/**
|
* @license
|
* Copyright 2023 CodeSmith LLC
|
*
|
* Use of this source code is governed by an MIT-style
|
* license that can be found in the LICENSE file or at
|
* https://opensource.org/licenses/MIT.
|
* =============================================================================
|
*/
|
/// <amd-module name="@tensorflow/tfjs-layers/dist/layers/preprocessing/random_width" />
|
import { Rank, serialization, Tensor } from '@tensorflow/tfjs-core';
|
import { Shape } from '../../keras_format/common';
|
import { Kwargs } from '../../types';
|
import { BaseRandomLayerArgs, BaseRandomLayer } from '../../engine/base_random_layer';
|
export declare interface RandomWidthArgs extends BaseRandomLayerArgs {
|
factor: number | [number, number];
|
interpolation?: InterpolationType;
|
seed?: number;
|
autoVectorize?: boolean;
|
}
|
declare const INTERPOLATION_KEYS: readonly ["bilinear", "nearest"];
|
export declare const INTERPOLATION_METHODS: Set<"nearest" | "bilinear">;
|
type InterpolationType = typeof INTERPOLATION_KEYS[number];
|
/**
|
* Preprocessing Layer with randomly varies image during training
|
*
|
* This layer randomly adjusts the width of a batch of images of a
|
* batch of images by a random factor.
|
*
|
* The input should be a 3D (unbatched) or
|
* 4D (batched) tensor in the `"channels_last"` image data format. Input pixel
|
* values can be of any range (e.g. `[0., 1.)` or `[0, 255]`) and of interger
|
* or floating point dtype. By default, the layer will output floats.
|
*
|
* tf methods implemented in tfjs: 'bilinear', 'nearest',
|
* tf methods unimplemented in tfjs: 'bicubic', 'area', 'lanczos3', 'lanczos5',
|
* 'gaussian', 'mitchellcubic'
|
*
|
*/
|
export declare class RandomWidth extends BaseRandomLayer {
|
/** @nocollapse */
|
static className: string;
|
private readonly factor;
|
private readonly interpolation?;
|
private widthLower;
|
private widthUpper;
|
private imgHeight;
|
private widthFactor;
|
constructor(args: RandomWidthArgs);
|
getConfig(): serialization.ConfigDict;
|
computeOutputShape(inputShape: Shape | Shape[]): Shape | Shape[];
|
call(inputs: Tensor<Rank.R3> | Tensor<Rank.R4>, kwargs: Kwargs): Tensor[] | Tensor;
|
}
|
export {};
|