1lBQ0QsT0FBTyxNQUFNLENBQUM7UUFDaEIsQ0FBQyxDQUFDLENBQUM7SUFDTCxDQUFDOztBQWRELGtCQUFrQjtBQUNYLGFBQVMsR0FBRyxLQUFLLENBQUM7U0FGZCxHQUFHO0FBaUJoQixhQUFhLENBQUMsYUFBYSxDQUFDLEdBQUcsQ0FBQyxDQUFDO0FBRWpDOzs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7R0E2Q0c7QUFDSCxNQUFNLFVBQVUsR0FBRyxDQUFDLE1BQTRDO0lBRTlELElBQUksS0FBSyxDQUFDLE9BQU8sQ0FBQyxNQUFNLENBQUMsRUFBRTtRQUN6QixNQUFNLEtBQUssR0FBRyxJQUFJLEdBQUcsQ0FBQyxFQUFFLENBQUMsQ0FBQztRQUMxQixPQUFPLEtBQUssQ0FBQyxLQUFLLENBQUMsTUFBTSxDQUE0QixDQUFDO0tBQ3ZEO1NBQU07UUFDTCxPQUFPLElBQUksR0FBRyxDQUFDLE1BQU0sQ0FBQyxDQUFDO0tBQ3hCO0FBQ0gsQ0FBQztBQUVELE1BQWEsUUFBUyxTQUFRLEtBQUs7SUFHakMsWUFBWSxJQUFnQjtRQUMxQixLQUFLLENBQUMsSUFBSSxDQUFDLENBQUM7SUFDZCxDQUFDO0lBRWtCLGFBQWEsQ0FBQyxNQUFnQjtRQUMvQyxPQUFPLElBQUksQ0FBQyxHQUFHLEVBQUU7WUFDZixJQUFJLE1BQU0sR0FBRyxNQUFNLENBQUMsQ0FBQyxDQUFDLENBQUMsS0FBSyxFQUFFLENBQUM7WUFDL0IsS0FBSyxJQUFJLENBQUMsR0FBRyxDQUFDLEVBQUUsQ0FBQyxHQUFHLE1BQU0sQ0FBQyxNQUFNLEVBQUUsRUFBRSxDQUFDLEVBQUU7Z0JBQ3RDLE1BQU0sR0FBRyxHQUFHLENBQUMsR0FBRyxDQUFDLE1BQU0sRUFBRSxNQUFNLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQzthQUNyQztZQUNELE9BQU8sTUFBTSxDQUFDO1FBQ2hCLENBQUMsQ0FBQyxDQUFDO0lBQ0wsQ0FBQzs7QUFkRCxrQkFBa0I7QUFDWCxrQkFBUyxHQUFHLFVBQVUsQ0FBQztTQUZuQixRQUFRO0FBaUJyQixhQUFhLENBQUMsYUFBYSxDQUFDLFFBQVEsQ0FBQyxDQUFDO0FBRXRDOzs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7R0E2Q0c7QUFDSCxNQUFNLFVBQVUsUUFBUSxDQUFDLE1BQTRDO0lBRW5FLElBQUksS0FBSyxDQUFDLE9BQU8sQ0FBQyxNQUFNLENBQUMsRUFBRTtRQUN6QixNQUFNLEtBQUssR0FBRyxJQUFJLFFBQVEsQ0FBQyxFQUFFLENBQUMsQ0FBQztRQUMvQixPQUFPLEtBQUssQ0FBQyxLQUFLLENBQUMsTUFBTSxDQUE0QixDQUFDO0tBQ3ZEO1NBQU07UUFDTCxPQUFPLElBQUksUUFBUSxDQUFDLE1BQU0sQ0FBQyxDQUFDO0tBQzdCO0FBQ0gsQ0FBQztBQUVELE1BQWEsT0FBUSxTQUFRLEtBQUs7SUFHaEMsWUFBWSxJQUFnQjtRQUMxQixLQUFLLENBQUMsSUFBSSxDQUFDLENBQUM7SUFDZCxDQUFDO0lBRWtCLGFBQWEsQ0FBQyxNQUFnQjtRQUMvQyxPQUFPLElBQUksQ0FBQyxHQUFHLEVBQUU7WUFDZixJQUFJLE1BQU0sR0FBRyxNQUFNLENBQUMsQ0FBQyxDQUFDLENBQUMsS0FBSyxFQUFFLENBQUM7WUFDL0IsS0FBSyxJQUFJLENBQUMsR0FBRyxDQUFDLEVBQUUsQ0FBQyxHQUFHLE1BQU0sQ0FBQyxNQUFNLEVBQUUsRUFBRSxDQUFDLEVBQUU7Z0JBQ3RDLE1BQU0sR0FBRyxHQUFHLENBQUMsR0FBRyxDQUFDLE1BQU0sRUFBRSxNQUFNLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQzthQUNyQztZQUNELE9BQU8sR0FBRyxDQUFDLEdBQUcsQ0FBQyxDQUFDLEdBQUcsTUFBTSxDQUFDLE1BQU0sRUFBRSxNQUFNLENBQUMsQ0FBQztRQUM1QyxDQUFDLENBQUMsQ0FBQztJQUNMLENBQUM7O0FBZEQsa0JBQWtCO0FBQ1gsaUJBQVMsR0FBRyxTQUFTLENBQUM7U0FGbEIsT0FBTztBQWlCcEIsYUFBYSxDQUFDLGFBQWEsQ0FBQyxPQUFPLENBQUMsQ0FBQztBQUVyQzs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7OztHQThDRztBQUNILE1BQU0sVUFBVSxPQUFPLENBQUMsTUFBNEM7SUFFbEUsSUFBSSxLQUFLLENBQUMsT0FBTyxDQUFDLE1BQU0sQ0FBQyxFQUFFO1FBQ3pCLE1BQU0sS0FBSyxHQUFHLElBQUksT0FBTyxDQUFDLEVBQUUsQ0FBQyxDQUFDO1FBQzlCLE9BQU8sS0FBSyxDQUFDLEtBQUssQ0FBQyxNQUFNLENBQTRCLENBQUM7S0FDdkQ7U0FBTTtRQUNMLE9BQU8sSUFBSSxPQUFPLENBQUMsTUFBTSxDQUFDLENBQUM7S0FDNUI7QUFDSCxDQUFDO0FBRUQsTUFBYSxPQUFRLFNBQVEsS0FBSztJQUdoQyxZQUFZLElBQWdCO1FBQzFCLEtBQUssQ0FBQyxJQUFJLENBQUMsQ0FBQztJQUNkLENBQUM7SUFFa0IsYUFBYSxDQUFDLE1BQWdCO1FBQy9DLE9BQU8sSUFBSSxDQUFDLEdBQUcsRUFBRTtZQUNmLElBQUksTUFBTSxHQUFHLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQztZQUN2QixLQUFLLElBQUksQ0FBQyxHQUFHLENBQUMsRUFBRSxDQUFDLEdBQUcsTUFBTSxDQUFDLE1BQU0sRUFBRSxFQUFFLENBQUMsRUFBRTtnQkFDdEMsTUFBTSxHQUFHLEdBQUcsQ0FBQyxPQUFPLENBQUMsTUFBTSxFQUFFLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO2FBQ3pDO1lBQ0QsT0FBTyxNQUFNLENBQUM7UUFDaEIsQ0FBQyxDQUFDLENBQUM7SUFDTCxDQUFDOztBQWRELGtCQUFrQjtBQUNYLGlCQUFTLEdBQUcsU0FBUyxDQUFDO1NBRmxCLE9BQU87QUFpQnBCLGFBQWEsQ0FBQyxhQUFhLENBQUMsT0FBTyxDQUFDLENBQUM7QUFFckM7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7OztHQTZDRztBQUNILE1BQU0sVUFBVSxPQUFPLENBQUMsTUFBNEM7SUFFbEUsSUFBSSxLQUFLLENBQUMsT0FBTyxDQUFDLE1BQU0sQ0FBQyxFQUFFO1FBQ3pCLE1BQU0sS0FBSyxHQUFHLElBQUksT0FBTyxDQUFDLEVBQUUsQ0FBQyxDQUFDO1FBQzlCLE9BQU8sS0FBSyxDQUFDLEtBQUssQ0FBQyxNQUFNLENBQTRCLENBQUM7S0FDdkQ7U0FBTTtRQUNMLE9BQU8sSUFBSSxPQUFPLENBQUMsTUFBTSxDQUFDLENBQUM7S0FDNUI7QUFDSCxDQUFDO0FBRUQsTUFBYSxPQUFRLFNBQVEsS0FBSztJQUdoQyxZQUFZLElBQWdCO1FBQzFCLEtBQUssQ0FBQyxJQUFJLENBQUMsQ0FBQztJQUNkLENBQUM7SUFFa0IsYUFBYSxDQUFDLE1BQWdCO1FBQy9DLE9BQU8sSUFBSSxDQUFDLEdBQUcsRUFBRTtZQUNmLElBQUksTUFBTSxHQUFHLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQztZQUN2QixLQUFLLElBQUksQ0FBQyxHQUFHLENBQUMsRUFBRSxDQUFDLEdBQUcsTUFBTSxDQUFDLE1BQU0sRUFBRSxFQUFFLENBQUMsRUFBRTtnQkFDdEMsTUFBTSxHQUFHLEdBQUcsQ0FBQyxPQUFPLENBQUMsTUFBTSxFQUFFLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO2FBQ3pDO1lBQ0QsT0FBTyxNQUFNLENBQUM7UUFDaEIsQ0FBQyxDQUFDLENBQUM7SUFDTCxDQUFDOztBQWRELGtCQUFrQjtBQUNYLGlCQUFTLEdBQUcsU0FBUyxDQUFDO1NBRmxCLE9BQU87QUFpQnBCLGFBQWEsQ0FBQyxhQUFhLENBQUMsT0FBTyxDQUFDLENBQUM7QUFFckM7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7OztHQTZDRztBQUNILE1BQU0sVUFBVSxPQUFPLENBQUMsTUFBNEM7SUFFbEUsSUFBSSxLQUFLLENBQUMsT0FBTyxDQUFDLE1BQU0sQ0FBQyxFQUFFO1FBQ3pCLE1BQU0sS0FBSyxHQUFHLElBQUksT0FBTyxDQUFDLEVBQUUsQ0FBQyxDQUFDO1FBQzlCLE9BQU8sS0FBSyxDQUFDLEtBQUssQ0FBQyxNQUFNLENBQTRCLENBQUM7S0FDdkQ7U0FBTTtRQUNMLE9BQU8sSUFBSSxPQUFPLENBQUMsTUFBTSxDQUFDLENBQUM7S0FDNUI7QUFDSCxDQUFDO0FBU0QsTUFBYSxXQUFZLFNBQVEsS0FBSztJQU1wQyxZQUFZLElBQTJCO1FBQ3JDLEtBQUssQ0FBQyxJQUFJLENBQUMsQ0FBQztRQUpMLGlCQUFZLEdBQUcsQ0FBQyxDQUFDLENBQUM7UUFLekIsSUFBSSxJQUFJLElBQUksSUFBSSxFQUFFO1lBQ2hCLElBQUksR0FBRyxFQUFFLENBQUM7U0FDWDtRQUNELElBQUksQ0FBQyxJQUFJLEdBQUcsSUFBSSxDQUFDLElBQUksSUFBSSxJQUFJLENBQUMsQ0FBQyxDQUFDLElBQUksQ0FBQyxZQUFZLENBQUMsQ0FBQyxDQUFDLElBQUksQ0FBQyxJQUFJLENBQUM7UUFDOUQsSUFBSSxDQUFDLGVBQWUsR0FBRyxJQUFJLENBQUM7UUFDNUIsSUFBSSxDQUFDLGVBQWUsR0FBRyxLQUFLLENBQUM7SUFDL0IsQ0FBQztJQUVRLEtBQUssQ0FBQyxVQUF5QjtRQUN0QyxxQ0FBcUM7UUFDckMsSUFBSSxDQUFDLENBQUMsS0FBSyxDQUFDLE9BQU8sQ0FBQyxVQUFVLENBQUMsSUFBSSxLQUFLLENBQUMsT0FBTyxDQUFDLFVBQVUsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO1lBQzVELFVBQVUsQ0FBQyxNQUFNLEtBQUssQ0FBQyxFQUFFO1lBQzNCLE1BQU0sSUFBSSxVQUFVLENBQ2hCLGlFQUFpRTtnQkFDakUsUUFBUSxDQUFDLENBQUM7U0FDZjtRQUNELFVBQVUsR0FBRyxVQUFxQixDQUFDO1FBRW5DLElBQUksWUFBWSxHQUFHLElBQUksQ0FBQztRQUN4QixLQUFLLE1BQU0sS0FBSyxJQUFJLFVBQVUsRUFBRTtZQUM5QixJQUFJLEtBQUssSUFBSSxJQUFJLEVBQUU7Z0JBQ2pCLFlBQVksR0FBRyxLQUFLLENBQUM7Z0JBQ3JCLE1BQU07YUFDUDtTQUNGO1FBQ0QsSUFBSSxZQUFZLEVBQUU7WUFDaEIsT0FBTztTQUNSO1FBRUQsTUFBTSxRQUFRLEdBQVksRUFBRSxDQUFDO1FBQzdCLEtBQUssSUFBSSxDQUFDLEdBQUcsQ0FBQyxFQUFFLENBQUMsR0FBRyxVQUFVLENBQUMsTUFBTSxFQUFFLEVBQUUsQ0FBQyxFQUFFO1lBQzFDLE1BQU0sc0JBQXNCLEdBQUcsVUFBVSxDQUFDLENBQUMsQ0FBQyxDQUFDLEtBQUssRUFBRSxDQUFDO1lBQ3JELHNCQUFzQixDQUFDLE1BQU0sQ0FBQyxJQUFJLENBQUMsSUFBSSxFQUFFLENBQUMsQ0FBQyxDQUFDO1lBQzVDLElBQUksTUFBTSxHQUFHLEtBQUssQ0FBQztZQUNuQixLQUFLLE1BQU0sS0FBSyxJQUFJLFFBQVEsRUFBRTtnQkFDNUIsSUFBSSxJQUFJLENBQUMsV0FBVyxDQUFDLEtBQUssRUFBRSxzQkFBc0IsQ0FBQyxFQUFFO29CQUNuRCxNQUFNLEdBQUcsSUFBSSxDQUFDO29CQUNkLE1BQU07aUJBQ1A7YUFDRjtZQUNELElBQUksQ0FBQyxNQUFNLEVBQUU7Z0JBQ1gsUUFBUSxDQUFDLElBQUksQ0FBQyxzQkFBc0IsQ0FBQyxDQUFDO2FBQ3ZDO1NBQ0Y7UUFDRCxJQUFJLFFBQVEsQ0FBQyxNQUFNLEdBQUcsQ0FBQyxFQUFFO1lBQ3ZCLE1BQU0sSUFBSSxVQUFVLENBQ2hCLDZEQUE2RDtnQkFDN0QsZ0RBQWdEO2dCQUNoRCxJQUFJLENBQUMsU0FBUyxDQUFDLFVBQVUsQ0FBQyxDQUFDLENBQUM7U0FDakM7SUFDSCxDQUFDO0lBRWtCLGFBQWEsQ0FBQyxNQUFnQjtRQUMvQyxPQUFPLElBQUksQ0FBQyxHQUFHLEVBQUU7WUFDZixPQUFPLENBQUMsQ0FBQyxXQUFXLENBQUMsTUFBTSxFQUFFLElBQUksQ0FBQyxJQUFJLENBQUMsQ0FBQztRQUMxQyxDQUFDLENBQUMsQ0FBQztJQUNMLENBQUM7SUFFUSxrQkFBa0IsQ0FBQyxVQUF5QjtRQUNuRCxJQUFJLENBQUMsQ0FBQyxLQUFLLENBQUMsT0FBTyxDQUFDLFVBQVUsQ0FBQyxJQUFJLEtBQUssQ0FBQyxPQUFPLENBQUMsVUFBVSxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsRUFBRTtZQUNoRSxNQUFNLElBQUksVUFBVSxDQUNoQiw2REFBNkQsQ0FBQyxDQUFDO1NBQ3BFO1FBQ0QsTUFBTSxXQUFXLEdBQUcsVUFBcUIsQ0FBQztRQUMxQyxNQUFNLFdBQVcsR0FBRyxXQUFXLENBQUMsQ0FBQyxDQUFDLENBQUMsS0FBSyxFQUFFLENBQUM7UUFDM0MsTUFBTSxJQUFJLEdBQUcsSUFBSSxDQUFDLElBQUksR0FBRyxDQUFDLENBQUMsQ0FBQyxDQUFDLFdBQVcsQ0FBQyxNQUFNLEdBQUcsSUFBSSxDQUFDLElBQUksQ0FBQyxDQUFDLENBQUMsSUFBSSxDQUFDLElBQUksQ0FBQztRQUN4RSxxRUFBcUU7UUFDckUsc0JBQXNCO1FBQ3RCLEtBQUssTUFBTSxLQUFLLElBQUksV0FBVyxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsRUFBRTtZQUN4QyxJQUFJLFdBQVcsQ0FBQyxJQUFJLENBQUMsSUFBSSxJQUFJLElBQUksS0FBSyxDQUFDLElBQUksQ0FBQyxJQUFJLElBQUksRUFBRTtnQkFDcEQsV0FBVyxDQUFDLElBQUksQ0FBQyxHQUFHLElBQUksQ0FBQztnQkFDekIsTUFBTTthQUNQO1lBQ0QsV0FBVyxDQUFDLElBQUksQ0FBQyxJQUFJLEtBQUssQ0FBQyxJQUFJLENBQUMsQ0FBQztTQUNsQztRQUNELE9BQU8sV0FBVyxDQUFDO0lBQ3JCLENBQUM7SUFFUSxXQUFXLENBQUMsTUFBdUIsRUFBRSxJQUFzQjtRQUVsRSxJQUFJLElBQUksSUFBSSxJQUFJLEVBQUU7WUFDaEIsT0FBTyxJQUFJLENBQUM7U0FDYjtRQUNELElBQUksQ0FBQyxLQUFLLENBQUMsT0FBTyxDQUFDLElBQUksQ0FBQyxFQUFFO1lBQ3hCLE1BQU0sSUFBSSxVQUFVLENBQUMsMkNBQTJDLENBQUMsQ0FBQztTQUNuRTtRQUNELElBQUksQ0FBQyxLQUFLLENBQUMsT0FBTyxDQUFDLE1BQU0sQ0FBQyxFQUFFO1lBQzFCLE1BQU0sSUFBSSxVQUFVLENBQUMsNkNBQTZDLENBQUMsQ0FBQztTQUNyRTtRQUNELElBQUksSUFBSSxDQUFDLE1BQU0sS0FBSyxNQUFNLENBQUMsTUFBTSxFQUFFO1lBQ2pDLE1BQU0sSUFBSSxVQUFVLENBQ2hCLG1DQUFtQyxJQUFJLENBQUMsTUFBTSxJQUFJO2dCQUNsRCw2QkFBNkIsTUFBTSxDQUFDLE1BQU0sR0FBRyxDQUFDLENBQUM7U0FDcEQ7UUFDRCxPQUFPLEdBQUcsQ0FBQyxJQUFJLENBQUMsR0FBRyxFQUFFO1lBQ25CLElBQUksWUFBWSxHQUFHLElBQUksQ0FBQztZQUN4QixJQUFJLENBQUMsT0FBTyxDQUFDLENBQUMsQ0FBQyxFQUFFO2dCQUNmLElBQUksQ0FBQyxJQUFJLElBQUksRUFBRTtvQkFDYixZQUFZLEdBQUcsS0FBSyxDQUFDO29CQUNyQixPQUFPO2lCQUNSO1lBQ0gsQ0FBQyxDQUFDLENBQUM7WUFDSCxJQUFJLFlBQVksRUFBRTtnQkFDaEIsT0FBTyxJQUFJLENBQUM7YUFDYjtZQUNELE1BQU0sV0FBVyxHQUFhLEVBQUUsQ0FBQztZQUNqQyxLQUFLLElBQUksQ0FBQyxHQUFHLENBQUMsRUFBRSxDQUFDLEdBQUcsTUFBTSxDQUFDLE1BQU0sRUFBRSxFQUFFLENBQUMsRUFBRTtnQkFDdEMsSUFBSSxJQUFJLENBQUMsQ0FBQyxDQUFDLElBQUksSUFBSSxFQUFFO29CQUNuQiw4Q0FBOEM7b0JBQzlDLFdBQVcsQ0FBQyxJQUFJLENBQUMsR0FBRyxDQUFDLElBQUksQ0FBQyxHQUFHLENBQUMsUUFBUSxDQUFDLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQyxFQUFFLE1BQU0sQ0FBQyxDQUFDLENBQUM7aUJBQzdEO3FCQUFNLElBQUksSUFBSSxDQUFDLENBQUMsQ0FBQyxDQUFDLElBQUksR0FBRyxNQUFNLENBQUMsQ0FBQyxDQUFDLENBQUMsSUFBSSxFQUFFO29CQUN4Qyw2Q0FBNkM7b0JBQzdDLFdBQVcsQ0FBQyxJQUFJLENBQUMsR0FBRyxDQUFDLFVBQVUsQ0FBQyxJQUFJLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO2lCQUMvQztxQkFBTTtvQkFDTCxXQUFXLENBQUMsSUFBSSxDQUFDLElBQUksQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO2lCQUMzQjthQUNGO1lBQ0QsTUFBTSxpQkFBaUIsR0FBRyxHQUFHLENBQUMsTUFBTSxDQUFDLFdBQVcsRUFBRSxJQUFJLENBQUMsSUFBSSxDQUFDLENBQUM7WUFDN0QsT0FBTyxHQUFHLENBQUMsR0FBRyxDQUFDLGlCQUFpQixFQUFFLENBQUMsQ0FBQyxFQUFFLEtBQUssQ0FBQyxDQUFDO1FBQy9DLENBQUMsQ0FBQyxDQUFDO0lBQ0wsQ0FBQztJQUVRLFNBQVM7UUFDaEIsTUFBTSxNQUFNLEdBQTZCO1lBQ3ZDLE1BQU0sRUFBRSxJQUFJLENBQUMsSUFBSTtTQUNsQixDQUFDO1FBQ0YsTUFBTSxVQUFVLEdBQUcsS0FBSyxDQUFDLFNBQVMsRUFBRSxDQUFDO1FBQ3JDLE1BQU0sQ0FBQyxNQUFNLENBQUMsTUFBTSxFQUFFLFVBQVUsQ0FBQyxDQUFDO1FBQ2xDLE9BQU8sTUFBTSxDQUFDO0lBQ2hCLENBQUM7O0FBeElELGtCQUFrQjtBQUNYLHFCQUFTLEdBQUcsYUFBYSxBQUFoQixDQUFpQjtTQUZ0QixXQUFXO0FBMkl4QixhQUFhLENBQUMsYUFBYSxDQUFDLFdBQVcsQ0FBQyxDQUFDO0FBRXpDOzs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7OztHQStDRztBQUNILE1BQU0sVUFBVSxXQUFXLENBQUMsTUFDb0I7SUFDOUMsSUFBSSxLQUFLLENBQUMsT0FBTyxDQUFDLE1BQU0sQ0FBQyxFQUFFO1FBQ3pCLE1BQU0sS0FBSyxHQUFHLElBQUksV0FBVyxDQUFDLEVBQUUsQ0FBQyxDQUFDO1FBQ2xDLE9BQU8sS0FBSyxDQUFDLEtBQUssQ0FBQyxNQUFNLENBQTRCLENBQUM7S0FDdkQ7U0FBTTtRQUNMLE9BQU8sSUFBSSxXQUFXLENBQUMsTUFBTSxDQUFDLENBQUM7S0FDaEM7QUFDSCxDQUFDO0FBb0JEOzs7Ozs7OztHQVFHO0FBQ0gsU0FBUyxhQUFhLENBQUMsSUFBWSxFQUFFLEdBQVc7SUFDOUMsT0FBTyxJQUFJLEdBQUcsQ0FBQyxFQUFFO1FBQ2YsSUFBSSxJQUFJLEdBQUcsQ0FBQztLQUNiO0lBQ0QsT0FBTyxJQUFJLENBQUM7QUFDZCxDQUFDO0FBRUQsU0FBUyxRQUFRLENBQUMsQ0FBUyxFQUFFLENBQVMsRUFBRSxJQUE2QjtJQUNuRSxJQUFJLENBQUMsQ0FBQyxLQUFLLENBQUMsTUFBTSxHQUFHLENBQUMsSUFBSSxDQUFDLENBQUMsS0FBSyxDQUFDLE1BQU0sR0FBRyxDQUFDLEVBQUU7UUFDNUMsTUFBTSxJQUFJLG1CQUFtQixDQUN6QixrRUFBa0UsQ0FBQyxDQUFDO0tBQ3pFO0lBQ0QsR0FBRyxDQUFDLElBQUksQ0FBQyxNQUFNLENBQ1gsQ0FBQyxDQUFDLEtBQUssQ0FBQyxNQUFNLElBQUksQ0FBQyxFQUNuQixHQUFHLEVBQUUsQ0FBQyw4Q0FBOEM7UUFDaEQsV0FBVyxDQUFDLENBQUMsS0FBSyxDQUFDLE1BQU0sRUFBRSxDQUFDLENBQUM7SUFDckMsR0FBRyxDQUFDLElBQUksQ0FBQyxNQUFNLENBQ1gsQ0FBQyxDQUFDLEtBQUssQ0FBQyxNQUFNLElBQUksQ0FBQyxFQUNuQixHQUFHLEVBQUUsQ0FBQyw4Q0FBOEM7UUFDaEQsV0FBVyxDQUFDLENBQUMsS0FBSyxDQUFDLE1BQU0sRUFBRSxDQUFDLENBQUM7SUFFckMsSUFBSSxPQUFPLElBQUksS0FBSyxRQUFRLEVBQUU7UUFDNUIsSUFBSSxHQUFHLENBQUMsSUFBSSxFQUFFLElBQUksQ0FBQyxDQUFDO0tBQ3JCO0lBRUQsSUFBSSxDQUFDLENBQUMsS0FBSyxLQUFLLFdBQVcsSUFBSSxDQUFDLENBQUMsS0FBSyxLQUFLLFdBQVcsRUFBRTtRQUN0RCxNQUFNLElBQUksbUJBQW1CLENBQ3pCLDZEQUE2RCxDQUFDLENBQUM7S0FDcEU7SUFFRCxNQUFNLEtBQUssR0FBRyxDQUFDLENBQUMsS0FBSyxDQUFDLE1BQU0sQ0FBQztJQUM3QixNQUFNLEtBQUssR0FBRyxDQUFDLENBQUMsS0FBSyxDQUFDLE1BQU0sQ0FBQztJQUM3QixJQUFJLElBQUksSUFBSSxJQUFJLEVBQUU7UUFDaEIsc0NBQXNDO1FBQ3RDLElBQUksR0FBRyxDQUFDLEtBQUssR0FBRyxDQUFDLEVBQUUsS0FBSyxHQUFHLENBQUMsQ0FBQyxDQUFDO0tBQy9CO0lBQ0QsTUFBTSxTQUFTLEdBQUcsSUFBd0IsQ0FBQztJQUUzQyxPQUFPLEdBQUcsQ0FBQyxJQUFJLENBQUMsR0FBRyxFQUFFO1FBQ25CLElBQUksSUFBWSxDQUFDO1FBQ2pCLElBQUksS0FBSyxHQUFHLEtBQUssRUFBRTtZQUNqQixJQUFJLEdBQUcsS0FBSyxHQUFHLEtBQUssQ0FBQztZQUNyQixNQUFNLFNBQVMsR0FBVSxFQUFFLENBQUM7WUFDNUIsS0FBSyxJQUFJLENBQUMsR0FBRyxDQUFDLEVBQUUsQ0FBQyxHQUFHLElBQUksRUFBRSxFQUFFLENBQUMsRUFBRTtnQkFDN0IsU0FBUyxDQUFDLElBQUksQ0FBQyxDQUFDLENBQUMsQ0FBQzthQUNuQjtZQUNELENBQUMsR0FBRyxHQUFHLENBQUMsT0FBTyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsS0FBSyxDQUFDLE1BQU0sQ0FBQyxTQUFTLENBQUMsQ0FBQyxDQUFDO1NBQy9DO2FBQU0sSUFBSSxLQUFLLEdBQUcsS0FBSyxFQUFFO1lBQ3hCLElBQUksR0FBRyxLQUFLLEdBQUcsS0FBSyxDQUFDO1lBQ3JCLE1BQU0sU0FBUyxHQUFVLEVBQUUsQ0FBQztZQUM1QixLQUFLLElBQUksQ0FBQyxHQUFHLENBQUMsRUFBRSxDQUFDLEdBQUcsSUFBSSxFQUFFLEVBQUUsQ0FBQyxFQUFFO2dCQUM3QixTQUFTLENBQUMsSUFBSSxDQUFDLENBQUMsQ0FBQyxDQUFDO2FBQ25CO1lBQ0QsQ0FBQyxHQUFHLEdBQUcsQ0FBQyxPQUFPLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxLQUFLLENBQUMsTUFBTSxDQUFDLFNBQVMsQ0FBQyxDQUFDLENBQUM7U0FDL0M7YUFBTTtZQUNMLElBQUksR0FBRyxDQUFDLENBQUM7U0FDVjtRQUVELElBQUksR0FBVyxDQUFDO1FBQ2hCLElBQUksQ0FBQyxDQUFDLEtBQUssQ0FBQyxNQUFNLEtBQUssQ0FBQyxJQUFJLENBQUMsQ0FBQyxLQUFLLENBQUMsTUFBTSxLQUFLLENBQUMsRUFBRTtZQUNoRCxJQUFJLFNBQVMsQ0FBQyxDQUFDLENBQUMsS0FBSyxTQUFTLENBQUMsQ0FBQyxDQUFDLEVBQUU7Z0JBQ2pDLEdBQUcsR0FBRyxHQUFHLENBQUMsR0FBRyxDQUFDLEdBQUcsQ0FBQyxHQUFHLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLFNBQVMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO2FBQzVDO2lCQUFNO2dCQUNMLEdBQUcsR0FBRyxHQUFHLENBQUMsR0FBRyxDQUFDLEdBQUcsQ0FBQyxHQUFHLENBQUMsR0FBRyxDQUFDLFNBQVMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsRUFBRSxTQUFTLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQzthQUNuRTtTQUNGO2FBQU07WUFDTCxNQUFNLElBQUksR0FBRyxTQUFTLENBQUMsQ0FBQyxDQUFDLEtBQUssQ0FBQyxDQUFDLEtBQUssQ0FBQyxNQUFNLEdBQUcsQ0FBQyxDQUFDO1lBQ2pELE1BQU0sSUFBSSxHQUFHLFNBQVMsQ0FBQyxDQUFDLENBQUMsS0FBSyxDQUFDLENBQUMsS0FBSyxDQUFDLE1BQU0sR0FBRyxDQUFDLENBQUM7WUFDakQsR0FBRyxHQUFHLEdBQUcsQ0FBQyxNQUFNLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxJQUFJLEVBQUUsSUFBSSxDQUFDLENBQUM7U0FDcEM7UUFFRCxJQUFJLElBQUksR0FBRyxDQUFDLEVBQUU7WUFDWixJQUFJLEdBQVcsQ0FBQztZQUNoQixJQUFJLEtBQUssR0FBRyxLQUFLLEVBQUU7Z0JBQ2pCLEdBQUcsR0FBRyxLQUFLLEdBQUcsS0FBSyxHQUFHLENBQUMsQ0FBQzthQUN6QjtpQkFBTTtnQkFDTCxHQUFHLEdBQUcsS0FBSyxHQUFHLENBQUMsQ0FBQzthQUNqQjtZQUNELE1BQU0sV0FBVyxHQUFhLEVBQUUsQ0FBQztZQUNqQyxLQUFLLElBQUksQ0FBQyxHQUFHLEdBQUcsRUFBRSxDQUFDLEdBQUcsR0FBRyxHQUFHLElBQUksRUFBRSxFQUFFLENBQUMsRUFBRTtnQkFDckMsV0FBVyxDQUFDLElBQUksQ0FBQyxDQUFDLENBQUMsQ0FBQzthQUNyQjtZQUNELEdBQUcsR0FBRyxHQUFHLENBQUMsT0FBTyxDQUFDLEdBQUcsRUFBRSxXQUFXLENBQUMsQ0FBQztTQUNyQztRQUNELElBQUksR0FBRyxDQUFDLEtBQUssQ0FBQyxNQUFNLEtBQUssQ0FBQyxFQUFFO1lBQzFCLEdBQUcsR0FBRyxHQUFHLENBQUMsVUFBVSxDQUFDLEdBQUcsRUFBRSxDQUFDLENBQUMsQ0FBQztTQUM5QjtRQUNELE9BQU8sR0FBRyxDQUFDO0lBQ2IsQ0FBQyxDQUFDLENBQUM7QUFDTCxDQUFDO0FBRUQsTUFBYSxHQUFJLFNBQVEsS0FBSztJQU81QixZQUFZLElBQWtCO1FBQzVCLEtBQUssQ0FBQyxJQUFJLENBQUMsQ0FBQztRQUNaLElBQUksQ0FBQyxJQUFJLEdBQUcsSUFBSSxDQUFDLElBQUksQ0FBQztRQUN0QixJQUFJLENBQUMsU0FBUyxHQUFHLElBQUksQ0FBQyxTQUFTLElBQUksSUFBSSxDQUFDLENBQUMsQ0FBQyxLQUFLLENBQUMsQ0FBQyxDQUFDLElBQUksQ0FBQyxTQUFTLENBQUM7UUFDakUsSUFBSSxDQUFDLGVBQWUsR0FBRyxJQUFJLENBQUM7UUFDNUIsSUFBSSxDQUFDLGVBQWUsR0FBRyxLQUFLLENBQUM7SUFDL0IsQ0FBQztJQUVRLEtBQUssQ0FBQyxVQUF5QjtRQUN0QyxHQUFHLENBQUMsSUFBSSxDQUFDLE1BQU0sQ0FDWCxLQUFLLENBQUMsT0FBTyxDQUFDLFVBQVUsQ0FBQyxJQUFJLFVBQVUsQ0FBQyxNQUFNLEtBQUssQ0FBQztZQUNoRCxLQUFLLENBQUMsT0FBTyxDQUFDLFVBQVUsQ0FBQyxDQUFDLENBQUMsQ0FBQyxJQUFJLEtBQUssQ0FBQyxPQUFPLENBQUMsVUFBVSxDQUFDLENBQUMsQ0FBQyxDQUFDLEVBQ2hFLEdBQUcsRUFBRSxDQUFDLCtEQUErRCxDQUFDLENBQUM7UUFDM0UsTUFBTSxNQUFNLEdBQUcsVUFBVSxDQUFDLENBQUMsQ0FBVSxDQUFDO1FBQ3RDLE1BQU0sTUFBTSxHQUFHLFVBQVUsQ0FBQyxDQUFDLENBQVUsQ0FBQztRQUN0QyxJQUFJLE1BQU0sQ0FBQyxNQUFNLEdBQUcsQ0FBQyxJQUFJLE1BQU0sQ0FBQyxNQUFNLEdBQUcsQ0FBQyxFQUFFO1lBQzFDLE1BQU0sSUFBSSxtQkFBbUIsQ0FDekIsOERBQThELENBQUMsQ0FBQztTQUNyRTtRQUVELE1BQU0sSUFBSSxHQUFHLElBQUksQ0FBQyxhQUFhLENBQUMsTUFBTSxFQUFFLE1BQU0sQ0FBQyxDQUFDO1FBQ2hELElBQUksTUFBTSxDQUFDLElBQUksQ0FBQyxDQUFDLENBQUMsQ0FBQyxLQUFLLE1BQU0sQ0FBQyxJQUFJLENBQUMsQ0FBQyxDQUFDLENBQUMsRUFBRTtZQUN2QyxNQUFNLElBQUksVUFBVSxDQUNoQiw2QkFBNkI7Z0JBQzdCLEdBQUcsTUFBTSxDQUFDLElBQUksQ0FBQyxDQUFDLENBQUMsQ0FBQyxRQUFRLE1BQU0sQ0FBQyxJQUFJLENBQUMsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUM7U0FDbEQ7SUFDSCxDQUFDO0lBRWtCLGFBQWEsQ0FBQyxNQUFnQjtRQUMvQyxJQUFJLE1BQU0sQ0FBQyxNQUFNLEtBQUssQ0FBQyxFQUFFO1lBQ3ZCLE1BQU0sSUFBSSxVQUFVLENBQ2hCLG9EQUFvRDtnQkFDcEQsZ0JBQWdCLE1BQU0sQ0FBQyxNQUFNLFlBQVksQ0FBQyxDQUFDO1NBQ2hEO1FBRUQsSUFBSSxFQUFFLEdBQUcsTUFBTSxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQ25CLElBQUksRUFBRSxHQUFHLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUNuQixJQUFJLElBQXNCLENBQUM7UUFDM0IsSUFBSSxDQUFDLEtBQUssQ0FBQyxPQUFPLENBQUMsSUFBSSxDQUFDLElBQUksQ0FBQyxFQUFFO1lBQzdCLElBQUksR0FBRztnQkFDTCxhQUFhLENBQUMsSUFBSSxDQUFDLElBQUksRUFBRSxFQUFFLENBQUMsS0FBSyxDQUFDLE1BQU0sQ0FBQztnQkFDekMsYUFBYSxDQUFDLElBQUksQ0FBQyxJQUFJLEVBQUUsRUFBRSxDQUFDLEtBQUssQ0FBQyxNQUFNLENBQUM7YUFDMUMsQ0FBQztTQUNIO2FBQU07WUFDTCxJQUFJLEdBQUcsSUFBSSxDQUFDLElBQUksQ0FBQyxHQUFHLENBQ1QsQ0FBQyxJQUFJLEVBQUUsQ0FBQyxFQUFFLEVBQUUsQ0FBQyxhQUFhLENBQ3RCLElBQUksRUFBRSxNQUFNLENBQUMsQ0FBQyxDQUFDLENBQUMsS0FBSyxDQUFDLE1BQU0sQ0FBQyxDQUFxQixDQUFDO1NBQ25FO1FBQ0QsSUFBSSxJQUFJLENBQUMsU0FBUyxFQUFFO1lBQ2xCLEVBQUUsR0FBRyxXQUFXLENBQUMsRUFBRSxFQUFFLElBQUksQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO1lBQzlCLEVBQUUsR0FBRyxXQUFXLENBQUMsRUFBRSxFQUFFLElBQUksQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO1NBQy9CO1FBQ0QsT0FBTyxRQUFRLENBQUMsRUFBRSxFQUFFLEVBQUUsRUFBRSxJQUFJLENBQUMsQ0FBQztJQUNoQyxDQUFDO0lBRU8sYUFBYSxDQUFDLE1BQWEsRUFBRSxNQUFhO1FBQ2hELElBQUksSUFBYyxDQUFDO1FBQ25CLElBQUksQ0FBQyxLQUFLLENBQUMsT0FBTyxDQUFDLElBQUksQ0FBQyxJQUFJLENBQUMsRUFBRTtZQUM3QixtQ0FBbUM7WUFDbkMsSUFBSSxHQUFHO2dCQUNMLGFBQWEsQ0FBQyxJQUFJLENBQUMsSUFBSSxFQUFFLE1BQU0sQ0FBQyxNQUFNLENBQUM7Z0JBQ3ZDLGFBQWEsQ0FBQyxJQUFJLENBQUMsSUFBSSxFQUFFLE1BQU0sQ0FBQyxNQUFNLENBQUM7YUFDeEMsQ0FBQztTQUNIO2FBQU07WUFDTCx1Q0FBdUM7WUFDdkMsSUFBSSxHQUFHLElBQUksQ0FBQyxJQUFJLENBQUM7U0FDbEI7UUFDRCxPQUFPLElBQUksQ0FBQztJQUNkLENBQUM7SUFFUSxrQkFBa0IsQ0FBQyxVQUF5QjtRQUNuRCxHQUFHLENBQUMsSUFBSSxDQUFDLE1BQU0sQ0FDWCxLQUFLLENBQUMsT0FBTyxDQUFDLFVBQVUsQ0FBQyxJQUFJLFVBQVUsQ0FBQyxNQUFNLEtBQUssQ0FBQztZQUNoRCxLQUFLLENBQUMsT0FBTyxDQUFDLFVBQVUsQ0FBQyxDQUFDLENBQUMsQ0FBQyxJQUFJLEtBQUssQ0FBQyxPQUFPLENBQUMsVUFBVSxDQUFDLENBQUMsQ0FBQyxDQUFDLEVBQ2hFLEdBQUcsRUFBRSxDQUFDLCtEQUErRCxDQUFDLENBQUM7UUFDM0UsTUFBTSxNQUFNLEdBQUksVUFBVSxDQUFDLENBQUMsQ0FBVyxDQUFDLEtBQUssRUFBRSxDQUFDO1FBQ2hELE1BQU0sTUFBTSxHQUFJLFVBQVUsQ0FBQyxDQUFDLENBQVcsQ0FBQyxLQUFLLEVBQUUsQ0FBQztRQUNoRCxJQUFJLE1BQU0sQ0FBQyxNQUFNLEdBQUcsQ0FBQyxJQUFJLE1BQU0sQ0FBQyxNQUFNLEdBQUcsQ0FBQyxFQUFFO1lBQzFDLE1BQU0sSUFBSSxtQkFBbUIsQ0FDekIsOERBQThELENBQUMsQ0FBQztTQUNyRTtRQUVELE1BQU0sSUFBSSxHQUFHLElBQUksQ0FBQyxhQUFhLENBQUMsTUFBTSxFQUFFLE1BQU0sQ0FBQyxDQUFDO1FBQ2hELE1BQU0sQ0FBQyxNQUFNLENBQUMsSUFBSSxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDO1FBQzFCLE1BQU0sQ0FBQyxNQUFNLENBQUMsSUFBSSxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDO1FBQzFCLE1BQU0sQ0FBQyxNQUFNLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDO1FBQ3BCLE1BQU0sV0FBVyxHQUFHLE1BQU0sQ0FBQyxNQUFNLENBQUMsTUFBTSxDQUFDLENBQUM7UUFDMUMsSUFBSSxXQUFXLENBQUMsTUFBTSxLQUFLLENBQUMsRUFBRTtZQUM1QixXQUFXLENBQUMsSUFBSSxDQUFDLENBQUMsQ0FBQyxDQUFDO1NBQ3JCO1FBQ0QsT0FBTyxXQUFXLENBQUM7SUFDckIsQ0FBQztJQUVRLFdBQVcsQ0FBQyxNQUF1QixFQUFFLElBQXNCO1FBRWxFLE9BQU8sSUFBSSxDQUFDO0lBQ2QsQ0FBQztJQUVRLFNBQVM7UUFDaEIsTUFBTSxNQUFNLEdBQTZCO1lBQ3ZDLE1BQU0sRUFBRSxJQUFJLENBQUMsSUFBSTtZQUNqQixXQUFXLEVBQUUsSUFBSSxDQUFDLFNBQVM7U0FDNUIsQ0FBQztRQUNGLE1BQU0sVUFBVSxHQUFHLEtBQUssQ0FBQyxTQUFTLEVBQUUsQ0FBQztRQUNyQyxNQUFNLENBQUMsTUFBTSxDQUFDLE1BQU0sRUFBRSxVQUFVLENBQUMsQ0FBQztRQUNsQyxPQUFPLE1BQU0sQ0FBQztJQUNoQixDQUFDOztBQWhIRCxrQkFBa0I7QUFDWCxhQUFTLEdBQUcsS0FBSyxDQUFDO1NBRmQsR0FBRztBQW1IaEIsYUFBYSxDQUFDLGFBQWEsQ0FBQyxHQUFHLENBQUMsQ0FBQztBQUVqQyw4REFBOEQiLCJzb3VyY2VzQ29udGVudCI6WyIvKipcbiAqIEBsaWNlbnNlXG4gKiBDb3B5cmlnaHQgMjAxOCBHb29nbGUgTExDXG4gKlxuICogVXNlIG9mIHRoaXMgc291cmNlIGNvZGUgaXMgZ292ZXJuZWQgYnkgYW4gTUlULXN0eWxlXG4gKiBsaWNlbnNlIHRoYXQgY2FuIGJlIGZvdW5kIGluIHRoZSBMSUNFTlNFIGZpbGUgb3IgYXRcbiAqIGh0dHBzOi8vb3BlbnNvdXJjZS5vcmcvbGljZW5zZXMvTUlULlxuICogPT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT1cbiAqL1xuXG4vKipcbiAqIFRlbnNvckZsb3cuanMgTGF5ZXJzOiBNZXJnZSBMYXllcnMuXG4gKi9cblxuaW1wb3J0ICogYXMgdGZjIGZyb20gJ0B0ZW5zb3JmbG93L3RmanMtY29yZSc7XG5pbXBvcnQge3NlcmlhbGl6YXRpb24sIFRlbnNvciwgdGlkeSwgdXRpbH0gZnJvbSAnQHRlbnNvcmZsb3cvdGZqcy1jb3JlJztcbmltcG9ydCAqIGFzIEsgZnJvbSAnLi4vYmFja2VuZC90ZmpzX2JhY2tlbmQnO1xuaW1wb3J0IHtMYXllciwgTGF5ZXJBcmdzLCBTeW1ib2xpY1RlbnNvcn0gZnJvbSAnLi4vZW5naW5lL3RvcG9sb2d5JztcbmltcG9ydCB7Tm90SW1wbGVtZW50ZWRFcnJvciwgVmFsdWVFcnJvcn0gZnJvbSAnLi4vZXJyb3JzJztcbmltcG9ydCB7U2hhcGV9IGZyb20gJy4uL2tlcmFzX2Zvcm1hdC9jb21tb24nO1xuaW1wb3J0IHtsMk5vcm1hbGl6ZX0gZnJvbSAnLi4vbG9zc2VzJztcbmltcG9ydCB7S3dhcmdzfSBmcm9tICcuLi90eXBlcyc7XG5pbXBvcnQgKiBhcyBnZW5lcmljX3V0aWxzIGZyb20gJy4uL3V0aWxzL2dlbmVyaWNfdXRpbHMnO1xuaW1wb3J0ICogYXMgbWF0aFV0aWxzIGZyb20gJy4uL3V0aWxzL21hdGhfdXRpbHMnO1xuaW1wb3J0IHtnZXRFeGFjdGx5T25lU2hhcGV9IGZyb20gJy4uL3V0aWxzL3R5cGVzX3V0aWxzJztcblxuLyoqXG4gKiBHZW5lcmljIE1lcmdlIGxheWVyIGZvciBlbGVtZW50LXdpc2UgbWVyZ2UgZnVuY3Rpb25zLlxuICpcbiAqIFVzZWQgdG8gaW1wbGVtZW50IGBTdW1gLCBgQXZlcmFnZWAsIGBDb25jYXRlbmF0ZWAsIGV0Yy5cbiAqL1xuZXhwb3J0IGFic3RyYWN0IGNsYXNzIE1lcmdlIGV4dGVuZHMgTGF5ZXIge1xuICBwcm90ZWN0ZWQgcmVzaGFwZVJlcXVpcmVkOiBib29sZWFuO1xuXG4gIGNvbnN0cnVjdG9yKGFyZ3M/OiBMYXllckFyZ3MpIHtcbiAgICBzdXBlcihhcmdzIHx8IHt9KTtcbiAgICB0aGlzLnN1cHBvcnRzTWFza2luZyA9IHRydWU7XG4gIH1cblxuICAvKipcbiAgICogTG9naWMgZm9yIG1lcmdpbmcgbXVsdGlwbGUgdGVuc29ycywgdG8gYmUgb3ZlcnJpZGRlbiBieSBzdWJjbGFzc2VzLlxuICAgKiBAcGFyYW0gaW5wdXRzXG4gICAqL1xuICBwcm90ZWN0ZWQgbWVyZ2VGdW5jdGlvbihpbnB1dHM6IFRlbnNvcltdKTogVGVuc29yIHtcbiAgICB0aHJvdyBuZXcgTm90SW1wbGVtZW50ZWRFcnJvcigpO1xuICB9XG5cbiAgLyoqXG4gICAqIENvbXB1dGVzIHRoZSBzaGFwZSBvZiB0aGUgcmVzdWx0IG9mIGFuIGVsZW1lbnR3aXNlIG9wZXJhdGlvbi5cbiAgICpcbiAgICogQHBhcmFtIHNoYXBlMTogU2hhcGUgb2YgdGhlIGZpcnN0IHRlbnNvci5cbiAgICogQHBhcmFtIHNoYXBlMjogU2hhcGUgb2YgdGhlIHNlY29uZCB0ZW5zb3IuXG4gICAqIEByZXR1cm5zIEV4cGVjdGVkIG91dHB1dCBzaGFwZSB3aGVuIGFuIGVsZW1lbnR3aXNlIG9wZXJhdGlvbiBpcyBjYXJyaWVkXG4gICAqICAgb3V0IG9uIDIgdGVuc29ycyB3aXRoIHNoYXBlcyBgc2hhcGUxYCBhbmQgYHNoYXBlMmAuXG4gICAqIEB0aHJvd3MgVmFsdWVFcnJvcjogSWYgYHNoYXBlMWAgYW5kIGBzaGFwZTJgIGFyZSBub3QgY29tcGF0aWJsZSBmb3JcbiAgICogICBlbGVtZW50LXdpc2Ugb3BlcmF0aW9ucy5cbiAgICovXG4gIHByaXZhdGUgY29tcHV0ZUVsZW1lbnR3aXNlT3BPdXRwdXRTaGFwZShzaGFwZTE6IFNoYXBlLCBzaGFwZTI6IFNoYXBlKTogU2hhcGUge1xuICAgIGlmIChzaGFwZTEgPT0gbnVsbCB8fCBzaGFwZTIgPT0gbnVsbCkge1xuICAgICAgcmV0dXJuIG51bGw7XG4gICAgfSBlbHNlIGlmIChzaGFwZTEubGVuZ3RoIDwgc2hhcGUyLmxlbmd0aCkge1xuICAgICAgcmV0dXJuIHRoaXMuY29tcHV0ZUVsZW1lbnR3aXNlT3BPdXRwdXRTaGFwZShzaGFwZTIsIHNoYXBlMSk7XG4gICAgfSBlbHNlIGlmIChzaGFwZTIubGVuZ3RoID09PSAwKSB7XG4gICAgICByZXR1cm4gc2hhcGUxO1xuICAgIH1cbiAgICBjb25zdCBvdXRwdXRTaGFwZTogU2hhcGUgPSBzaGFwZTEuc2xpY2UoMCwgc2hhcGUxLmxlbmd0aCAtIHNoYXBlMi5sZW5ndGgpO1xuICAgIGZvciAobGV0IGsgPSAwOyBrIDwgc2hhcGUyLmxlbmd0aDsgKytrKSB7XG4gICAgICBjb25zdCBpID0gc2hhcGUxW3NoYXBlMS5sZW5ndGggLSBzaGFwZTIubGVuZ3RoICsga107XG4gICAgICBjb25zdCBqID0gc2hhcGUyW2tdO1xuICAgICAgaWYgKGkgPT0gbnVsbCB8fCBqID09IG51bGwgfHwgaSA8IDAgfHwgaiA8IDApIHtcbiAgICAgICAgb3V0cHV0U2hhcGUucHVzaChudWxsKTtcbiAgICAgIH0gZWxzZSBpZiAoaSA9PT0gMSkge1xuICAgICAgICBvdXRwdXRTaGFwZS5wdXNoKGopO1xuICAgICAgfSBlbHNlIGlmIChqID09PSAxKSB7XG4gICAgICAgIG91dHB1dFNoYXBlLnB1c2goaSk7XG4gICAgICB9IGVsc2Uge1xuICAgICAgICBpZiAoaSAhPT0gaikge1xuICAgICAgICAgIHRocm93IG5ldyBWYWx1ZUVycm9yKFxuICAgICAgICAgICAgICAnT3BlcmFuZHMgY291bGQgbm90IGJlIGJyb2FkY2FzdCB0b2dldGhlciB3aXRoIHNoYXBlcyAnICtcbiAgICAgICAgICAgICAgSlNPTi5zdHJpbmdpZnkoc2hhcGUxKSArICcgJyArIEpTT04uc3RyaW5naWZ5KHNoYXBlMikpO1xuICAgICAgICB9XG4gICAgICAgIG91dHB1dFNoYXBlLnB1c2goaSk7XG4gICAgICB9XG4gICAgfVxuICAgIHJldHVybiBvdXRwdXRTaGFwZTtcbiAgfVxuXG4gIG92ZXJyaWRlIGJ1aWxkKGlucHV0U2hhcGU6IFNoYXBlfFNoYXBlW10pOiB2b2lkIHtcbiAgICAvLyBVc2VkIHB1cmVseSBmb3Igc2hhcGUgdmFsaWRhdGlvbi5cbiAgICBpZiAoQXJyYXkuaXNBcnJheShpbnB1dFNoYXBlKSAmJiAhQXJyYXkuaXNBcnJheShpbnB1dFNoYXBlWzBdKSkge1xuICAgICAgLy8gTWFrZSBzdXJlIHRoYXQgaW5wdXRTaGFwZSBpcyBhbiBBcnJheSBvZiBzaGFwZS5cbiAgICAgIGlucHV0U2hhcGUgPSBbZ2V0RXhhY3RseU9uZVNoYXBlKGlucHV0U2hhcGUpXTtcbiAgICB9XG4gICAgaW5wdXRTaGFwZSA9IGlucHV0U2hhcGUgYXMgU2hhcGVbXTtcbiAgICBpZiAoaW5wdXRTaGFwZS5sZW5ndGggPCAyKSB7XG4gICAgICB0aHJvdyBuZXcgVmFsdWVFcnJvcihcbiAgICAgICAgICAnQSBtZXJnZSBsYXllciBzaG91bGQgYmUgY2FsbGVkIG9uIGFuIEFycmF5IG9mIGF0IGxlYXN0IDIgaW5wdXRzLicgK1xuICAgICAgICAgIGAgR290ICR7aW5wdXRTaGFwZS5sZW5ndGh9IGlucHV0KHMpLmApO1xuICAgIH1cblxuICAgIC8vIE1ha2Ugc3VyZSB0aGF0IHRoZXJlIGlzIGF0IG1vc3Qgb25lIHVuaXF1ZSBiYXRjaCBzaXplIGFtb25nIHRoZSBpbnB1dFxuICAgIC8vIHNoYXBlcy5cbiAgICBsZXQgYmF0Y2hTaXplczogbnVtYmVyW10gPSBbXTtcbiAgICBmb3IgKGNvbnN0IHNoYXBlIG9mIGlucHV0U2hhcGUpIHtcbiAgICAgIGlmIChzaGFwZSAhPSBudWxsICYmIHNoYXBlWzBdICE9PSBudWxsKSB7XG4gICAgICAgIGJhdGNoU2l6ZXMucHVzaChzaGFwZVswXSk7XG4gICAgICB9XG4gICAgfVxuICAgIGJhdGNoU2l6ZXMgPSBnZW5lcmljX3V0aWxzLnVuaXF1ZShiYXRjaFNpemVzKTtcbiAgICBpZiAoYmF0Y2hTaXplcy5sZW5ndGggPiAxKSB7XG4gICAgICB0aHJvdyBuZXcgVmFsdWVFcnJvcihcbiAgICAgICAgICBgQ2FuIG5vdCBtZXJnZSB0ZW5zb3JzIHdpdGggZGlmZmVyZW50IGJhdGNoIHNpemVzLiBgICtcbiAgICAgICAgICBgR290IHRlbnNvcnMgd2l0aCBzaGFwZXM6ICR7SlNPTi5zdHJpbmdpZnkoaW5wdXRTaGFwZSl9LmApO1xuICAgIH1cblxuICAgIGxldCBvdXRwdXRTaGFwZTogU2hhcGUgPVxuICAgICAgICBpbnB1dFNoYXBlWzBdID09IG51bGwgPyBudWxsIDogaW5wdXRTaGFwZVswXS5zbGljZSgxKTtcbiAgICBmb3IgKGxldCBpID0gMTsgaSA8IGlucHV0U2hhcGUubGVuZ3RoOyArK2kpIHtcbiAgICAgIGNvbnN0IHNoYXBlID0gaW5wdXRTaGFwZVtpXSA9PSBudWxsID8gbnVsbCA6IGlucHV0U2hhcGVbaV0uc2xpY2UoMSk7XG4gICAgICBvdXRwdXRTaGFwZSA9IHRoaXMuY29tcHV0ZUVsZW1lbnR3aXNlT3BPdXRwdXRTaGFwZShvdXRwdXRTaGFwZSwgc2hhcGUpO1xuICAgIH1cbiAgICAvLyBJZiB0aGUgaW5wdXRzIGhhdmUgZGlmZmVyZW50IHJhbmtzLCB3ZSBoYXZlIHRvIHJlc2hhcGUgdGhlbSB0byBtYWtlIHRoZW1cbiAgICAvLyBicm9hZGNhc3RhYmxlLlxuICAgIGNvbnN0IGFsbFJhbmtzID0gaW5wdXRTaGFwZS5tYXAoc2hhcGUgPT4gc2hhcGUubGVuZ3RoKTtcbiAgICBpZiAoaW5wdXRTaGFwZS5pbmRleE9mKG51bGwpID09PSAtMSAmJlxuICAgICAgICBnZW5lcmljX3V0aWxzLnVuaXF1ZShhbGxSYW5rcykubGVuZ3RoID09PSAxKSB7XG4gICAgICB0aGlzLnJlc2hhcGVSZXF1aXJlZCA9IGZhbHNlO1xuICAgIH0gZWxzZSB7XG4gICAgICB0aGlzLnJlc2hhcGVSZXF1aXJlZCA9IHRydWU7XG4gICAgfVxuICB9XG5cbiAgb3ZlcnJpZGUgY2FsbChpbnB1dHM6IFRlbnNvcnxUZW5zb3JbXSwga3dhcmdzOiBLd2FyZ3MpOiBUZW5zb3J8VGVuc29yW10ge1xuICAgIHJldHVybiB0aWR5KCgpID0+IHtcbiAgICAgIGlucHV0cyA9IGlucHV0cyBhcyBUZW5zb3JbXTtcbiAgICAgIGlmICh0aGlzLnJlc2hhcGVSZXF1aXJlZCkge1xuICAgICAgICBjb25zdCByZXNoYXBlZElucHV0czogVGVuc29yW10gPSBbXTtcbiAgICAgICAgY29uc3QgaW5wdXREaW1zID0gaW5wdXRzLm1hcChpbnB1dCA9PiBpbnB1dC5yYW5rKTtcbiAgICAgICAgaWYgKGlucHV0RGltcy5pbmRleE9mKG51bGwpID09PSAtMSkge1xuICAgICAgICAgIC8vIElmIHJhbmtzIG9mIGFsbCBpbnB1dHMgYXJlIGF2YWlsYWJsZSwgd2Ugc2ltcGx5IGV4cGFuZCBlYWNoIG9mIHRoZW1cbiAgICAgICAgICAvLyBhdCBheGlzPTEgdW50aWwgYWxsIG9mIHRoZW0gaGF2ZSB0aGUgc2FtZSByYW5rLlxuICAgICAgICAgIGNvbnN0IG1heE5EaW0gPSBtYXRoVXRpbHMubWF4KGlucHV0RGltcyk7XG4gICAgICAgICAgZm9yIChsZXQgeCBvZiBpbnB1dHMpIHtcbiAgICAgICAgICAgIGNvbnN0IHhORGltID0geC5yYW5rO1xuICAgICAgICAgICAgZm9yIChsZXQgayA9IDA7IGsgPCBtYXhORGltIC0geE5EaW07ICsraykge1xuICAgICAgICAgICAgICB4ID0gSy5leHBhbmREaW1zKHgsIDEpO1xuICAgICAgICAgICAgfVxuICAgICAgICAgICAgcmVzaGFwZWRJbnB1dHMucHVzaCh4KTtcbiAgICAgICAgICB9XG4gICAgICAgICAgcmV0dXJuIHRoaXMubWVyZ2VGdW5jdGlvbihyZXNoYXBlZElucHV0cyk7XG4gICAgICAgIH0gZWxzZSB7XG4gICAgICAgICAgLy8gVHJhbnNwb3NlIGFsbCBpbnB1dHMgc28gdGhhdCBiYXRjaCBzaXplIGlzIHRoZSBsYXN0IGRpbWVuc2lvbi5cbiAgICAgICAgICAvLyBbYmF0Y2hTaXplLCBkaW0xLCBkaW0yLCAuLi5dIC0+IFtkaW0xLCBkaW0yLCAuLi4sIGJhdGNoU2l6ZV1cbiAgICAgICAgICBsZXQgdHJhbnNwb3NlZCA9IGZhbHNlO1xuICAgICAgICAgIGZvciAoY29uc3QgeCBvZiBpbnB1dHMpIHtcbiAgICAgICAgICAgIGNvbnN0IHhORGltID0geC5yYW5rO1xuICAgICAgICAgICAgaWYgKHhORGltID09IG51bGwpIHtcbiAgICAgICAgICAgICAgY29uc3QgeFNoYXBlID0geC5zaGFwZTtcbiAgICAgICAgICAgICAgY29uc3QgYmF0Y2hTaXplID0geFNoYXBlWzBdO1xuICAgICAgICAgICAgICBjb25zdCBuZXdTaGFwZSA9IHhTaGFwZS5zbGljZSgxKS5jb25jYXQoW2JhdGNoU2l6ZV0pO1xuICAgICAgICAgICAgICBsZXQgeFRyYW5zcG9zZWQgPSB0ZmMucmVzaGFwZShcbiAgICAgICAgICAgICAgICAgIHgsIFtiYXRjaFNpemVdLmNvbmNhdChtYXRoVXRpbHMuYXJyYXlQcm9kKHhTaGFwZS5zbGljZSgxKSkpKTtcbiAgICAgICAgICAgICAgeFRyYW5zcG9zZWQgPSB0ZmMudHJhbnNwb3NlKHhUcmFuc3Bvc2VkLCBbMSwgMF0pO1xuICAgICAgICAgICAgICB4VHJhbnNwb3NlZCA9IHRmYy5yZXNoYXBlKHhUcmFuc3Bvc2VkLCBuZXdTaGFwZSk7XG4gICAgICAgICAgICAgIHJlc2hhcGVkSW5wdXRzLnB1c2goeFRyYW5zcG9zZWQpO1xuICAgICAgICAgICAgICB0cmFuc3Bvc2VkID0gdHJ1ZTtcbiAgICAgICAgICAgIH0gZWxzZSBpZiAoeE5EaW0gPiAxKSB7XG4gICAgICAgICAgICAgIGNvbnN0IGRpbXMgPSBtYXRoVXRpbHMucmFuZ2UoMSwgeE5EaW0pLmNvbmNhdChbMF0pO1xuICAgICAgICAgICAgICByZXNoYXBlZElucHV0cy5wdXNoKHRmYy50cmFuc3Bvc2UoeCwgZGltcykpO1xuICAgICAgICAgICAgICB0cmFuc3Bvc2VkID0gdHJ1ZTtcbiAgICAgICAgICAgIH0gZWxzZSB7XG4gICAgICAgICAgICAgIC8vIFdlIGRvbid0IHRyYW5zcG9zZSBpbnB1dHMgaWYgdGhleSBhcmUgMUQgdmVjdG9ycyBvciBzY2FsYXJzLlxuICAgICAgICAgICAgICByZXNoYXBlZElucHV0cy5wdXNoKHgpO1xuICAgICAgICAgICAgfVxuICAgICAgICAgIH1cbiAgICAgICAgICBsZXQgeSA9IHRoaXMubWVyZ2VGdW5jdGlvbihyZXNoYXBlZElucHV0cyk7XG4gICAgICAgICAgY29uc3QgeU5EaW0gPSB5LnJhbms7XG4gICAgICAgICAgaWYgKHRyYW5zcG9zZWQpIHtcbiAgICAgICAgICAgIC8vIElmIGlucHV0cyBoYXZlIGJlZW4gdHJhbnNwb3NlZCwgd2UgaGF2ZSB0byB0cmFuc3Bvc2UgdGhlIG91dHB1dFxuICAgICAgICAgICAgLy8gdG9vLlxuICAgICAgICAgICAgaWYgKHlORGltID09IG51bGwpIHtcbiAgICAgICAgICAgICAgY29uc3QgeVNoYXBlID0geS5zaGFwZTtcbiAgICAgICAgICAgICAgY29uc3QgeU5EaW0gPSB5U2hhcGUubGVuZ3RoO1xuICAgICAgICAgICAgICBjb25zdCBiYXRjaFNpemUgPSB5U2hhcGVbeU5EaW0gLSAxXTtcbiAgICAgICAgICAgICAgY29uc3QgbmV3U2hhcGUgPVxuICAgICAgICAgICAgICAgICAgW2JhdGNoU2l6ZV0uY29uY2F0KHlTaGFwZS5zbGljZSgwLCB5U2hhcGUubGVuZ3RoIC0gMSkpO1xuICAgICAgICAgICAgICB5ID0gdGZjLnJlc2hhcGUoXG4gICAgICAgICAgICAgICAgICB0ZmMudHJhbnNwb3NlKHRmYy5yZXNoYXBlKHksIFstMSwgYmF0Y2hTaXplXSksIFsxLCAwXSksXG4gICAgICAgICAgICAgICAgICBuZXdTaGFwZSk7XG4gICAgICAgICAgICB9IGVsc2UgaWYgKHlORGltID4gMSkge1xuICAgICAgICAgICAgICBjb25zdCBkaW1zID0gW3lORGltIC0gMV0uY29uY2F0KG1hdGhVdGlscy5yYW5nZSgwLCB5TkRpbSAtIDEpKTtcbiAgICAgICAgICAgICAgeSA9IHRmYy50cmFuc3Bvc2UoeSwgZGltcyk7XG4gICAgICAgICAgICB9XG4gICAgICAgICAgfVxuICAgICAgICAgIHJldHVybiB5O1xuICAgICAgICB9XG4gICAgICB9IGVsc2Uge1xuICAgICAgICByZXR1cm4gdGhpcy5tZXJnZUZ1bmN0aW9uKGlucHV0cyk7XG4gICAgICB9XG4gICAgfSk7XG4gIH1cblxuICBvdmVycmlkZSBjb21wdXRlT3V0cHV0U2hhcGUoaW5wdXRTaGFwZTogU2hhcGV8U2hhcGVbXSk6IFNoYXBlfFNoYXBlW10ge1xuICAgIGlucHV0U2hhcGUgPSBpbnB1dFNoYXBlIGFzIFNoYXBlW107XG4gICAgbGV0IG91dHB1dFNoYXBlOiBTaGFwZTtcbiAgICBpZiAoaW5wdXRTaGFwZVswXSA9PSBudWxsKSB7XG4gICAgICBvdXRwdXRTaGFwZSA9IG51bGw7XG4gICAgfSBlbHNlIHtcbiAgICAgIG91dHB1dFNoYXBlID0gaW5wdXRTaGFwZVswXS5zbGljZSgxKTtcbiAgICB9XG4gICAgZm9yIChsZXQgaSA9IDE7IGkgPCBpbnB1dFNoYXBlLmxlbmd0aDsgKytpKSB7XG4gICAgICBjb25zdCBzaGFwZSA9IGlucHV0U2hhcGVbaV0gPT0gbnVsbCA/IG51bGwgOiBpbnB1dFNoYXBlW2ldLnNsaWNlKDEpO1xuICAgICAgb3V0cHV0U2hhcGUgPSB0aGlzLmNvbXB1dGVFbGVtZW50d2lzZU9wT3V0cHV0U2hhcGUob3V0cHV0U2hhcGUsIHNoYXBlKTtcbiAgICB9XG5cbiAgICBsZXQgYmF0Y2hTaXplczogbnVtYmVyW10gPSBbXTtcbiAgICBmb3IgKGNvbnN0IHNoYXBlIG9mIGlucHV0U2hhcGUpIHtcbiAgICAgIGlmIChzaGFwZSAhPSBudWxsICYmIHNoYXBlWzBdICE9PSBudWxsKSB7XG4gICAgICAgIGJhdGNoU2l6ZXMucHVzaChzaGFwZVswXSk7XG4gICAgICB9XG4gICAgfVxuICAgIGJhdGNoU2l6ZXMgPSBnZW5lcmljX3V0aWxzLnVuaXF1ZShiYXRjaFNpemVzKTtcbiAgICBpZiAoYmF0Y2hTaXplcy5sZW5ndGggPT09IDEpIHtcbiAgICAgIG91dHB1dFNoYXBlID0gYmF0Y2hTaXplcy5jb25jYXQob3V0cHV0U2hhcGUpO1xuICAgIH0gZWxzZSB7XG4gICAgICBvdXRwdXRTaGFwZSA9IFtudWxsXS5jb25jYXQob3V0cHV0U2hhcGUpO1xuICAgIH1cbiAgICByZXR1cm4gb3V0cHV0U2hhcGU7XG4gIH1cblxuICBvdmVycmlkZSBjb21wdXRlTWFzayhpbnB1dHM6IFRlbnNvcnxUZW5zb3JbXSwgbWFzaz86IFRlbnNvcnxUZW5zb3JbXSk6XG4gICAgICBUZW5zb3Ige1xuICAgIHJldHVybiB0ZmMudGlkeSgoKSA9PiB7XG4gICAgICBpZiAobWFzayA9PSBudWxsKSB7XG4gICAgICAgIHJldHVybiBudWxsO1xuICAgICAgfVxuICAgICAgaWYgKCFBcnJheS5pc0FycmF5KG1hc2spKSB7XG4gICAgICAgIHRocm93IG5ldyBWYWx1ZUVycm9yKCdgbWFza2Agc2hvdWxkIGJlIGFuIEFycmF5Jyk7XG4gICAgICB9XG4gICAgICBpZiAoIUFycmF5LmlzQXJyYXkoaW5wdXRzKSkge1xuICAgICAgICB0aHJvdyBuZXcgVmFsdWVFcnJvcignYGlucHV0c2Agc2hvdWxkIGJlIGFuIEFycmF5Jyk7XG4gICAgICB9XG4gICAgICBpZiAobWFzay5sZW5ndGggIT09IGlucHV0cy5sZW5ndGgpIHtcbiAgICAgICAgdGhyb3cgbmV3IFZhbHVlRXJyb3IoXG4gICAgICAgICAgICBgVGhlIEFycmF5ICdpbnB1dHMnIGFuZCAnbWFzaycgYXJlIGV4cGVjdGVkIHRvIGhhdmUgdGhlIHNhbWUgYCArXG4gICAgICAgICAgICBgbGVuZ3RoLCBidXQgaGF2ZSBkaWZmZXJlbnQgbGVuZ3RocyBgICtcbiAgICAgICAgICAgIGAoJHtpbnB1dHMubGVuZ3RofSB2cyAke21hc2subGVuZ3RofSlgKTtcbiAgICAgIH1cbiAgICAgIGlmIChtYXNrLmV2ZXJ5KG0gPT4gbSA9PSBudWxsKSkge1xuICAgICAgICByZXR1cm4gbnVsbDtcbiAgICAgIH1cbiAgICAgIG1hc2sgPSBtYXNrLm1hcChtID0+IG0gPT0gbnVsbCA/IG0gOiB0ZmMuZXhwYW5kRGltcyhtLCAwKSk7XG4gICAgICBsZXQgb3V0cHV0ID0gbWFza1swXTtcbiAgICAgIGZvciAobGV0IGkgPSAxOyBpIDwgbWFzay5sZW5ndGggLSAxOyArK2kpIHtcbiAgICAgICAgb3V0cHV0ID0gdGZjLmxvZ2ljYWxBbmQob3V0cHV0LCBtYXNrW2ldKTtcbiAgICAgIH1cbiAgICAgIHJldHVybiBvdXRwdXQ7XG4gICAgfSk7XG4gIH1cbn1cblxuZXhwb3J0IGNsYXNzIEFkZCBleHRlbmRzIE1lcmdlIHtcbiAgLyoqIEBub2NvbGxhcHNlICovXG4gIHN0YXRpYyBjbGFzc05hbWUgPSAnQWRkJztcbiAgY29uc3RydWN0b3IoYXJncz86IExheWVyQXJncykge1xuICAgIHN1cGVyKGFyZ3MpO1xuICB9XG5cbiAgcHJvdGVjdGVkIG92ZXJyaWRlIG1lcmdlRnVuY3Rpb24oaW5wdXRzOiBUZW5zb3JbXSk6IFRlbnNvciB7XG4gICAgcmV0dXJuIHRpZHkoKCkgPT4ge1xuICAgICAgbGV0IG91dHB1dCA9IGlucHV0c1swXS5jbG9uZSgpO1xuICAgICAgZm9yIChsZXQgaSA9IDE7IGkgPCBpbnB1dHMubGVuZ3RoOyArK2kpIHtcbiAgICAgICAgb3V0cHV0ID0gdGZjLmFkZChvdXRwdXQsIGlucHV0c1tpXSk7XG4gICAgICB9XG4gICAgICByZXR1cm4gb3V0cHV0O1xuICAgIH0pO1xuICB9XG59XG5zZXJpYWxpemF0aW9uLnJlZ2lzdGVyQ2xhc3MoQWRkKTtcblxuLyoqXG4gKiBDYWxjdWxhdGUgdGhlIGVsZW1lbnQtd2lzZSBzdW0gb2YgaW5wdXRzLCB3aGljaCBhbGwgaGF2ZSB0aGUgc2FtZSBzaGFwZS5cbiAqXG4gKiBUaGlzIGZ1bmN0aW9uIGNhbiBiZSBpbnZva2VkIGluIHRocmVlIHdheXMuXG4gKlxuICogMS4gQ29uc3RydWN0IGFuIGluc3RhbmNlIG9mIGBBZGRgIGxheWVyLCBieSB1c2luZyBubyBpbnB1dCBhcmd1bWVudFxuICogICAgb3IgYSBzaW5nbGUgY29uZmlndXJhdGlvbiBhcmd1bWVudC4gVGhlIHJlc3VsdGFudCBgQWRkYCBsYXllciBjYW4gdGhlblxuICogICAgYmUgdXNlZCBvbiBgdGYuU3ltYm9saWNUZW5zb3JgcyBvciBgdGYuVGVuc29yYHMuIEZvciBleGFtcGxlOlxuICpcbiAqIGBgYGpzXG4gKiBjb25zdCBhZGRMYXllciA9IHRmLmxheWVycy5hZGQoKTtcbiAqXG4gKiAvLyBUaGUgbGF5ZXIgY2FuIGJlIGFwcGxpZWQgdG8gaW5wdXRzLlxuICogY29uc3QgaW5wdXQxID0gdGYuaW5wdXQoe3NoYXBlOiBbMiwgMl19KTtcbiAqIGNvbnN0IGlucHV0MiA9IHRmLmlucHV0KHtzaGFwZTogWzIsIDJdfSk7XG4gKiBjb25zdCBvdXRwdXQgPSBhZGRMYXllci5hcHBseShbaW5wdXQxLCBpbnB1dDJdKTtcbiAqIGNvbnNvbGUubG9nKG91dHB1dC5zaGFwZSk7XG4gKiAvLyBZb3UgZ2V0IFtudWxsLCAyLCAyXSwgd2l0aCB0aGUgZmlyc3QgZGltZW5zaW9uIGFzIHRoZSB1bmRldGVybWluZWQgYmF0Y2hcbiAqIC8vIGRpbWVuc2lvbi5cbiAqIGBgYFxuICpcbiAqIDIuIEludm9rZSBkaXJlY3RseSBvbiBhbiBgQXJyYXlgIG9mIGB0Zi5TeW1ib2xpY1RlbnNvcmBzLiBUaGlzIGNvbnN0cnVjdHNcbiAqICAgIGFuIGBMYXllcmAgb2JqZWN0IGludGVybmFsbHkgYW5kIGNhbGxzIGl0cyBgYXBwbHlgIG1ldGhvZCBvbiB0aGUgaW5wdXRzLFxuICogICAgZ2VuZXJhdGluZyBhIG5ldyBgdGYuU3ltYm9saWNUZW5zb3JgLiBGb3IgZXhhbXBsZTpcbiAqXG4gKiBgYGBqc1xuICogY29uc3QgaW5wdXQxID0gdGYuaW5wdXQoe3NoYXBlOiBbMiwgMl19KTtcbiAqIGNvbnN0IGlucHV0MiA9IHRmLmlucHV0KHtzaGFwZTogWzIsIDJdfSk7XG4gKiBjb25zdCBvdXRwdXQgPSB0Zi5sYXllcnMuYWRkKFtpbnB1dDEsIGlucHV0Ml0pO1xuICogY29uc29sZS5sb2cob3V0cHV0LnNoYXBlKTtcbiAqIC8vIFlvdSBnZXQgW251bGwsIDIsIDJdLCB3aXRoIHRoZSBmaXJzdCBkaW1lbnNpb24gYXMgdGhlIHVuZGV0ZXJtaW5lZCBiYXRjaFxuICogLy8gZGltZW5zaW9uLlxuICogYGBgXG4gKlxuICogMy4gSW52b2tlIGRpcmVjdGx5IG9uIGB0Zi5UZW5zb3JgcywgaS5lLiwgY29uY3JldGUgdmFsdWVzLiBUaGlzIGNvbnN0cnVjdHNcbiAqICAgIGFuIGBMYXllcmAgb2JqZWN0IGludGVybmFsbHkgYW5kIGNhbGxzIGl0cyBgYXBwbHlgIG1ldGhvZCBvbiB0aGUgaW5wdXRzLFxuICogICAgZ2VuZXJhdGluZyBhIG5ldyBgdGYuVGVuc29yYCBhcyB0aGUgcmVzdWx0IG9mIHRoZSBjb21wdXRhdGlvbi4gRm9yXG4gKiBleGFtcGxlOlxuICpcbiAqIGBgYGpzXG4gKiBjb25zdCBpbnB1dDEgPSB0Zi50ZW5zb3IyZChbMSwgMiwgMywgNF0sIFsyLCAyXSk7XG4gKiBjb25zdCBpbnB1dDIgPSB0Zi50ZW5zb3IyZChbMTAsIDIwLCAzMCwgNDBdLCBbMiwgMl0pO1xuICogdGYubGF5ZXJzLmFkZChbaW5wdXQxLCBpbnB1dDJdKS5wcmludCgpO1xuICogLy8gR2l2ZXMgW1sxMSwgMjJdLCBbMzMsIDQ0XV0uXG4gKlxuICovXG5leHBvcnQgZnVuY3Rpb24gYWRkKGNvbmZpZz86IFN5bWJvbGljVGVuc29yW118VGVuc29yW118TGF5ZXJBcmdzKTogTGF5ZXJ8XG4gICAgU3ltYm9saWNUZW5zb3J8VGVuc29yIHtcbiAgaWYgKEFycmF5LmlzQXJyYXkoY29uZmlnKSkge1xuICAgIGNvbnN0IGxheWVyID0gbmV3IEFkZCh7fSk7XG4gICAgcmV0dXJuIGxheWVyLmFwcGx5KGNvbmZpZykgYXMgU3ltYm9saWNUZW5zb3IgfCBUZW5zb3I7XG4gIH0gZWxzZSB7XG4gICAgcmV0dXJuIG5ldyBBZGQoY29uZmlnKTtcbiAgfVxufVxuXG5leHBvcnQgY2xhc3MgTXVsdGlwbHkgZXh0ZW5kcyBNZXJnZSB7XG4gIC8qKiBAbm9jb2xsYXBzZSAqL1xuICBzdGF0aWMgY2xhc3NOYW1lID0gJ011bHRpcGx5JztcbiAgY29uc3RydWN0b3IoYXJncz86IExheWVyQXJncykge1xuICAgIHN1cGVyKGFyZ3MpO1xuICB9XG5cbiAgcHJvdGVjdGVkIG92ZXJyaWRlIG1lcmdlRnVuY3Rpb24oaW5wdXRzOiBUZW5zb3JbXSk6IFRlbnNvciB7XG4gICAgcmV0dXJuIHRpZHkoKCkgPT4ge1xuICAgICAgbGV0IG91dHB1dCA9IGlucHV0c1swXS5jbG9uZSgpO1xuICAgICAgZm9yIChsZXQgaSA9IDE7IGkgPCBpbnB1dHMubGVuZ3RoOyArK2kpIHtcbiAgICAgICAgb3V0cHV0ID0gdGZjLm11bChvdXRwdXQsIGlucHV0c1tpXSk7XG4gICAgICB9XG4gICAgICByZXR1cm4gb3V0cHV0O1xuICAgIH0pO1xuICB9XG59XG5zZXJpYWxpemF0aW9uLnJlZ2lzdGVyQ2xhc3MoTXVsdGlwbHkpO1xuXG4vKipcbiAqIENhbGN1bGF0ZSB0aGUgZWxlbWVudC13aXNlIHByb2R1Y3Qgb2YgaW5wdXRzLCB3aGljaCBhbGwgaGF2ZSB0aGUgc2FtZSBzaGFwZS5cbiAqXG4gKiBUaGlzIGZ1bmN0aW9uIGNhbiBiZSBpbnZva2VkIGluIHRocmVlIHdheXMuXG4gKlxuICogMS4gQ29uc3RydWN0IGFuIGluc3RhbmNlIG9mIGBNdWx0aXBseWAgbGF5ZXIsIGJ5IHVzaW5nIG5vIGlucHV0IGFyZ3VtZW50XG4gKiAgICBvciBhIHNpbmdsZSBjb25maWd1cmF0aW9uIGFyZ3VtZW50LiBUaGUgcmVzdWx0YW50IGBNdWx0aXBseWAgbGF5ZXIgY2FuXG4gKiAgICB0aGVuIGJlIHVzZWQgb24gYHRmLlN5bWJvbGljVGVuc29yYHMgb3IgYHRmLlRlbnNvcmBzLiBGb3IgZXhhbXBsZTpcbiAqXG4gKiBgYGBqc1xuICogY29uc3QgbXVsdGlwbHlMYXllciA9IHRmLmxheWVycy5tdWx0aXBseSgpO1xuICpcbiAqIC8vIFRoZSBsYXllciBjYW4gYmUgYXBwbGllZCB0byBpbnB1dHMuXG4gKiBjb25zdCBpbnB1dDEgPSB0Zi5pbnB1dCh7c2hhcGU6IFsyLCAyXX0pO1xuICogY29uc3QgaW5wdXQyID0gdGYuaW5wdXQoe3NoYXBlOiBbMiwgMl19KTtcbiAqIGNvbnN0IG91dHB1dCA9IG11bHRpcGx5TGF5ZXIuYXBwbHkoW2lucHV0MSwgaW5wdXQyXSk7XG4gKiBjb25zb2xlLmxvZyhvdXRwdXQuc2hhcGUpO1xuICogLy8gWW91IGdldCBbbnVsbCwgMiwgMl0sIHdpdGggdGhlIGZpcnN0IGRpbWVuc2lvbiBhcyB0aGUgdW5kZXRlcm1pbmVkIGJhdGNoXG4gKiAvLyBkaW1lbnNpb24uXG4gKiBgYGBcbiAqXG4gKiAyLiBJbnZva2UgZGlyZWN0bHkgb24gYW4gYEFycmF5YCBvZiBgdGYuU3ltYm9saWNUZW5zb3Jgcy4gVGhpcyBjb25zdHJ1Y3RzXG4gKiAgICBhbiBgTGF5ZXJgIG9iamVjdCBpbnRlcm5hbGx5IGFuZCBjYWxscyBpdHMgYGFwcGx5YCBtZXRob2Qgb24gdGhlIGlucHV0cyxcbiAqICAgIGdlbmVyYXRpbmcgYSBuZXcgYHRmLlN5bWJvbGljVGVuc29yYC4gRm9yIGV4YW1wbGU6XG4gKlxuICogYGBganNcbiAqIGNvbnN0IGlucHV0MSA9IHRmLmlucHV0KHtzaGFwZTogWzIsIDJdfSk7XG4gKiBjb25zdCBpbnB1dDIgPSB0Zi5pbnB1dCh7c2hhcGU6IFsyLCAyXX0pO1xuICogY29uc3Qgb3V0cHV0ID0gdGYubGF5ZXJzLm11bHRpcGx5KFtpbnB1dDEsIGlucHV0Ml0pO1xuICogY29uc29sZS5sb2cob3V0cHV0LnNoYXBlKTtcbiAqIC8vIFlvdSBnZXQgW251bGwsIDIsIDJdLCB3aXRoIHRoZSBmaXJzdCBkaW1lbnNpb24gYXMgdGhlIHVuZGV0ZXJtaW5lZCBiYXRjaFxuICogLy8gZGltZW5zaW9uLlxuICogYGBgXG4gKlxuICogMy4gSW52b2tlIGRpcmVjdGx5IG9uIGB0Zi5UZW5zb3JgcywgaS5lLiwgY29uY3JldGUgdmFsdWVzLiBUaGlzIGNvbnN0cnVjdHNcbiAqICAgIGFuIGBMYXllcmAgb2JqZWN0IGludGVybmFsbHkgYW5kIGNhbGxzIGl0cyBgYXBwbHlgIG1ldGhvZCBvbiB0aGUgaW5wdXRzLFxuICogICAgZ2VuZXJhdGluZyBhIG5ldyBgdGYuVGVuc29yYCBhcyB0aGUgcmVzdWx0IG9mIHRoZSBjb21wdXRhdGlvbi4gRm9yXG4gKiBleGFtcGxlOlxuICpcbiAqIGBgYGpzXG4gKiBjb25zdCBpbnB1dDEgPSB0Zi50ZW5zb3IyZChbMSwgMiwgMywgNF0sIFsyLCAyXSk7XG4gKiBjb25zdCBpbnB1dDIgPSB0Zi50ZW5zb3IyZChbMTAsIDIwLCAzMCwgNDBdLCBbMiwgMl0pO1xuICogdGYubGF5ZXJzLm11bHRpcGx5KFtpbnB1dDEsIGlucHV0Ml0pLnByaW50KCk7XG4gKiAvLyBHaXZlcyBbWzEwLCA0MF0sIFs5MCwgMTYwXV0uXG4gKlxuICovXG5leHBvcnQgZnVuY3Rpb24gbXVsdGlwbHkoY29uZmlnPzogU3ltYm9saWNUZW5zb3JbXXxUZW5zb3JbXXxMYXllckFyZ3MpOiBMYXllcnxcbiAgICBTeW1ib2xpY1RlbnNvcnxUZW5zb3Ige1xuICBpZiAoQXJyYXkuaXNBcnJheShjb25maWcpKSB7XG4gICAgY29uc3QgbGF5ZXIgPSBuZXcgTXVsdGlwbHkoe30pO1xuICAgIHJldHVybiBsYXllci5hcHBseShjb25maWcpIGFzIFN5bWJvbGljVGVuc29yIHwgVGVuc29yO1xuICB9IGVsc2Uge1xuICAgIHJldHVybiBuZXcgTXVsdGlwbHkoY29uZmlnKTtcbiAgfVxufVxuXG5leHBvcnQgY2xhc3MgQXZlcmFnZSBleHRlbmRzIE1lcmdlIHtcbiAgLyoqIEBub2NvbGxhcHNlICovXG4gIHN0YXRpYyBjbGFzc05hbWUgPSAnQXZlcmFnZSc7XG4gIGNvbnN0cnVjdG9yKGFyZ3M/OiBMYXllckFyZ3MpIHtcbiAgICBzdXBlcihhcmdzKTtcbiAgfVxuXG4gIHByb3RlY3RlZCBvdmVycmlkZSBtZXJnZUZ1bmN0aW9uKGlucHV0czogVGVuc29yW10pOiBUZW5zb3Ige1xuICAgIHJldHVybiB0aWR5KCgpID0+IHtcbiAgICAgIGxldCBvdXRwdXQgPSBpbnB1dHNbMF0uY2xvbmUoKTtcbiAgICAgIGZvciAobGV0IGkgPSAxOyBpIDwgaW5wdXRzLmxlbmd0aDsgKytpKSB7XG4gICAgICAgIG91dHB1dCA9IHRmYy5hZGQob3V0cHV0LCBpbnB1dHNbaV0pO1xuICAgICAgfVxuICAgICAgcmV0dXJuIHRmYy5tdWwoMSAvIGlucHV0cy5sZW5ndGgsIG91dHB1dCk7XG4gICAgfSk7XG4gIH1cbn1cbnNlcmlhbGl6YXRpb24ucmVnaXN0ZXJDbGFzcyhBdmVyYWdlKTtcblxuLyoqXG4gKiBDYWxjdWxhdGUgdGhlIGVsZW1lbnQtd2lzZSBhcml0aG1ldGljIG1lYW4gb2YgaW5wdXRzLCB3aGljaCBhbGwgaGF2ZSB0aGUgc2FtZVxuICogc2hhcGUuXG4gKlxuICogVGhpcyBmdW5jdGlvbiBjYW4gYmUgaW52b2tlZCBpbiB0aHJlZSB3YXlzLlxuICpcbiAqIDEuIENvbnN0cnVjdCBhbiBpbnN0YW5jZSBvZiBgQXZlcmFnZWAgbGF5ZXIsIGJ5IHVzaW5nIG5vIGlucHV0IGFyZ3VtZW50XG4gKiAgICBvciBhIHNpbmdsZSBjb25maWd1cmF0aW9uIGFyZ3VtZW50LiBUaGUgcmVzdWx0YW50IGBBdmVyYWdlYCBsYXllciBjYW4gdGhlblxuICogICAgYmUgdXNlZCBvbiBgdGYuU3ltYm9saWNUZW5zb3JgcyBvciBgdGYuVGVuc29yYHMuIEZvciBleGFtcGxlOlxuICpcbiAqIGBgYGpzXG4gKiBjb25zdCBhdmVyYWdlTGF5ZXIgPSB0Zi5sYXllcnMuYXZlcmFnZSgpO1xuICpcbiAqIC8vIFRoZSBsYXllciBjYW4gYmUgYXBwbGllZCB0byBpbnB1dHMuXG4gKiBjb25zdCBpbnB1dDEgPSB0Zi5pbnB1dCh7c2hhcGU6IFsyLCAyXX0pO1xuICogY29uc3QgaW5wdXQyID0gdGYuaW5wdXQoe3NoYXBlOiBbMiwgMl19KTtcbiAqIGNvbnN0IG91dHB1dCA9IGF2ZXJhZ2VMYXllci5hcHBseShbaW5wdXQxLCBpbnB1dDJdKTtcbiAqIGNvbnNvbGUubG9nKG91dHB1dC5zaGFwZSk7XG4gKiAvLyBZb3UgZ2V0IFtudWxsLCAyLCAyXSwgd2l0aCB0aGUgZmlyc3QgZGltZW5zaW9uIGFzIHRoZSB1bmRldGVybWluZWQgYmF0Y2hcbiAqIC8vIGRpbWVuc2lvbi5cbiAqIGBgYFxuICpcbiAqIDIuIEludm9rZSBkaXJlY3RseSBvbiBhbiBgQXJyYXlgIG9mIGB0Zi5TeW1ib2xpY1RlbnNvcmBzLiBUaGlzIGNvbnN0cnVjdHNcbiAqICAgIGFuIGBMYXllcmAgb2JqZWN0IGludGVybmFsbHkgYW5kIGNhbGxzIGl0cyBgYXBwbHlgIG1ldGhvZCBvbiB0aGUgaW5wdXRzLFxuICogICAgZ2VuZXJhdGluZyBhIG5ldyBgdGYuU3ltYm9saWNUZW5zb3JgLiBGb3IgZXhhbXBsZTpcbiAqXG4gKiBgYGBqc1xuICogY29uc3QgaW5wdXQxID0gdGYuaW5wdXQoe3NoYXBlOiBbMiwgMl19KTtcbiAqIGNvbnN0IGlucHV0MiA9IHRmLmlucHV0KHtzaGFwZTogWzIsIDJdfSk7XG4gKiBjb25zdCBvdXRwdXQgPSB0Zi5sYXllcnMuYXZlcmFnZShbaW5wdXQxLCBpbnB1dDJdKTtcbiAqIGNvbnNvbGUubG9nKG91dHB1dC5zaGFwZSk7XG4gKiAvLyBZb3UgZ2V0IFtudWxsLCAyLCAyXSwgd2l0aCB0aGUgZmlyc3QgZGltZW5zaW9uIGFzIHRoZSB1bmRldGVybWluZWQgYmF0Y2hcbiAqIC8vIGRpbWVuc2lvbi5cbiAqIGBgYFxuICpcbiAqIDMuIEludm9rZSBkaXJlY3RseSBvbiBgdGYuVGVuc29yYHMsIGkuZS4sIGNvbmNyZXRlIHZhbHVlcy4gVGhpcyBjb25zdHJ1Y3RzXG4gKiAgICBhbiBgTGF5ZXJgIG9iamVjdCBpbnRlcm5hbGx5IGFuZCBjYWxscyBpdHMgYGFwcGx5YCBtZXRob2Qgb24gdGhlIGlucHV0cyxcbiAqICAgIGdlbmVyYXRpbmcgYSBuZXcgYHRmLlRlbnNvcmAgYXMgdGhlIHJlc3VsdCBvZiB0aGUgY29tcHV0YXRpb24uIEZvclxuICogZXhhbXBsZTpcbiAqXG4gKiBgYGBqc1xuICogY29uc3QgaW5wdXQxID0gdGYudGVuc29yMmQoWzEsIDIsIDMsIDRdLCBbMiwgMl0pO1xuICogY29uc3QgaW5wdXQyID0gdGYudGVuc29yMmQoWzEwLCAyMCwgMzAsIDQwXSwgWzIsIDJdKTtcbiAqIHRmLmxheWVycy5hdmVyYWdlKFtpbnB1dDEsIGlucHV0Ml0pLnByaW50KCk7XG4gKiAvLyBHaXZlcyBbWzUuNSwgMTFdLCBbMTYuNSwgMjJdXS5cbiAqXG4gKi9cbmV4cG9ydCBmdW5jdGlvbiBhdmVyYWdlKGNvbmZpZz86IFN5bWJvbGljVGVuc29yW118VGVuc29yW118TGF5ZXJBcmdzKTogTGF5ZXJ8XG4gICAgU3ltYm9saWNUZW5zb3J8VGVuc29yIHtcbiAgaWYgKEFycmF5LmlzQXJyYXkoY29uZmlnKSkge1xuICAgIGNvbnN0IGxheWVyID0gbmV3IEF2ZXJhZ2Uoe30pO1xuICAgIHJldHVybiBsYXllci5hcHBseShjb25maWcpIGFzIFN5bWJvbGljVGVuc29yIHwgVGVuc29yO1xuICB9IGVsc2Uge1xuICAgIHJldHVybiBuZXcgQXZlcmFnZShjb25maWcpO1xuICB9XG59XG5cbmV4cG9ydCBjbGFzcyBNYXhpbXVtIGV4dGVuZHMgTWVyZ2Uge1xuICAvKiogQG5vY29sbGFwc2UgKi9cbiAgc3RhdGljIGNsYXNzTmFtZSA9ICdNYXhpbXVtJztcbiAgY29uc3RydWN0b3IoYXJncz86IExheWVyQXJncykge1xuICAgIHN1cGVyKGFyZ3MpO1xuICB9XG5cbiAgcHJvdGVjdGVkIG92ZXJyaWRlIG1lcmdlRnVuY3Rpb24oaW5wdXRzOiBUZW5zb3JbXSk6IFRlbnNvciB7XG4gICAgcmV0dXJuIHRpZHkoKCkgPT4ge1xuICAgICAgbGV0IG91dHB1dCA9IGlucHV0c1swXTtcbiAgICAgIGZvciAobGV0IGkgPSAxOyBpIDwgaW5wdXRzLmxlbmd0aDsgKytpKSB7XG4gICAgICAgIG91dHB1dCA9IHRmYy5tYXhpbXVtKG91dHB1dCwgaW5wdXRzW2ldKTtcbiAgICAgIH1cbiAgICAgIHJldHVybiBvdXRwdXQ7XG4gICAgfSk7XG4gIH1cbn1cbnNlcmlhbGl6YXRpb24ucmVnaXN0ZXJDbGFzcyhNYXhpbXVtKTtcblxuLyoqXG4gKiBDYWxjdWxhdGUgdGhlIGVsZW1lbnQtd2lzZSBtYXhpbXVtIG9mIGlucHV0cywgd2hpY2ggYWxsIGhhdmUgdGhlIHNhbWUgc2hhcGUuXG4gKlxuICogVGhpcyBmdW5jdGlvbiBjYW4gYmUgaW52b2tlZCBpbiB0aHJlZSB3YXlzLlxuICpcbiAqIDEuIENvbnN0cnVjdCBhbiBpbnN0YW5jZSBvZiBgTWF4aW11bWAgbGF5ZXIsIGJ5IHVzaW5nIG5vIGlucHV0IGFyZ3VtZW50XG4gKiAgICBvciBhIHNpbmdsZSBjb25maWd1cmF0aW9uIGFyZ3VtZW50LiBUaGUgcmVzdWx0YW50IGBNYXhpbXVtYCBsYXllciBjYW4gdGhlblxuICogICAgYmUgdXNlZCBvbiBgdGYuU3ltYm9saWNUZW5zb3JgcyBvciBgdGYuVGVuc29yYHMuIEZvciBleGFtcGxlOlxuICpcbiAqIGBgYGpzXG4gKiBjb25zdCBtYXhpbXVtTGF5ZXIgPSB0Zi5sYXllcnMubWF4aW11bSgpO1xuICpcbiAqIC8vIFRoZSBsYXllciBjYW4gYmUgYXBwbGllZCB0byBpbnB1dHMuXG4gKiBjb25zdCBpbnB1dDEgPSB0Zi5pbnB1dCh7c2hhcGU6IFsyLCAyXX0pO1xuICogY29uc3QgaW5wdXQyID0gdGYuaW5wdXQoe3NoYXBlOiBbMiwgMl19KTtcbiAqIGNvbnN0IG91dHB1dCA9IG1heGltdW1MYXllci5hcHBseShbaW5wdXQxLCBpbnB1dDJdKTtcbiAqIGNvbnNvbGUubG9nKG91dHB1dC5zaGFwZSk7XG4gKiAvLyBZb3UgZ2V0IFtudWxsLCAyLCAyXSwgd2l0aCB0aGUgZmlyc3QgZGltZW5zaW9uIGFzIHRoZSB1bmRldGVybWluZWQgYmF0Y2hcbiAqIC8vIGRpbWVuc2lvbi5cbiAqIGBgYFxuICpcbiAqIDIuIEludm9rZSBkaXJlY3RseSBvbiBhbiBgQXJyYXlgIG9mIGB0Zi5TeW1ib2xpY1RlbnNvcmBzLiBUaGlzIGNvbnN0cnVjdHNcbiAqICAgIGFuIGBMYXllcmAgb2JqZWN0IGludGVybmFsbHkgYW5kIGNhbGxzIGl0cyBgYXBwbHlgIG1ldGhvZCBvbiB0aGUgaW5wdXRzLFxuICogICAgZ2VuZXJhdGluZyBhIG5ldyBgdGYuU3ltYm9saWNUZW5zb3JgLiBGb3IgZXhhbXBsZTpcbiAqXG4gKiBgYGBqc1xuICogY29uc3QgaW5wdXQxID0gdGYuaW5wdXQoe3NoYXBlOiBbMiwgMl19KTtcbiAqIGNvbnN0IGlucHV0MiA9IHRmLmlucHV0KHtzaGFwZTogWzIsIDJdfSk7XG4gKiBjb25zdCBvdXRwdXQgPSB0Zi5sYXllcnMubWF4aW11bShbaW5wdXQxLCBpbnB1dDJdKTtcbiAqIGNvbnNvbGUubG9nKG91dHB1dC5zaGFwZSk7XG4gKiAvLyBZb3UgZ2V0IFtudWxsLCAyLCAyXSwgd2l0aCB0aGUgZmlyc3QgZGltZW5zaW9uIGFzIHRoZSB1bmRldGVybWluZWQgYmF0Y2hcbiAqIC8vIGRpbWVuc2lvbi5cbiAqIGBgYFxuICpcbiAqIDMuIEludm9rZSBkaXJlY3RseSBvbiBgdGYuVGVuc29yYHMsIGkuZS4sIGNvbmNyZXRlIHZhbHVlcy4gVGhpcyBjb25zdHJ1Y3RzXG4gKiAgICBhbiBgTGF5ZXJgIG9iamVjdCBpbnRlcm5hbGx5IGFuZCBjYWxscyBpdHMgYGFwcGx5YCBtZXRob2Qgb24gdGhlIGlucHV0cyxcbiAqICAgIGdlbmVyYXRpbmcgYSBuZXcgYHRmLlRlbnNvcmAgYXMgdGhlIHJlc3VsdCBvZiB0aGUgY29tcHV0YXRpb24uIEZvclxuICogZXhhbXBsZTpcbiAqXG4gKiBgYGBqc1xuICogY29uc3QgaW5wdXQxID0gdGYudGVuc29yMmQoWzEsIDIwLCAzLCA0MF0sIFsyLCAyXSk7XG4gKiBjb25zdCBpbnB1dDIgPSB0Zi50ZW5zb3IyZChbMTAsIDIsIDMwLCA0XSwgWzIsIDJdKTtcbiAqIHRmLmxheWVycy5tYXhpbXVtKFtpbnB1dDEsIGlucHV0Ml0pLnByaW50KCk7XG4gKiAvLyBHaXZlcyBbWzEwLCAyMF0sIFszMCwgNDBdXS5cbiAqXG4gKi9cbmV4cG9ydCBmdW5jdGlvbiBtYXhpbXVtKGNvbmZpZz86IFN5bWJvbGljVGVuc29yW118VGVuc29yW118TGF5ZXJBcmdzKTogTGF5ZXJ8XG4gICAgU3ltYm9saWNUZW5zb3J8VGVuc29yIHtcbiAgaWYgKEFycmF5LmlzQXJyYXkoY29uZmlnKSkge1xuICAgIGNvbnN0IGxheWVyID0gbmV3IE1heGltdW0oe30pO1xuICAgIHJldHVybiBsYXllci5hcHBseShjb25maWcpIGFzIFN5bWJvbGljVGVuc29yIHwgVGVuc29yO1xuICB9IGVsc2Uge1xuICAgIHJldHVybiBuZXcgTWF4aW11bShjb25maWcpO1xuICB9XG59XG5cbmV4cG9ydCBjbGFzcyBNaW5pbXVtIGV4dGVuZHMgTWVyZ2Uge1xuICAvKiogQG5vY29sbGFwc2UgKi9cbiAgc3RhdGljIGNsYXNzTmFtZSA9ICdNaW5pbXVtJztcbiAgY29uc3RydWN0b3IoYXJncz86IExheWVyQXJncykge1xuICAgIHN1cGVyKGFyZ3MpO1xuICB9XG5cbiAgcHJvdGVjdGVkIG92ZXJyaWRlIG1lcmdlRnVuY3Rpb24oaW5wdXRzOiBUZW5zb3JbXSk6IFRlbnNvciB7XG4gICAgcmV0dXJuIHRpZHkoKCkgPT4ge1xuICAgICAgbGV0IG91dHB1dCA9IGlucHV0c1swXTtcbiAgICAgIGZvciAobGV0IGkgPSAxOyBpIDwgaW5wdXRzLmxlbmd0aDsgKytpKSB7XG4gICAgICAgIG91dHB1dCA9IHRmYy5taW5pbXVtKG91dHB1dCwgaW5wdXRzW2ldKTtcbiAgICAgIH1cbiAgICAgIHJldHVybiBvdXRwdXQ7XG4gICAgfSk7XG4gIH1cbn1cbnNlcmlhbGl6YXRpb24ucmVnaXN0ZXJDbGFzcyhNaW5pbXVtKTtcblxuLyoqXG4gKiBDYWxjdWxhdGUgdGhlIGVsZW1lbnQtd2lzZSBtaW5pbXVtIG9mIGlucHV0cywgd2hpY2ggYWxsIGhhdmUgdGhlIHNhbWUgc2hhcGUuXG4gKlxuICogVGhpcyBmdW5jdGlvbiBjYW4gYmUgaW52b2tlZCBpbiB0aHJlZSB3YXlzLlxuICpcbiAqIDEuIENvbnN0cnVjdCBhbiBpbnN0YW5jZSBvZiBgTWluaW11bWAgbGF5ZXIsIGJ5IHVzaW5nIG5vIGlucHV0IGFyZ3VtZW50XG4gKiAgICBvciBhIHNpbmdsZSBjb25maWd1cmF0aW9uIGFyZ3VtZW50LiBUaGUgcmVzdWx0YW50IGBNaW5pbXVtYCBsYXllciBjYW4gdGhlblxuICogICAgYmUgdXNlZCBvbiBgdGYuU3ltYm9saWNUZW5zb3JgcyBvciBgdGYuVGVuc29yYHMuIEZvciBleGFtcGxlOlxuICpcbiAqIGBgYGpzXG4gKiBjb25zdCBtaW5pbXVtTGF5ZXIgPSB0Zi5sYXllcnMubWluaW11bSgpO1xuICpcbiAqIC8vIFRoZSBsYXllciBjYW4gYmUgYXBwbGllZCB0byBpbnB1dHMuXG4gKiBjb25zdCBpbnB1dDEgPSB0Zi5pbnB1dCh7c2hhcGU6IFsyLCAyXX0pO1xuICogY29uc3QgaW5wdXQyID0gdGYuaW5wdXQoe3NoYXBlOiBbMiwgMl19KTtcbiAqIGNvbnN0IG91dHB1dCA9IG1pbmltdW1MYXllci5hcHBseShbaW5wdXQxLCBpbnB1dDJdKTtcbiAqIGNvbnNvbGUubG9nKG91dHB1dC5zaGFwZSk7XG4gKiAvLyBZb3UgZ2V0IFtudWxsLCAyLCAyXSwgd2l0aCB0aGUgZmlyc3QgZGltZW5zaW9uIGFzIHRoZSB1bmRldGVybWluZWQgYmF0Y2hcbiAqIC8vIGRpbWVuc2lvbi5cbiAqIGBgYFxuICpcbiAqIDIuIEludm9rZSBkaXJlY3RseSBvbiBhbiBgQXJyYXlgIG9mIGB0Zi5TeW1ib2xpY1RlbnNvcmBzLiBUaGlzIGNvbnN0cnVjdHNcbiAqICAgIGFuIGBMYXllcmAgb2JqZWN0IGludGVybmFsbHkgYW5kIGNhbGxzIGl0cyBgYXBwbHlgIG1ldGhvZCBvbiB0aGUgaW5wdXRzLFxuICogICAgZ2VuZXJhdGluZyBhIG5ldyBgdGYuU3ltYm9saWNUZW5zb3JgLiBGb3IgZXhhbXBsZTpcbiAqXG4gKiBgYGBqc1xuICogY29uc3QgaW5wdXQxID0gdGYuaW5wdXQoe3NoYXBlOiBbMiwgMl19KTtcbiAqIGNvbnN0IGlucHV0MiA9IHRmLmlucHV0KHtzaGFwZTogWzIsIDJdfSk7XG4gKiBjb25zdCBvdXRwdXQgPSB0Zi5sYXllcnMubWluaW11bShbaW5wdXQxLCBpbnB1dDJdKTtcbiAqIGNvbnNvbGUubG9nKG91dHB1dC5zaGFwZSk7XG4gKiAvLyBZb3UgZ2V0IFtudWxsLCAyLCAyXSwgd2l0aCB0aGUgZmlyc3QgZGltZW5zaW9uIGFzIHRoZSB1bmRldGVybWluZWQgYmF0Y2hcbiAqIC8vIGRpbWVuc2lvbi5cbiAqIGBgYFxuICpcbiAqIDMuIEludm9rZSBkaXJlY3RseSBvbiBgdGYuVGVuc29yYHMsIGkuZS4sIGNvbmNyZXRlIHZhbHVlcy4gVGhpcyBjb25zdHJ1Y3RzXG4gKiAgICBhbiBgTGF5ZXJgIG9iamVjdCBpbnRlcm5hbGx5IGFuZCBjYWxscyBpdHMgYGFwcGx5YCBtZXRob2Qgb24gdGhlIGlucHV0cyxcbiAqICAgIGdlbmVyYXRpbmcgYSBuZXcgYHRmLlRlbnNvcmAgYXMgdGhlIHJlc3VsdCBvZiB0aGUgY29tcHV0YXRpb24uIEZvclxuICogZXhhbXBsZTpcbiAqXG4gKiBgYGBqc1xuICogY29uc3QgaW5wdXQxID0gdGYudGVuc29yMmQoWzEsIDIwLCAzLCA0MF0sIFsyLCAyXSk7XG4gKiBjb25zdCBpbnB1dDIgPSB0Zi50ZW5zb3IyZChbMTAsIDIsIDMwLCA0XSwgWzIsIDJdKTtcbiAqIHRmLmxheWVycy5taW5pbXVtKFtpbnB1dDEsIGlucHV0Ml0pLnByaW50KCk7XG4gKiAvLyBHaXZlcyBbWzEsIDJdLCBbMywgNF1dLlxuICpcbiAqL1xuZXhwb3J0IGZ1bmN0aW9uIG1pbmltdW0oY29uZmlnPzogU3ltYm9saWNUZW5zb3JbXXxUZW5zb3JbXXxMYXllckFyZ3MpOiBMYXllcnxcbiAgICBTeW1ib2xpY1RlbnNvcnxUZW5zb3Ige1xuICBpZiAoQXJyYXkuaXNBcnJheShjb25maWcpKSB7XG4gICAgY29uc3QgbGF5ZXIgPSBuZXcgTWluaW11bSh7fSk7XG4gICAgcmV0dXJuIGxheWVyLmFwcGx5KGNvbmZpZykgYXMgU3ltYm9saWNUZW5zb3IgfCBUZW5zb3I7XG4gIH0gZWxzZSB7XG4gICAgcmV0dXJuIG5ldyBNaW5pbXVtKGNvbmZpZyk7XG4gIH1cbn1cblxuZXhwb3J0IGRlY2xhcmUgaW50ZXJmYWNlIENvbmNhdGVuYXRlTGF5ZXJBcmdzIGV4dGVuZHMgTGF5ZXJBcmdzIHtcbiAgLyoqXG4gICAqIEF4aXMgYWxvbmcgd2hpY2ggdG8gY29uY2F0ZW5hdGUuXG4gICAqL1xuICBheGlzPzogbnVtYmVyO1xufVxuXG5leHBvcnQgY2xhc3MgQ29uY2F0ZW5hdGUgZXh0ZW5kcyBNZXJnZSB7XG4gIC8qKiBAbm9jb2xsYXBzZSAqL1xuICBzdGF0aWMgY2xhc3NOYW1lID0gJ0NvbmNhdGVuYXRlJztcbiAgcmVhZG9ubHkgREVGQVVMVF9BWElTID0gLTE7XG4gIHByaXZhdGUgcmVhZG9ubHkgYXhpczogbnVtYmVyO1xuXG4gIGNvbnN0cnVjdG9yKGFyZ3M/OiBDb25jYXRlbmF0ZUxheWVyQXJncykge1xuICAgIHN1cGVyKGFyZ3MpO1xuICAgIGlmIChhcmdzID09IG51bGwpIHtcbiAgICAgIGFyZ3MgPSB7fTtcbiAgICB9XG4gICAgdGhpcy5heGlzID0gYXJncy5heGlzID09IG51bGwgPyB0aGlzLkRFRkFVTFRfQVhJUyA6IGFyZ3MuYXhpcztcbiAgICB0aGlzLnN1cHBvcnRzTWFza2luZyA9IHRydWU7XG4gICAgdGhpcy5yZXNoYXBlUmVxdWlyZWQgPSBmYWxzZTtcbiAgfVxuXG4gIG92ZXJyaWRlIGJ1aWxkKGlucHV0U2hhcGU6IFNoYXBlfFNoYXBlW10pOiB2b2lkIHtcbiAgICAvLyBVc2VkIHB1cmVseSBmb3Igc2hhcGUgdmFsaWRhdGlvbi5dXG4gICAgaWYgKCEoQXJyYXkuaXNBcnJheShpbnB1dFNoYXBlKSAmJiBBcnJheS5pc0FycmF5KGlucHV0U2hhcGVbMF0pKSB8fFxuICAgICAgICBpbnB1dFNoYXBlLmxlbmd0aCA9PT0gMSkge1xuICAgICAgdGhyb3cgbmV3IFZhbHVlRXJyb3IoXG4gICAgICAgICAgJ0EgYENvbmNhdGVuYXRlYCBsYXllciBzaG91bGQgYmUgY2FsbGVkIG9uIGEgbGlzdCBvZiBhdCBsZWFzdCAyICcgK1xuICAgICAgICAgICdpbnB1dHMnKTtcbiAgICB9XG4gICAgaW5wdXRTaGFwZSA9IGlucHV0U2hhcGUgYXMgU2hhcGVbXTtcblxuICAgIGxldCBhbGxOb25lU2hhcGUgPSB0cnVlO1xuICAgIGZvciAoY29uc3Qgc2hhcGUgb2YgaW5wdXRTaGFwZSkge1xuICAgICAgaWYgKHNoYXBlICE9IG51bGwpIHtcbiAgICAgICAgYWxsTm9uZVNoYXBlID0gZmFsc2U7XG4gICAgICAgIGJyZWFrO1xuICAgICAgfVxuICAgIH1cbiAgICBpZiAoYWxsTm9uZVNoYXBlKSB7XG4gICAgICByZXR1cm47XG4gICAgfVxuXG4gICAgY29uc3Qgc2hhcGVTZXQ6IFNoYXBlW10gPSBbXTtcbiAgICBmb3IgKGxldCBpID0gMDsgaSA8IGlucHV0U2hhcGUubGVuZ3RoOyArK2kpIHtcbiAgICAgIGNvbnN0IHNoYXBlV2l0aG91dENvbmNhdEF4aXMgPSBpbnB1dFNoYXBlW2ldLnNsaWNlKCk7XG4gICAgICBzaGFwZVdpdGhvdXRDb25jYXRBeGlzLnNwbGljZSh0aGlzLmF4aXMsIDEpO1xuICAgICAgbGV0IGV4aXN0cyA9IGZhbHNlO1xuICAgICAgZm9yIChjb25zdCBzaGFwZSBvZiBzaGFwZVNldCkge1xuICAgICAgICBpZiAodXRpbC5hcnJheXNFcXVhbChzaGFwZSwgc2hhcGVXaXRob3V0Q29uY2F0QXhpcykpIHtcbiAgICAgICAgICBleGlzdHMgPSB0cnVlO1xuICAgICAgICAgIGJyZWFrO1xuICAgICAgICB9XG4gICAgICB9XG4gICAgICBpZiAoIWV4aXN0cykge1xuICAgICAgICBzaGFwZVNldC5wdXNoKHNoYXBlV2l0aG91dENvbmNhdEF4aXMpO1xuICAgICAgfVxuICAgIH1cbiAgICBpZiAoc2hhcGVTZXQubGVuZ3RoID4gMSkge1xuICAgICAgdGhyb3cgbmV3IFZhbHVlRXJyb3IoXG4gICAgICAgICAgJ0EgYENvbmNhdGVuYXRlYCBsYXllciByZXF1aXJlcyBpbnB1dHMgd2l0aCBtYXRjaGluZyBzaGFwZXMgJyArXG4gICAgICAgICAgJ2V4Y2VwdCBmb3IgdGhlIGNvbmNhdCBheGlzLiBHb3QgaW5wdXQgc2hhcGVzOiAnICtcbiAgICAgICAgICBKU09OLnN0cmluZ2lmeShpbnB1dFNoYXBlKSk7XG4gICAgfVxuICB9XG5cbiAgcHJvdGVjdGVkIG92ZXJyaWRlIG1lcmdlRnVuY3Rpb24oaW5wdXRzOiBUZW5zb3JbXSk6IFRlbnNvciB7XG4gICAgcmV0dXJuIHRpZHkoKCkgPT4ge1xuICAgICAgcmV0dXJuIEsuY29uY2F0ZW5hdGUoaW5wdXRzLCB0aGlzLmF4aXMpO1xuICAgIH0pO1xuICB9XG5cbiAgb3ZlcnJpZGUgY29tcHV0ZU91dHB1dFNoYXBlKGlucHV0U2hhcGU6IFNoYXBlfFNoYXBlW10pOiBTaGFwZXxTaGFwZVtdIHtcbiAgICBpZiAoIShBcnJheS5pc0FycmF5KGlucHV0U2hhcGUpICYmIEFycmF5LmlzQXJyYXkoaW5wdXRTaGFwZVswXSkpKSB7XG4gICAgICB0aHJvdyBuZXcgVmFsdWVFcnJvcihcbiAgICAgICAgICAnQSBgQ29uY2F0ZW5hdGVgIGxheWVyIHNob3VsZCBiZSBjYWxsZWQgb24gYSBsaXN0IG9mIGlucHV0cy4nKTtcbiAgICB9XG4gICAgY29uc3QgaW5wdXRTaGFwZXMgPSBpbnB1dFNoYXBlIGFzIFNoYXBlW107XG4gICAgY29uc3Qgb3V0cHV0U2hhcGUgPSBpbnB1dFNoYXBlc1swXS5zbGljZSgpO1xuICAgIGNvbnN0IGF4aXMgPSB0aGlzLmF4aXMgPCAwID8gb3V0cHV0U2hhcGUubGVuZ3RoICsgdGhpcy5heGlzIDogdGhpcy5heGlzO1xuICAgIC8vIFBvcnRpbmcgTm90ZTogdGhlIGxpbmUgYWJvdmUgaXMgYmVjYXVzZSBUeXBlU2NyaXB0IGRvZXNuJ3Qgc3VwcG9ydFxuICAgIC8vICAgbmVnYXRpdmUgaW5kaWNlcy5cbiAgICBmb3IgKGNvbnN0IHNoYXBlIG9mIGlucHV0U2hhcGVzLnNsaWNlKDEpKSB7XG4gICAgICBpZiAob3V0cHV0U2hhcGVbYXhpc10gPT0gbnVsbCB8fCBzaGFwZVtheGlzXSA9PSBudWxsKSB7XG4gICAgICAgIG91dHB1dFNoYXBlW2F4aXNdID0gbnVsbDtcbiAgICAgICAgYnJlYWs7XG4gICAgICB9XG4gICAgICBvdXRwdXRTaGFwZVtheGlzXSArPSBzaGFwZVtheGlzXTtcbiAgICB9XG4gICAgcmV0dXJuIG91dHB1dFNoYXBlO1xuICB9XG5cbiAgb3ZlcnJpZGUgY29tcHV0ZU1hc2soaW5wdXRzOiBUZW5zb3J8VGVuc29yW10sIG1hc2s/OiBUZW5zb3J8VGVuc29yW10pOlxuICAgICAgVGVuc29yIHtcbiAgICBpZiAobWFzayA9PSBudWxsKSB7XG4gICAgICByZXR1cm4gbnVsbDtcbiAgICB9XG4gICAgaWYgKCFBcnJheS5pc0FycmF5KG1hc2spKSB7XG4gICAgICB0aHJvdyBuZXcgVmFsdWVFcnJvcignYG1hc2tgIHNob3VsZCBiZSBhbiBhcnJheSBmb3IgQ29uY2F0ZW5hdGUnKTtcbiAgICB9XG4gICAgaWYgKCFBcnJheS5pc0FycmF5KGlucHV0cykpIHtcbiAgICAgIHRocm93IG5ldyBWYWx1ZUVycm9yKCdgaW5wdXRzYCBzaG91bGQgYmUgYW4gYXJyYXkgZm9yIENvbmNhdGVuYXRlJyk7XG4gICAgfVxuICAgIGlmIChtYXNrLmxlbmd0aCAhPT0gaW5wdXRzLmxlbmd0aCkge1xuICAgICAgdGhyb3cgbmV3IFZhbHVlRXJyb3IoXG4gICAgICAgICAgYE1pc21hdGNoIGluIHRoZSBsZW5ndGggb2YgbWFzayAoJHttYXNrLmxlbmd0aH0pIGAgK1xuICAgICAgICAgIGBhbmQgdGhlIGxlZ250aCBvZiBpbnB1dHMgKCR7aW5wdXRzLmxlbmd0aH0pYCk7XG4gICAgfVxuICAgIHJldHVybiB0ZmMudGlkeSgoKSA9PiB7XG4gICAgICBsZXQgYWxsTnVsbE1hc2tzID0gdHJ1ZTtcbiAgICAgIG1hc2suZm9yRWFjaChtID0+IHtcbiAgICAgICAgaWYgKG0gIT0gbnVsbCkge1xuICAgICAgICAgIGFsbE51bGxNYXNrcyA9IGZhbHNlO1xuICAgICAgICAgIHJldHVybjtcbiAgICAgICAgfVxuICAgICAgfSk7XG4gICAgICBpZiAoYWxsTnVsbE1hc2tzKSB7XG4gICAgICAgIHJldHVybiBudWxsO1xuICAgICAgfVxuICAgICAgY29uc3Qgb3V0cHV0TWFza3M6IFRlbnNvcltdID0gW107XG4gICAgICBmb3IgKGxldCBpID0gMDsgaSA8IGlucHV0cy5sZW5ndGg7ICsraSkge1xuICAgICAgICBpZiAobWFza1tpXSA9PSBudWxsKSB7XG4gICAgICAgICAgLy8gSW5wdXQgaXMgdW5tYXNrZWQuIEFwcGVuZCBhbGwgMSdzIHRvIG1hc2tzLlxuICAgICAgICAgIG91dHB1dE1hc2tzLnB1c2godGZjLmNhc3QodGZjLm9uZXNMaWtlKGlucHV0c1tpXSksICdib29sJykpO1xuICAgICAgICB9IGVsc2UgaWYgKG1hc2tbaV0ucmFuayA8IGlucHV0c1tpXS5yYW5rKSB7XG4gICAgICAgICAgLy8gTWFzayBpcyBzbWFsbGVyIHRoYW4gdGhlIGlucHV0LCBleHBhbmQgaXQuXG4gICAgICAgICAgb3V0cHV0TWFza3MucHVzaCh0ZmMuZXhwYW5kRGltcyhtYXNrW2ldLCAtMSkpO1xuICAgICAgICB9IGVsc2Uge1xuICAgICAgICAgIG91dHB1dE1hc2tzLnB1c2gobWFza1tpXSk7XG4gICAgICAgIH1cbiAgICAgIH1cbiAgICAgIGNvbnN0IGNvbmNhdGVuYXRlZE1hc2tzID0gdGZjLmNvbmNhdChvdXRwdXRNYXNrcywgdGhpcy5heGlzKTtcbiAgICAgIHJldHVybiB0ZmMuYWxsKGNvbmNhdGVuYXRlZE1hc2tzLCAtMSwgZmFsc2UpO1xuICAgIH0pO1xuICB9XG5cbiAgb3ZlcnJpZGUgZ2V0Q29uZmlnKCk6IHNlcmlhbGl6YXRpb24uQ29uZmlnRGljdCB7XG4gICAgY29uc3QgY29uZmlnOiBzZXJpYWxpemF0aW9uLkNvbmZpZ0RpY3QgPSB7XG4gICAgICAnYXhpcyc6IHRoaXMuYXhpcyxcbiAgICB9O1xuICAgIGNvbnN0IGJhc2VDb25maWcgPSBzdXBlci5nZXRDb25maWcoKTtcbiAgICBPYmplY3QuYXNzaWduKGNvbmZpZywgYmFzZUNvbmZpZyk7XG4gICAgcmV0dXJuIGNvbmZpZztcbiAgfVxufVxuc2VyaWFsaXphdGlvbi5yZWdpc3RlckNsYXNzKENvbmNhdGVuYXRlKTtcblxuLyoqXG4gKiBDb25jYXRlbmF0ZSBhbiBgQXJyYXlgIG9mIGlucHV0cy5cbiAqXG4gKiBUaGlzIGZ1bmN0aW9uIGNhbiBiZSBpbnZva2VkIGluIHRocmVlIHdheXMuXG4gKlxuICogMS4gQ29uc3RydWN0IGFuIGluc3RhbmNlIG9mIGBDb25jYXRlbmF0ZWAgbGF5ZXIsIGJ5IHVzaW5nIG5vIGlucHV0IGFyZ3VtZW50XG4gKiAgICBvciBhIHNpbmdsZSBjb25maWd1cmF0aW9uIGFyZ3VtZW50LiBUaGUgcmVzdWx0YW50IGBDb25jYXRlbmF0ZWAgbGF5ZXIgY2FuXG4gKiAgICB0aGVuIGJlIHVzZWQgb24gYHRmLlN5bWJvbGljVGVuc29yYHMgb3IgYHRmLlRlbnNvcmBzLiBGb3IgZXhhbXBsZTpcbiAqXG4gKiBgYGBqc1xuICogY29uc3QgY29uY2F0TGF5ZXIgPSB0Zi5sYXllcnMuY29uY2F0ZW5hdGUoKTtcbiAqXG4gKiAvLyBUaGUgbGF5ZXIgY2FuIGJlIGFwcGxpZWQgdG8gaW5wdXRzLlxuICogY29uc3QgaW5wdXQxID0gdGYuaW5wdXQoe3NoYXBlOiBbMiwgM119KTtcbiAqIGNvbnN0IGlucHV0MiA9IHRmLmlucHV0KHtzaGFwZTogWzIsIDRdfSk7XG4gKiBjb25zdCBvdXRwdXQgPSBjb25jYXRMYXllci5hcHBseShbaW5wdXQxLCBpbnB1dDJdKTtcbiAqIGNvbnNvbGUubG9nKG91dHB1dC5zaGFwZSk7XG4gKiAvLyBZb3UgZ2V0IFtudWxsLCAyLCA3XSwgd2l0aCB0aGUgZmlyc3QgZGltZW5zaW9uIGFzIHRoZSB1bmRldGVybWluZWQgYmF0Y2hcbiAqIC8vIGRpbWVuc2lvbiBhbmQgdGhlIGxhc3QgZGltZW5zaW9uIGFzIHRoZSByZXN1bHQgb2YgY29uY2F0ZW5hdGluZyB0aGVcbiAqIC8vIGxhc3QgZGltZW5zaW9ucyBvZiB0aGUgdHdvIGlucHV0cy5cbiAqIGBgYFxuICpcbiAqIDIuIEludm9rZSBkaXJlY3RseSBvbiBhbiBgQXJyYXlgIG9mIGB0Zi5TeW1ib2xpY1RlbnNvcmBzLiBUaGlzIGNvbnN0cnVjdHNcbiAqICAgIGFuIGBMYXllcmAgb2JqZWN0IGludGVybmFsbHkgYW5kIGNhbGxzIGl0cyBgYXBwbHlgIG1ldGhvZCBvbiB0aGUgaW5wdXRzLFxuICogICAgZ2VuZXJhdGluZyBhIG5ldyBgdGYuU3ltYm9saWNUZW5zb3JgLiBGb3IgZXhhbXBsZTpcbiAqXG4gKiBgYGBqc1xuICogY29uc3QgaW5wdXQxID0gdGYuaW5wdXQoe3NoYXBlOiBbMiwgM119KTtcbiAqIGNvbnN0IGlucHV0MiA9IHRmLmlucHV0KHtzaGFwZTogWzIsIDRdfSk7XG4gKiBjb25zdCBvdXRwdXQgPSB0Zi5sYXllcnMuY29uY2F0ZW5hdGUoW2lucHV0MSwgaW5wdXQyXSk7XG4gKiBjb25zb2xlLmxvZyhvdXRwdXQuc2hhcGUpO1xuICogLy8gWW91IGdldCBbbnVsbCwgMiwgMl0sIHdpdGggdGhlIGZpcnN0IGRpbWVuc2lvbiBhcyB0aGUgdW5kZXRlcm1pbmVkIGJhdGNoXG4gKiAvLyBkaW1lbnNpb24gYW5kIHRoZSBsYXN0IGRpbWVuc2lvbiBhcyB0aGUgcmVzdWx0IG9mIGNvbmNhdGVuYXRpbmcgdGhlXG4gKiAvLyBsYXN0IGRpbWVuc2lvbnMgb2YgdGhlIHR3byBpbnB1dHMuXG4gKiBgYGBcbiAqXG4gKiAzLiBJbnZva2UgZGlyZWN0bHkgb24gYHRmLlRlbnNvcmBzLCBpLmUuLCBjb25jcmV0ZSB2YWx1ZXMuIFRoaXMgY29uc3RydWN0c1xuICogICAgYW4gYExheWVyYCBvYmplY3QgaW50ZXJuYWxseSBhbmQgY2FsbHMgaXRzIGBhcHBseWAgbWV0aG9kIG9uIHRoZSBpbnB1dHMsXG4gKiAgICBnZW5lcmF0aW5nIGEgbmV3IGB0Zi5UZW5zb3JgIGFzIHRoZSByZXN1bHQgb2YgdGhlIGNvbXB1dGF0aW9uLiBGb3JcbiAqIGV4YW1wbGU6XG4gKlxuICogYGBganNcbiAqIGNvbnN0IGlucHV0MSA9IHRmLnRlbnNvcjJkKFtbMSwgMl0sIFszLCA0XV0sIFsyLCAyXSk7XG4gKiBjb25zdCBpbnB1dDIgPSB0Zi50ZW5zb3IyZChbWzEwLCAyMF0sIFszMCwgNDBdXSwgWzIsIDJdKTtcbiAqIHRmLmxheWVycy5jb25jYXRlbmF0ZShbaW5wdXQxLCBpbnB1dDJdKS5wcmludCgpO1xuICogLy8gR2l2ZXMgW1sxLCAyLCAxMCwgMjBdLCBbMywgNCwgMzAsIDQwXV0uXG4gKlxuICovXG5leHBvcnQgZnVuY3Rpb24gY29uY2F0ZW5hdGUoY29uZmlnPzogU3ltYm9saWNUZW5zb3JbXXxUZW5zb3JbXXxcbiAgICAgICAgICAgICAgICAgICAgICAgICAgICBDb25jYXRlbmF0ZUxheWVyQXJncyk6IExheWVyfFN5bWJvbGljVGVuc29yfFRlbnNvciB7XG4gIGlmIChBcnJheS5pc0FycmF5KGNvbmZpZykpIHtcbiAgICBjb25zdCBsYXllciA9IG5ldyBDb25jYXRlbmF0ZSh7fSk7XG4gICAgcmV0dXJuIGxheWVyLmFwcGx5KGNvbmZpZykgYXMgU3ltYm9saWNUZW5zb3IgfCBUZW5zb3I7XG4gIH0gZWxzZSB7XG4gICAgcmV0dXJuIG5ldyBDb25jYXRlbmF0ZShjb25maWcpO1xuICB9XG59XG5cbmV4cG9ydCBkZWNsYXJlIGludGVyZmFjZSBEb3RMYXllckFyZ3MgZXh0ZW5kcyBMYXllckFyZ3Mge1xuICAvKipcbiAgICogQXhpcyBvciBheGVzIGFsb25nIHdoaWNoIHRoZSBkb3QgcHJvZHVjdCB3aWxsIGJlIHRha2VuLlxuICAgKlxuICAgKiBJbnRlZ2VyIG9yIGFuIEFycmF5IG9mIGludGVnZXJzLlxuICAgKi9cbiAgYXhlczogbnVtYmVyfFtudW1iZXIsIG51bWJlcl07XG5cbiAgLyoqXG4gICAqIFdoZXRoZXIgdG8gTDItbm9ybWFsaXplIHNhbXBsZXMgYWxvbmcgdGhlIGRvdCBwcm9kdWN0IGF4aXNcbiAgICogYmVmb3JlIHRha2luZyB0aGUgZG90IHByb2R1Y3QuXG4gICAqXG4gICAqIElmIHNldCB0byBgdHJ1ZWAsIHRoZSBvdXRwdXQgb2YgdGhlIGRvdCBwcm9kdWN0IGlzIHRoZSBjb3NpbmVcbiAgICogcHJveGltaXR5IGJldHdlZW4gdGhlIHR3byBzYW1wbGVzLlxuICAgKi9cbiAgbm9ybWFsaXplPzogYm9vbGVhbjtcbn1cblxuLyoqXG4gKiBJbnRlcnByZXRhYmxlIHBvdGVudGlhbGx5IG5lZ2F0aXZlIGF4aXMgaW5kZXguXG4gKlxuICogRm9yIGV4YW1wbGUsIGdpdmVuIGF4aXMgPSAtMSwgYW5kIGRpbSA9IDMsIHRoaXMgZnVuY3Rpb24gd2lsbCByZXR1cm4gMi5cbiAqXG4gKiBAcGFyYW0gYXhpcyBUaGUgYXhpcyBpbmRleCwgbWF5IGJlIGEgcG9zaXRpdmUsIHplcm8gb3IgbmVnYXRpdmUgaW50ZWdlci5cbiAqIEBwYXJhbSBkaW0gVG90YWwgbnVtYmVyIG9mIGRpbWVuc2lvbnMsIGEgcG9zaXRpdmUgaW50ZWdlci5cbiAqIEByZXR1cm5zIEEgbm9uLW5lZ2F0aXZlIGF4aXMgaW5kZXggZXF1aXZhbGVudCB0byB0aGUgaW5wdXQgYGF4aXNgLlxuICovXG5mdW5jdGlvbiBpbnRlcnByZXRBeGlzKGF4aXM6IG51bWJlciwgZGltOiBudW1iZXIpOiBudW1iZXIge1xuICB3aGlsZSAoYXhpcyA8IDApIHtcbiAgICBheGlzICs9IGRpbTtcbiAgfVxuICByZXR1cm4gYXhpcztcbn1cblxuZnVuY3Rpb24gYmF0Y2hEb3QoeDogVGVuc29yLCB5OiBUZW5zb3IsIGF4ZXM6IG51bWJlcnxbbnVtYmVyLCBudW1iZXJdKTogVGVuc29yIHtcbiAgaWYgKHguc2hhcGUubGVuZ3RoID4gMyB8fCB5LnNoYXBlLmxlbmd0aCA+IDMpIHtcbiAgICB0aHJvdyBuZXcgTm90SW1wbGVtZW50ZWRFcnJvcihcbiAgICAgICAgJ2JhdGNoRG90IGlzIG5vdCBpbXBsZW1lbnRlZCBmb3IgdGVuc29ycyBvZiA0RCBvciBoaWdoZXIgcmFuayB5ZXQnKTtcbiAgfVxuICB0ZmMudXRpbC5hc3NlcnQoXG4gICAgICB4LnNoYXBlLmxlbmd0aCA+PSAyLFxuICAgICAgKCkgPT4gYGJhdGNoRG90IHJlcXVpcmVzIHRoZSByYW5rIG9mIHggdG8gYmUgPj0gMiwgYCArXG4gICAgICAgICAgYGJ1dCBnb3QgJHt4LnNoYXBlLmxlbmd0aH1gKTtcbiAgdGZjLnV0aWwuYXNzZXJ0KFxuICAgICAgeC5zaGFwZS5sZW5ndGggPj0gMixcbiAgICAgICgpID0+IGBiYXRjaERvdCByZXF1aXJlcyB0aGUgcmFuayBvZiB5IHRvIGJlID49IDIsIGAgK1xuICAgICAgICAgIGBidXQgZ290ICR7eS5zaGFwZS5sZW5ndGh9YCk7XG5cbiAgaWYgKHR5cGVvZiBheGVzID09PSAnbnVtYmVyJykge1xuICAgIGF4ZXMgPSBbYXhlcywgYXhlc107XG4gIH1cblxuICBpZiAoeC5kdHlwZSA9PT0gJ2NvbXBsZXg2NCcgfHwgeS5kdHlwZSA9PT0gJ2NvbXBsZXg2NCcpIHtcbiAgICB0aHJvdyBuZXcgTm90SW1wbGVtZW50ZWRFcnJvcihcbiAgICAgICAgJ2JhdGNoRG90IGlzIG5vdCBpbXBsZW1lbnRlZCBmb3IgY29tcGxleDY0LXR5cGUgVGVuc29ycyB5ZXQuJyk7XG4gIH1cblxuICBjb25zdCB4TkRpbSA9IHguc2hhcGUubGVuZ3RoO1xuICBjb25zdCB5TkRpbSA9IHkuc2hhcGUubGVuZ3RoO1xuICBpZiAoYXhlcyA9PSBudWxsKSB7XG4gICAgLy8gQmVoYXZlIGxpa2UgYmF0Y2hNYXRtdWwgYnkgZGVmYXVsdC5cbiAgICBheGVzID0gW3hORGltIC0gMSwgeU5EaW0gLSAyXTtcbiAgfVxuICBjb25zdCBheGVzQXJyYXkgPSBheGVzIGFzIFtudW1iZXIsIG51bWJlcl07XG5cbiAgcmV0dXJuIHRmYy50aWR5KCgpID0+IHtcbiAgICBsZXQgZGlmZjogbnVtYmVyO1xuICAgIGlmICh4TkRpbSA+IHlORGltKSB7XG4gICAgICBkaWZmID0geE5EaW0gLSB5TkRpbTtcbiAgICAgIGNvbnN0IGRpZmZTaGFwZTogU2hhcGUgPSBbXTtcbiAgICAgIGZvciAobGV0IGkgPSAwOyBpIDwgZGlmZjsgKytpKSB7XG4gICAgICAgIGRpZmZTaGFwZS5wdXNoKDEpO1xuICAgICAgfVxuICAgICAgeSA9IHRmYy5yZXNoYXBlKHksIHkuc2hhcGUuY29uY2F0KGRpZmZTaGFwZSkpO1xuICAgIH0gZWxzZSBpZiAoeU5EaW0gPiB4TkRpbSkge1xuICAgICAgZGlmZiA9IHlORGltIC0geE5EaW07XG4gICAgICBjb25zdCBkaWZmU2hhcGU6IFNoYXBlID0gW107XG4gICAgICBmb3IgKGxldCBpID0gMDsgaSA8IGRpZmY7ICsraSkge1xuICAgICAgICBkaWZmU2hhcGUucHVzaCgxKTtcbiAgICAgIH1cbiAgICAgIHggPSB0ZmMucmVzaGFwZSh4LCB4LnNoYXBlLmNvbmNhdChkaWZmU2hhcGUpKTtcbiAgICB9IGVsc2Uge1xuICAgICAgZGlmZiA9IDA7XG4gICAgfVxuXG4gICAgbGV0IG91dDogVGVuc29yO1xuICAgIGlmICh4LnNoYXBlLmxlbmd0aCA9PT0gMiAmJiB5LnNoYXBlLmxlbmd0aCA9PT0gMikge1xuICAgICAgaWYgKGF4ZXNBcnJheVswXSA9PT0gYXhlc0FycmF5WzFdKSB7XG4gICAgICAgIG91dCA9IHRmYy5zdW0odGZjLm11bCh4LCB5KSwgYXhlc0FycmF5WzBdKTtcbiAgICAgIH0gZWxzZSB7XG4gICAgICAgIG91dCA9IHRmYy5zdW0odGZjLm11bCh0ZmMudHJhbnNwb3NlKHgsIFsxLCAwXSksIHkpLCBheGVzQXJyYXlbMV0pO1xuICAgICAgfVxuICAgIH0gZWxzZSB7XG4gICAgICBjb25zdCBhZGpYID0gYXhlc0FycmF5WzBdICE9PSB4LnNoYXBlLmxlbmd0aCAtIDE7XG4gICAgICBjb25zdCBhZGpZID0gYXhlc0FycmF5WzFdID09PSB5LnNoYXBlLmxlbmd0aCAtIDE7XG4gICAgICBvdXQgPSB0ZmMubWF0TXVsKHgsIHksIGFkalgsIGFkalkpO1xuICAgIH1cblxuICAgIGlmIChkaWZmID4gMCkge1xuICAgICAgbGV0IGlkeDogbnVtYmVyO1xuICAgICAgaWYgKHhORGltID4geU5EaW0pIHtcbiAgICAgICAgaWR4ID0geE5EaW0gKyB5TkRpbSAtIDM7XG4gICAgICB9IGVsc2Uge1xuICAgICAgICBpZHggPSB4TkRpbSAtIDE7XG4gICAgICB9XG4gICAgICBjb25zdCBzcXVlZXplQXhlczogbnVtYmVyW10gPSBbXTtcbiAgICAgIGZvciAobGV0IGkgPSBpZHg7IGkgPCBpZHggKyBkaWZmOyArK2kpIHtcbiAgICAgICAgc3F1ZWV6ZUF4ZXMucHVzaChpKTtcbiAgICAgIH1cbiAgICAgIG91dCA9IHRmYy5zcXVlZXplKG91dCwgc3F1ZWV6ZUF4ZXMpO1xuICAgIH1cbiAgICBpZiAob3V0LnNoYXBlLmxlbmd0aCA9PT0gMSkge1xuICAgICAgb3V0ID0gdGZjLmV4cGFuZERpbXMob3V0LCAxKTtcbiAgICB9XG4gICAgcmV0dXJuIG91dDtcbiAgfSk7XG59XG5cbmV4cG9ydCBjbGFzcyBEb3QgZXh0ZW5kcyBNZXJnZSB7XG4gIC8qKiBAbm9jb2xsYXBzZSAqL1xuICBzdGF0aWMgY2xhc3NOYW1lID0gJ0RvdCc7XG5cbiAgcHJpdmF0ZSBheGVzOiBudW1iZXJ8W251bWJlciwgbnVtYmVyXTtcbiAgcHJpdmF0ZSBub3JtYWxpemU6IGJvb2xlYW47XG5cbiAgY29uc3RydWN0b3IoYXJnczogRG90TGF5ZXJBcmdzKSB7XG4gICAgc3VwZXIoYXJncyk7XG4gICAgdGhpcy5heGVzID0gYXJncy5heGVzO1xuICAgIHRoaXMubm9ybWFsaXplID0gYXJncy5ub3JtYWxpemUgPT0gbnVsbCA/IGZhbHNlIDogYXJncy5ub3JtYWxpemU7XG4gICAgdGhpcy5zdXBwb3J0c01hc2tpbmcgPSB0cnVlO1xuICAgIHRoaXMucmVzaGFwZVJlcXVpcmVkID0gZmFsc2U7XG4gIH1cblxuICBvdmVycmlkZSBidWlsZChpbnB1dFNoYXBlOiBTaGFwZXxTaGFwZVtdKTogdm9pZCB7XG4gICAgdGZjLnV0aWwuYXNzZXJ0KFxuICAgICAgICBBcnJheS5pc0FycmF5KGlucHV0U2hhcGUpICYmIGlucHV0U2hhcGUubGVuZ3RoID09PSAyICYmXG4gICAgICAgICAgICBBcnJheS5pc0FycmF5KGlucHV0U2hhcGVbMF0pICYmIEFycmF5LmlzQXJyYXkoaW5wdXRTaGFwZVsxXSksXG4gICAgICAgICgpID0+ICdBIGBEb3RgIGxheWVyIHNob3VsZCBiZSBjYWxsZWQgb24gYSBsaXN0IG9mIGV4YWN0bHkgMiBpbnB1dHMuJyk7XG4gICAgY29uc3Qgc2hhcGUxID0gaW5wdXRTaGFwZVswXSBhcyBTaGFwZTtcbiAgICBjb25zdCBzaGFwZTIgPSBpbnB1dFNoYXBlWzFdIGFzIFNoYXBlO1xuICAgIGlmIChzaGFwZTEubGVuZ3RoID4gMyB8fCBzaGFwZTIubGVuZ3RoID4gMykge1xuICAgICAgdGhyb3cgbmV3IE5vdEltcGxlbWVudGVkRXJyb3IoXG4gICAgICAgICAgJ0RvdCBsYXllciBkb2VzIG5vdCBzdXBwb3J0IHRlbnNvcnMgb2YgNEQgb3IgaGlnaGVyIHJhbmsgeWV0LicpO1xuICAgIH1cblxuICAgIGNvbnN0IGF4ZXMgPSB0aGlzLmludGVycHJldEF4ZXMoc2hhcGUxLCBzaGFwZTIpO1xuICAgIGlmIChzaGFwZTFbYXhlc1swXV0gIT09IHNoYXBlMltheGVzWzFdXSkge1xuICAgICAgdGhyb3cgbmV3IFZhbHVlRXJyb3IoXG4gICAgICAgICAgYERpbWVuc2lvbiBpbmNvbXBhdGliaWxpdHk6IGAgK1xuICAgICAgICAgIGAke3NoYXBlMVtheGVzWzBdXX0gIT09ICR7c2hhcGUyW2F4ZXNbMV1dfWApO1xuICAgIH1cbiAgfVxuXG4gIHByb3RlY3RlZCBvdmVycmlkZSBtZXJnZUZ1bmN0aW9uKGlucHV0czogVGVuc29yW10pOiBUZW5zb3Ige1xuICAgIGlmIChpbnB1dHMubGVuZ3RoICE9PSAyKSB7XG4gICAgICB0aHJvdyBuZXcgVmFsdWVFcnJvcihcbiAgICAgICAgICAnQSBgRG90YCBsYXllciBtdXN0IGJlIGNhbGxlZCBvbiBleGFjdGx5IDIgaW5wdXRzLCAnICtcbiAgICAgICAgICBgYnV0IHJlY2VpdmVkICR7aW5wdXRzLmxlbmd0aH0gaW5wdXQocykuYCk7XG4gICAgfVxuXG4gICAgbGV0IHgxID0gaW5wdXRzWzBdO1xuICAgIGxldCB4MiA9IGlucHV0c1sxXTtcbiAgICBsZXQgYXhlczogW251bWJlciwgbnVtYmVyXTtcbiAgICBpZiAoIUFycmF5LmlzQXJyYXkodGhpcy5heGVzKSkge1xuICAgICAgYXhlcyA9IFtcbiAgICAgICAgaW50ZXJwcmV0QXhpcyh0aGlzLmF4ZXMsIHgxLnNoYXBlLmxlbmd0aCksXG4gICAgICAgIGludGVycHJldEF4aXModGhpcy5heGVzLCB4Mi5zaGFwZS5sZW5ndGgpXG4gICAgICBdO1xuICAgIH0gZWxzZSB7XG4gICAgICBheGVzID0gdGhpcy5heGVzLm1hcChcbiAgICAgICAgICAgICAgICAgKGF4aXMsIGkpID0+IGludGVycHJldEF4aXMoXG4gICAgICAgICAgICAgICAgICAgICBheGlzLCBpbnB1dHNbaV0uc2hhcGUubGVuZ3RoKSkgYXMgW251bWJlciwgbnVtYmVyXTtcbiAgICB9XG4gICAgaWYgKHRoaXMubm9ybWFsaXplKSB7XG4gICAgICB4MSA9IGwyTm9ybWFsaXplKHgxLCBheGVzWzBdKTtcbiAgICAgIHgyID0gbDJOb3JtYWxpemUoeDIsIGF4ZXNbMV0pO1xuICAgIH1cbiAgICByZXR1cm4gYmF0Y2hEb3QoeDEsIHgyLCBheGVzKTtcbiAgfVxuXG4gIHByaXZhdGUgaW50ZXJwcmV0QXhlcyhzaGFwZTE6IFNoYXBlLCBzaGFwZTI6IFNoYXBlKTogbnVtYmVyW10ge1xuICAgIGxldCBheGVzOiBudW1iZXJbXTtcbiAgICBpZiAoIUFycmF5LmlzQXJyYXkodGhpcy5heGVzKSkge1xuICAgICAgLy8gYHRoaXMuYXhlc2AgaXMgYSBzaW5nbGUgaW50ZWdlci5cbiAgICAgIGF4ZXMgPSBbXG4gICAgICAgIGludGVycHJldEF4aXModGhpcy5heGVzLCBzaGFwZTEubGVuZ3RoKSxcbiAgICAgICAgaW50ZXJwcmV0QXhpcyh0aGlzLmF4ZXMsIHNoYXBlMi5sZW5ndGgpXG4gICAgICBdO1xuICAgIH0gZWxzZSB7XG4gICAgICAvLyBgdGhpcy5heGVzYCBpcyBhbiBBcnJheSBvZiBpbnRlZ2Vycy5cbiAgICAgIGF4ZXMgPSB0aGlzLmF4ZXM7XG4gICAgfVxuICAgIHJldHVybiBheGVzO1xuICB9XG5cbiAgb3ZlcnJpZGUgY29tcHV0ZU91dHB1dFNoYXBlKGlucHV0U2hhcGU6IFNoYXBlfFNoYXBlW10pOiBTaGFwZXxTaGFwZVtdIHtcbiAgICB0ZmMudXRpbC5hc3NlcnQoXG4gICAgICAgIEFycmF5LmlzQXJyYXkoaW5wdXRTaGFwZSkgJiYgaW5wdXRTaGFwZS5sZW5ndGggPT09IDIgJiZcbiAgICAgICAgICAgIEFycmF5LmlzQXJyYXkoaW5wdXRTaGFwZVswXSkgJiYgQXJyYXkuaXNBcnJheShpbnB1dFNoYXBlWzFdKSxcbiAgICAgICAgKCkgPT4gJ0EgYERvdGAgbGF5ZXIgc2hvdWxkIGJlIGNhbGxlZCBvbiBhIGxpc3Qgb2YgZXhhY3RseSAyIGlucHV0cy4nKTtcbiAgICBjb25zdCBzaGFwZTEgPSAoaW5wdXRTaGFwZVswXSBhcyBTaGFwZSkuc2xpY2UoKTtcbiAgICBjb25zdCBzaGFwZTIgPSAoaW5wdXRTaGFwZVsxXSBhcyBTaGFwZSkuc2xpY2UoKTtcbiAgICBpZiAoc2hhcGUxLmxlbmd0aCA+IDMgfHwgc2hhcGUyLmxlbmd0aCA+IDMpIHtcbiAgICAgIHRocm93IG5ldyBOb3RJbXBsZW1lbnRlZEVycm9yKFxuICAgICAgICAgICdEb3QgbGF5ZXIgZG9lcyBub3Qgc3VwcG9ydCB0ZW5zb3JzIG9mIDREIG9yIGhpZ2hlciByYW5rIHlldC4nKTtcbiAgICB9XG5cbiAgICBjb25zdCBheGVzID0gdGhpcy5pbnRlcnByZXRBeGVzKHNoYXBlMSwgc2hhcGUyKTtcbiAgICBzaGFwZTEuc3BsaWNlKGF4ZXNbMF0sIDEpO1xuICAgIHNoYXBlMi5zcGxpY2UoYXhlc1sxXSwgMSk7XG4gICAgc2hhcGUyLnNwbGljZSgwLCAxKTtcbiAgICBjb25zdCBvdXRwdXRTaGFwZSA9IHNoYXBlMS5jb25jYXQoc2hhcGUyKTtcbiAgICBpZiAob3V0cHV0U2hhcGUubGVuZ3RoID09PSAxKSB7XG4gICAgICBvdXRwdXRTaGFwZS5wdXNoKDEpO1xuICAgIH1cbiAgICByZXR1cm4gb3V0cHV0U2hhcGU7XG4gIH1cblxuICBvdmVycmlkZSBjb21wdXRlTWFzayhpbnB1dHM6IFRlbnNvcnxUZW5zb3JbXSwgbWFzaz86IFRlbnNvcnxUZW5zb3JbXSk6XG4gICAgICBUZW5zb3Ige1xuICAgIHJldHVybiBudWxsO1xuICB9XG5cbiAgb3ZlcnJpZGUgZ2V0Q29uZmlnKCk6IHNlcmlhbGl6YXRpb24uQ29uZmlnRGljdCB7XG4gICAgY29uc3QgY29uZmlnOiBzZXJpYWxpemF0aW9uLkNvbmZpZ0RpY3QgPSB7XG4gICAgICAnYXhlcyc6IHRoaXMuYXhlcyxcbiAgICAgICdub3JtYWxpemUnOiB0aGlzLm5vcm1hbGl6ZVxuICAgIH07XG4gICAgY29uc3QgYmFzZUNvbmZpZyA9IHN1cGVyLmdldENvbmZpZygpO1xuICAgIE9iamVjdC5hc3NpZ24oY29uZmlnLCBiYXNlQ29uZmlnKTtcbiAgICByZXR1cm4gY29uZmlnO1xuICB9XG59XG5zZXJpYWxpemF0aW9uLnJlZ2lzdGVyQ2xhc3MoRG90KTtcblxuLy8gVE9ETyhjYWlzKTogQWRkIGZ1bmN0aW9uYWwgaW50ZXJmYWNlcyBmb3IgdGhlIG1lcmdlIGxheWVycy5cbiJdfQ==