gx
chenyc
2025-06-12 7b72ac13a83764a662159d4a49b7fffb90476ecb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
/**
 * @license
 * Copyright 2018 Google LLC
 *
 * Use of this source code is governed by an MIT-style
 * license that can be found in the LICENSE file or at
 * https://opensource.org/licenses/MIT.
 * =============================================================================
 */
/* Original Source: losses.py */
import * as tfc from '@tensorflow/tfjs-core';
import { tidy, util } from '@tensorflow/tfjs-core';
import { epsilon } from './backend/common';
import * as K from './backend/tfjs_backend';
import { ValueError } from './errors';
/**
 * Normalizes a tensor wrt the L2 norm alongside the specified axis.
 * @param x
 * @param axis Axis along which to perform normalization.
 */
export function l2Normalize(x, axis) {
    return tidy(() => {
        if (x.dtype !== 'float32') {
            x = tfc.cast(x, 'float32');
        }
        const squareSum = tfc.sum(K.square(x), axis, true);
        const epsilonTensor = tfc.fill(squareSum.shape, epsilon());
        const norm = tfc.sqrt(tfc.maximum(squareSum, epsilonTensor));
        return tfc.div(x, norm);
    });
}
export function meanSquaredError(yTrue, yPred) {
    return tidy(() => tfc.mean(K.square(tfc.sub(yPred, yTrue)), -1));
}
export function meanAbsoluteError(yTrue, yPred) {
    return tidy(() => tfc.mean(tfc.abs(tfc.sub(yPred, yTrue)), -1));
}
export function meanAbsolutePercentageError(yTrue, yPred) {
    return tidy(() => {
        const diff = tfc.sub(yTrue, yPred);
        const clippedTrue = tfc.clipByValue(tfc.abs(yTrue), epsilon(), Number.MAX_VALUE);
        const absResult = tfc.abs(tfc.div(diff, clippedTrue));
        return tfc.mul(100, tfc.mean(absResult, -1));
    });
}
export function meanSquaredLogarithmicError(yTrue, yPred) {
    return tidy(() => {
        const clippedPred = tfc.clipByValue(yPred, epsilon(), Number.MAX_VALUE);
        const firstLog = tfc.log(tfc.add(1, clippedPred));
        const clippedTrue = tfc.clipByValue(yTrue, epsilon(), Number.MAX_VALUE);
        const secondLog = tfc.log(tfc.add(1, clippedTrue));
        return tfc.mean(K.square(tfc.sub(firstLog, secondLog)), -1);
    });
}
export function squaredHinge(yTrue, yPred) {
    return tidy(() => {
        const maxResult = tfc.maximum(0, tfc.sub(1, tfc.mul(yTrue, yPred)));
        return tfc.mean(K.square(maxResult), -1);
    });
}
export function hinge(yTrue, yPred) {
    return tidy(() => {
        const maxResult = tfc.maximum(0, tfc.sub(1, tfc.mul(yTrue, yPred)));
        return tfc.mean(maxResult, -1);
    });
}
export function categoricalHinge(yTrue, yPred) {
    return tidy(() => {
        const pos = tfc.sum(tfc.mul(yTrue, yPred), -1);
        const neg = tfc.max(tfc.mul(tfc.sub(1, yTrue), yPred), -1);
        return tfc.maximum(0, tfc.add(1, tfc.sub(neg, pos)));
    });
}
/**
 * Logarithm of the hyperbolic cosine of the prediction error.
 *
 * `log(cosh(x))` is approximately equal to `(x ** 2) / 2` for small `x` and
 * to `abs(x) - log(2)` for large `x`. This means that 'logcosh' works mostly
 * like the mean squared error, but will not be so strongly affected by the
 * occasional wildly incorrect prediction.
 */
export function logcosh(yTrue, yPred) {
    return tidy(() => {
        const log2 = Math.log(2);
        const predictionDiff = tfc.sub(yPred, yTrue);
        const logcoshResult = tfc.sub(tfc.add(predictionDiff, tfc.softplus(tfc.mul(-2, predictionDiff))), log2);
        return tfc.mean(logcoshResult, -1);
    });
}
export function categoricalCrossentropy(target, output, fromLogits = false) {
    return tidy(() => {
        if (fromLogits) {
            output = tfc.softmax(output);
        }
        else {
            // scale preds so that the class probabilities of each sample sum to 1.
            const outputSum = tfc.sum(output, output.shape.length - 1, true);
            output = tfc.div(output, outputSum);
        }
        output = tfc.clipByValue(output, epsilon(), 1 - epsilon());
        return tfc.neg(tfc.sum(tfc.mul(tfc.cast(target, 'float32'), tfc.log(output)), output.shape.length - 1));
    });
}
/**
 * Categorical crossentropy with integer targets.
 *
 * @param target An integer tensor.
 * @param output A tensor resulting from a softmax (unless `fromLogits` is
 *  `true`, in which case `output` is expected to be the logits).
 * @param fromLogits Boolean, whether `output` is the result of a softmax, or is
 *   a tensor of logits.
 */
export function sparseCategoricalCrossentropy(target, output, fromLogits = false) {
    return tidy(() => {
        const flatTarget = tfc.cast(tfc.floor(K.flatten(target)), 'int32');
        output = tfc.clipByValue(output, epsilon(), 1 - epsilon());
        const outputShape = output.shape;
        const oneHotTarget = tfc.reshape(tfc.oneHot(flatTarget, outputShape[outputShape.length - 1]), outputShape);
        return categoricalCrossentropy(oneHotTarget, output, fromLogits);
    });
}
/**
 * From TensorFlow's implementation in nn_impl.py:
 *
 * For brevity, let `x = logits`, `z = labels`.  The logistic loss is
 *      z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x))
 *    = z * -log(1 / (1 + exp(-x))) + (1 - z) * -log(exp(-x) / (1 + exp(-x)))
 *    = z * log(1 + exp(-x)) + (1 - z) * (-log(exp(-x)) + log(1 + exp(-x)))
 *    = z * log(1 + exp(-x)) + (1 - z) * (x + log(1 + exp(-x))
 *    = (1 - z) * x + log(1 + exp(-x))
 *    = x - x * z + log(1 + exp(-x))
 * For x < 0, to avoid overflow in exp(-x), we reformulate the above
 *      x - x * z + log(1 + exp(-x))
 *    = log(exp(x)) - x * z + log(1 + exp(-x))
 *    = - x * z + log(1 + exp(x))
 * Hence, to ensure stability and avoid overflow, the implementation uses this
 * equivalent formulation
 *    max(x, 0) - x * z + log(1 + exp(-abs(x)))
 *
 * @param labels The labels.
 * @param logits The logits.
 */
export function sigmoidCrossEntropyWithLogits(labels, logits) {
    if (!util.arraysEqual(labels.shape, logits.shape)) {
        throw new ValueError(`logits and labels must have the same shape, but got shapes ` +
            `${JSON.stringify(labels.shape)} and ${JSON.stringify(logits.shape)}`);
    }
    return tidy(() => {
        // The logistic loss formula from above is
        //   x - x * z + log(1 + exp(-x))
        // For x < 0, a more numerically stable formula is
        //   -x * z + log(1 + exp(x))
        // Note that these two expressions can be combined into the following:
        //   max(x, 0) - x * z + log(1 + exp(-abs(x)))
        const reluLogits = tfc.relu(logits);
        const negAbsLogits = tfc.neg(tfc.abs(logits));
        return tfc.add(tfc.sub(reluLogits, tfc.mul(logits, labels)), tfc.log1p(tfc.exp(negAbsLogits)));
    });
}
export function binaryCrossentropy(yTrue, yPred) {
    return tidy(() => {
        let y;
        y = tfc.clipByValue(yPred, epsilon(), 1 - epsilon());
        y = tfc.log(tfc.div(y, tfc.sub(1, y)));
        return tfc.mean(sigmoidCrossEntropyWithLogits(yTrue, y), -1);
    });
}
export function kullbackLeiblerDivergence(yTrue, yPred) {
    return tidy(() => {
        const clippedTrue = tfc.clipByValue(yTrue, epsilon(), 1);
        const clippedPred = tfc.clipByValue(yPred, epsilon(), 1);
        return tfc.sum(tfc.mul(yTrue, tfc.log(tfc.div(clippedTrue, clippedPred))), -1);
    });
}
export function poisson(yTrue, yPred) {
    return tidy(() => {
        const logPred = tfc.log(tfc.add(epsilon(), yPred));
        return tfc.mean(tfc.sub(yPred, tfc.mul(yTrue, logPred)), -1);
    });
}
export function cosineProximity(yTrue, yPred) {
    return tidy(() => {
        const trueNormalized = l2Normalize(yTrue, -1);
        const predNormalized = l2Normalize(yPred, -1);
        const trueXPred = tfc.mul(trueNormalized, predNormalized);
        return tfc.neg(tfc.sum(trueXPred, -1));
    });
}
export const mse = meanSquaredError;
export const MSE = meanSquaredError;
export const mae = meanAbsoluteError;
export const MAE = meanAbsoluteError;
export const mape = meanAbsolutePercentageError;
export const MAPE = meanAbsolutePercentageError;
export const msle = meanSquaredLogarithmicError;
export const MSLE = meanSquaredLogarithmicError;
export const kld = kullbackLeiblerDivergence;
export const KLD = kullbackLeiblerDivergence;
export const cosine = cosineProximity;
// TODO(michaelterry): Add deserialize() function.
export const lossesMap = {
    meanSquaredError,
    meanAbsoluteError,
    meanAbsolutePercentageError,
    meanSquaredLogarithmicError,
    squaredHinge,
    hinge,
    categoricalHinge,
    logcosh,
    categoricalCrossentropy,
    sparseCategoricalCrossentropy,
    binaryCrossentropy,
    kullbackLeiblerDivergence,
    poisson,
    cosineProximity
};
// Porting note: This diverges from the PyKeras implementation and may need to
// change based on (de)serialization requirements.
export function get(identifierOrFn) {
    if (typeof identifierOrFn === 'string') {
        if (identifierOrFn in lossesMap) {
            return lossesMap[identifierOrFn];
        }
        let errMsg = `Unknown loss ${identifierOrFn}`;
        if (identifierOrFn.toLowerCase().includes('softmaxcrossentropy')) {
            errMsg = `Unknown loss ${identifierOrFn}. ` +
                'Use "categoricalCrossentropy" as the string name for ' +
                'tf.losses.softmaxCrossEntropy';
        }
        throw new ValueError(errMsg);
    }
    else {
        return identifierOrFn;
    }
}
//# sourceMappingURL=data:application/json;base64,eyJ2ZXJzaW9uIjozLCJmaWxlIjoibG9zc2VzLmpzIiwic291cmNlUm9vdCI6IiIsInNvdXJjZXMiOlsiLi4vLi4vLi4vLi4vLi4vdGZqcy1sYXllcnMvc3JjL2xvc3Nlcy50cyJdLCJuYW1lcyI6W10sIm1hcHBpbmdzIjoiQUFBQTs7Ozs7Ozs7R0FRRztBQUVILGdDQUFnQztBQUNoQyxPQUFPLEtBQUssR0FBRyxNQUFNLHVCQUF1QixDQUFDO0FBQzdDLE9BQU8sRUFBbUIsSUFBSSxFQUFFLElBQUksRUFBQyxNQUFNLHVCQUF1QixDQUFDO0FBRW5FLE9BQU8sRUFBQyxPQUFPLEVBQUMsTUFBTSxrQkFBa0IsQ0FBQztBQUN6QyxPQUFPLEtBQUssQ0FBQyxNQUFNLHdCQUF3QixDQUFDO0FBQzVDLE9BQU8sRUFBQyxVQUFVLEVBQUMsTUFBTSxVQUFVLENBQUM7QUFHcEM7Ozs7R0FJRztBQUNILE1BQU0sVUFBVSxXQUFXLENBQUMsQ0FBUyxFQUFFLElBQWE7SUFDbEQsT0FBTyxJQUFJLENBQUMsR0FBRyxFQUFFO1FBQ2YsSUFBSSxDQUFDLENBQUMsS0FBSyxLQUFLLFNBQVMsRUFBRTtZQUN6QixDQUFDLEdBQUcsR0FBRyxDQUFDLElBQUksQ0FBQyxDQUFDLEVBQUUsU0FBUyxDQUFDLENBQUM7U0FDNUI7UUFDRCxNQUFNLFNBQVMsR0FBRyxHQUFHLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQyxNQUFNLENBQUMsQ0FBQyxDQUFDLEVBQUUsSUFBSSxFQUFFLElBQUksQ0FBQyxDQUFDO1FBQ25ELE1BQU0sYUFBYSxHQUFHLEdBQUcsQ0FBQyxJQUFJLENBQUMsU0FBUyxDQUFDLEtBQUssRUFBRSxPQUFPLEVBQUUsQ0FBQyxDQUFDO1FBQzNELE1BQU0sSUFBSSxHQUFHLEdBQUcsQ0FBQyxJQUFJLENBQUMsR0FBRyxDQUFDLE9BQU8sQ0FBQyxTQUFTLEVBQUUsYUFBYSxDQUFDLENBQUMsQ0FBQztRQUM3RCxPQUFPLEdBQUcsQ0FBQyxHQUFHLENBQUMsQ0FBQyxFQUFFLElBQUksQ0FBQyxDQUFDO0lBQzFCLENBQUMsQ0FBQyxDQUFDO0FBQ0wsQ0FBQztBQUVELE1BQU0sVUFBVSxnQkFBZ0IsQ0FBQyxLQUFhLEVBQUUsS0FBYTtJQUMzRCxPQUFPLElBQUksQ0FBQyxHQUFHLEVBQUUsQ0FBQyxHQUFHLENBQUMsSUFBSSxDQUFDLENBQUMsQ0FBQyxNQUFNLENBQUMsR0FBRyxDQUFDLEdBQUcsQ0FBQyxLQUFLLEVBQUUsS0FBSyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUM7QUFDbkUsQ0FBQztBQUVELE1BQU0sVUFBVSxpQkFBaUIsQ0FBQyxLQUFhLEVBQUUsS0FBYTtJQUM1RCxPQUFPLElBQUksQ0FBQyxHQUFHLEVBQUUsQ0FBQyxHQUFHLENBQUMsSUFBSSxDQUFDLEdBQUcsQ0FBQyxHQUFHLENBQUMsR0FBRyxDQUFDLEdBQUcsQ0FBQyxLQUFLLEVBQUUsS0FBSyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUM7QUFDbEUsQ0FBQztBQUVELE1BQU0sVUFBVSwyQkFBMkIsQ0FDdkMsS0FBYSxFQUFFLEtBQWE7SUFDOUIsT0FBTyxJQUFJLENBQUMsR0FBRyxFQUFFO1FBQ2YsTUFBTSxJQUFJLEdBQUcsR0FBRyxDQUFDLEdBQUcsQ0FBQyxLQUFLLEVBQUUsS0FBSyxDQUFDLENBQUM7UUFDbkMsTUFBTSxXQUFXLEdBQ2IsR0FBRyxDQUFDLFdBQVcsQ0FBQyxHQUFHLENBQUMsR0FBRyxDQUFDLEtBQUssQ0FBQyxFQUFFLE9BQU8sRUFBRSxFQUFFLE1BQU0sQ0FBQyxTQUFTLENBQUMsQ0FBQztRQUNqRSxNQUFNLFNBQVMsR0FBRyxHQUFHLENBQUMsR0FBRyxDQUFDLEdBQUcsQ0FBQyxHQUFHLENBQUMsSUFBSSxFQUFFLFdBQVcsQ0FBQyxDQUFDLENBQUM7UUFDdEQsT0FBTyxHQUFHLENBQUMsR0FBRyxDQUFDLEdBQUcsRUFBRSxHQUFHLENBQUMsSUFBSSxDQUFDLFNBQVMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUM7SUFDL0MsQ0FBQyxDQUFDLENBQUM7QUFDTCxDQUFDO0FBRUQsTUFBTSxVQUFVLDJCQUEyQixDQUN2QyxLQUFhLEVBQUUsS0FBYTtJQUM5QixPQUFPLElBQUksQ0FBQyxHQUFHLEVBQUU7UUFDZixNQUFNLFdBQVcsR0FBRyxHQUFHLENBQUMsV0FBVyxDQUFDLEtBQUssRUFBRSxPQUFPLEVBQUUsRUFBRSxNQUFNLENBQUMsU0FBUyxDQUFDLENBQUM7UUFDeEUsTUFBTSxRQUFRLEdBQUcsR0FBRyxDQUFDLEdBQUcsQ0FBQyxHQUFHLENBQUMsR0FBRyxDQUFDLENBQUMsRUFBRSxXQUFXLENBQUMsQ0FBQyxDQUFDO1FBRWxELE1BQU0sV0FBVyxHQUFHLEdBQUcsQ0FBQyxXQUFXLENBQUMsS0FBSyxFQUFFLE9BQU8sRUFBRSxFQUFFLE1BQU0sQ0FBQyxTQUFTLENBQUMsQ0FBQztRQUN4RSxNQUFNLFNBQVMsR0FBRyxHQUFHLENBQUMsR0FBRyxDQUFDLEdBQUcsQ0FBQyxHQUFHLENBQUMsQ0FBQyxFQUFFLFdBQVcsQ0FBQyxDQUFDLENBQUM7UUFFbkQsT0FBTyxHQUFHLENBQUMsSUFBSSxDQUFDLENBQUMsQ0FBQyxNQUFNLENBQUMsR0FBRyxDQUFDLEdBQUcsQ0FBQyxRQUFRLEVBQUUsU0FBUyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDO0lBQzlELENBQUMsQ0FBQyxDQUFDO0FBQ0wsQ0FBQztBQUVELE1BQU0sVUFBVSxZQUFZLENBQUMsS0FBYSxFQUFFLEtBQWE7SUFDdkQsT0FBTyxJQUFJLENBQUMsR0FBRyxFQUFFO1FBQ2YsTUFBTSxTQUFTLEdBQUcsR0FBRyxDQUFDLE9BQU8sQ0FBQyxDQUFDLEVBQUUsR0FBRyxDQUFDLEdBQUcsQ0FBQyxDQUFDLEVBQUUsR0FBRyxDQUFDLEdBQUcsQ0FBQyxLQUFLLEVBQUUsS0FBSyxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQ3BFLE9BQU8sR0FBRyxDQUFDLElBQUksQ0FBQyxDQUFDLENBQUMsTUFBTSxDQUFDLFNBQVMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUM7SUFDM0MsQ0FBQyxDQUFDLENBQUM7QUFDTCxDQUFDO0FBRUQsTUFBTSxVQUFVLEtBQUssQ0FBQyxLQUFhLEVBQUUsS0FBYTtJQUNoRCxPQUFPLElBQUksQ0FBQyxHQUFHLEVBQUU7UUFDZixNQUFNLFNBQVMsR0FBRyxHQUFHLENBQUMsT0FBTyxDQUFDLENBQUMsRUFBRSxHQUFHLENBQUMsR0FBRyxDQUFDLENBQUMsRUFBRSxHQUFHLENBQUMsR0FBRyxDQUFDLEtBQUssRUFBRSxLQUFLLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDcEUsT0FBTyxHQUFHLENBQUMsSUFBSSxDQUFDLFNBQVMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDO0lBQ2pDLENBQUMsQ0FBQyxDQUFDO0FBQ0wsQ0FBQztBQUVELE1BQU0sVUFBVSxnQkFBZ0IsQ0FBQyxLQUFhLEVBQUUsS0FBYTtJQUMzRCxPQUFPLElBQUksQ0FBQyxHQUFHLEVBQUU7UUFDZixNQUFNLEdBQUcsR0FBRyxHQUFHLENBQUMsR0FBRyxDQUFDLEdBQUcsQ0FBQyxHQUFHLENBQUMsS0FBSyxFQUFFLEtBQUssQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDL0MsTUFBTSxHQUFHLEdBQUcsR0FBRyxDQUFDLEdBQUcsQ0FBQyxHQUFHLENBQUMsR0FBRyxDQUFDLEdBQUcsQ0FBQyxHQUFHLENBQUMsQ0FBQyxFQUFFLEtBQUssQ0FBQyxFQUFFLEtBQUssQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDM0QsT0FBTyxHQUFHLENBQUMsT0FBTyxDQUFDLENBQUMsRUFBRSxHQUFHLENBQUMsR0FBRyxDQUFDLENBQUMsRUFBRSxHQUFHLENBQUMsR0FBRyxDQUFDLEdBQUcsRUFBRSxHQUFHLENBQUMsQ0FBQyxDQUFDLENBQUM7SUFDdkQsQ0FBQyxDQUFDLENBQUM7QUFDTCxDQUFDO0FBRUQ7Ozs7Ozs7R0FPRztBQUNILE1BQU0sVUFBVSxPQUFPLENBQUMsS0FBYSxFQUFFLEtBQWE7SUFDbEQsT0FBTyxJQUFJLENBQUMsR0FBRyxFQUFFO1FBQ2YsTUFBTSxJQUFJLEdBQUcsSUFBSSxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUN6QixNQUFNLGNBQWMsR0FBRyxHQUFHLENBQUMsR0FBRyxDQUFDLEtBQUssRUFBRSxLQUFLLENBQUMsQ0FBQztRQUM3QyxNQUFNLGFBQWEsR0FBRyxHQUFHLENBQUMsR0FBRyxDQUN6QixHQUFHLENBQUMsR0FBRyxDQUFDLGNBQWMsRUFBRSxHQUFHLENBQUMsUUFBUSxDQUFDLEdBQUcsQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDLEVBQUUsY0FBYyxDQUFDLENBQUMsQ0FBQyxFQUNsRSxJQUFJLENBQUMsQ0FBQztRQUNWLE9BQU8sR0FBRyxDQUFDLElBQUksQ0FBQyxhQUFhLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQztJQUNyQyxDQUFDLENBQUMsQ0FBQztBQUNMLENBQUM7QUFFRCxNQUFNLFVBQVUsdUJBQXVCLENBQ25DLE1BQWMsRUFBRSxNQUFjLEVBQUUsVUFBVSxHQUFHLEtBQUs7SUFDcEQsT0FBTyxJQUFJLENBQUMsR0FBRyxFQUFFO1FBQ2YsSUFBSSxVQUFVLEVBQUU7WUFDZCxNQUFNLEdBQUcsR0FBRyxDQUFDLE9BQU8sQ0FBQyxNQUFNLENBQUMsQ0FBQztTQUM5QjthQUFNO1lBQ0wsdUVBQXVFO1lBQ3ZFLE1BQU0sU0FBUyxHQUFHLEdBQUcsQ0FBQyxHQUFHLENBQUMsTUFBTSxFQUFFLE1BQU0sQ0FBQyxLQUFLLENBQUMsTUFBTSxHQUFHLENBQUMsRUFBRSxJQUFJLENBQUMsQ0FBQztZQUNqRSxNQUFNLEdBQUcsR0FBRyxDQUFDLEdBQUcsQ0FBQyxNQUFNLEVBQUUsU0FBUyxDQUFDLENBQUM7U0FDckM7UUFDRCxNQUFNLEdBQUcsR0FBRyxDQUFDLFdBQVcsQ0FBQyxNQUFNLEVBQUUsT0FBTyxFQUFFLEVBQUUsQ0FBQyxHQUFHLE9BQU8sRUFBRSxDQUFDLENBQUM7UUFDM0QsT0FBTyxHQUFHLENBQUMsR0FBRyxDQUFDLEdBQUcsQ0FBQyxHQUFHLENBQ2xCLEdBQUcsQ0FBQyxHQUFHLENBQUMsR0FBRyxDQUFDLElBQUksQ0FBQyxNQUFNLEVBQUUsU0FBUyxDQUFDLEVBQUUsR0FBRyxDQUFDLEdBQUcsQ0FBQyxNQUFNLENBQUMsQ0FBQyxFQUNyRCxNQUFNLENBQUMsS0FBSyxDQUFDLE1BQU0sR0FBRyxDQUFDLENBQUMsQ0FBQyxDQUFDO0lBQ2hDLENBQUMsQ0FBQyxDQUFDO0FBQ0wsQ0FBQztBQUVEOzs7Ozs7OztHQVFHO0FBQ0gsTUFBTSxVQUFVLDZCQUE2QixDQUN6QyxNQUFjLEVBQUUsTUFBYyxFQUFFLFVBQVUsR0FBRyxLQUFLO0lBQ3BELE9BQU8sSUFBSSxDQUFDLEdBQUcsRUFBRTtRQUNmLE1BQU0sVUFBVSxHQUNaLEdBQUcsQ0FBQyxJQUFJLENBQUMsR0FBRyxDQUFDLEtBQUssQ0FBQyxDQUFDLENBQUMsT0FBTyxDQUFDLE1BQU0sQ0FBQyxDQUFDLEVBQUUsT0FBTyxDQUFhLENBQUM7UUFDaEUsTUFBTSxHQUFHLEdBQUcsQ0FBQyxXQUFXLENBQUMsTUFBTSxFQUFFLE9BQU8sRUFBRSxFQUFFLENBQUMsR0FBRyxPQUFPLEVBQUUsQ0FBQyxDQUFDO1FBQzNELE1BQU0sV0FBVyxHQUFHLE1BQU0sQ0FBQyxLQUFLLENBQUM7UUFDakMsTUFBTSxZQUFZLEdBQUcsR0FBRyxDQUFDLE9BQU8sQ0FDNUIsR0FBRyxDQUFDLE1BQU0sQ0FBQyxVQUFVLEVBQUUsV0FBVyxDQUFDLFdBQVcsQ0FBQyxNQUFNLEdBQUcsQ0FBQyxDQUFDLENBQUMsRUFDM0QsV0FBVyxDQUFDLENBQUM7UUFDakIsT0FBTyx1QkFBdUIsQ0FBQyxZQUFZLEVBQUUsTUFBTSxFQUFFLFVBQVUsQ0FBQyxDQUFDO0lBQ25FLENBQUMsQ0FBQyxDQUFDO0FBQ0wsQ0FBQztBQUVEOzs7Ozs7Ozs7Ozs7Ozs7Ozs7OztHQW9CRztBQUNILE1BQU0sVUFBVSw2QkFBNkIsQ0FDekMsTUFBYyxFQUFFLE1BQWM7SUFDaEMsSUFBSSxDQUFDLElBQUksQ0FBQyxXQUFXLENBQUMsTUFBTSxDQUFDLEtBQUssRUFBRSxNQUFNLENBQUMsS0FBSyxDQUFDLEVBQUU7UUFDakQsTUFBTSxJQUFJLFVBQVUsQ0FDaEIsNkRBQTZEO1lBQzdELEdBQUcsSUFBSSxDQUFDLFNBQVMsQ0FBQyxNQUFNLENBQUMsS0FBSyxDQUFDLFFBQVEsSUFBSSxDQUFDLFNBQVMsQ0FBQyxNQUFNLENBQUMsS0FBSyxDQUFDLEVBQUUsQ0FBQyxDQUFDO0tBQzVFO0lBQ0QsT0FBTyxJQUFJLENBQUMsR0FBRyxFQUFFO1FBQ2YsMENBQTBDO1FBQzFDLGlDQUFpQztRQUNqQyxrREFBa0Q7UUFDbEQsNkJBQTZCO1FBQzdCLHNFQUFzRTtRQUN0RSw4Q0FBOEM7UUFDOUMsTUFBTSxVQUFVLEdBQUcsR0FBRyxDQUFDLElBQUksQ0FBQyxNQUFNLENBQUMsQ0FBQztRQUNwQyxNQUFNLFlBQVksR0FBRyxHQUFHLENBQUMsR0FBRyxDQUFDLEdBQUcsQ0FBQyxHQUFHLENBQUMsTUFBTSxDQUFDLENBQUMsQ0FBQztRQUM5QyxPQUFPLEdBQUcsQ0FBQyxHQUFHLENBQ1YsR0FBRyxDQUFDLEdBQUcsQ0FBQyxVQUFVLEVBQUUsR0FBRyxDQUFDLEdBQUcsQ0FBQyxNQUFNLEVBQUUsTUFBTSxDQUFDLENBQUMsRUFDNUMsR0FBRyxDQUFDLEtBQUssQ0FBQyxHQUFHLENBQUMsR0FBRyxDQUFDLFlBQVksQ0FBQyxDQUFDLENBQUMsQ0FBQztJQUN4QyxDQUFDLENBQUMsQ0FBQztBQUNMLENBQUM7QUFFRCxNQUFNLFVBQVUsa0JBQWtCLENBQUMsS0FBYSxFQUFFLEtBQWE7SUFDN0QsT0FBTyxJQUFJLENBQUMsR0FBRyxFQUFFO1FBQ2YsSUFBSSxDQUFTLENBQUM7UUFDZCxDQUFDLEdBQUcsR0FBRyxDQUFDLFdBQVcsQ0FBQyxLQUFLLEVBQUUsT0FBTyxFQUFFLEVBQUUsQ0FBQyxHQUFHLE9BQU8sRUFBRSxDQUFDLENBQUM7UUFDckQsQ0FBQyxHQUFHLEdBQUcsQ0FBQyxHQUFHLENBQUMsR0FBRyxDQUFDLEdBQUcsQ0FBQyxDQUFDLEVBQUUsR0FBRyxDQUFDLEdBQUcsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQ3ZDLE9BQU8sR0FBRyxDQUFDLElBQUksQ0FBQyw2QkFBNkIsQ0FBQyxLQUFLLEVBQUUsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQztJQUMvRCxDQUFDLENBQUMsQ0FBQztBQUNMLENBQUM7QUFFRCxNQUFNLFVBQVUseUJBQXlCLENBQ3JDLEtBQWEsRUFBRSxLQUFhO0lBQzlCLE9BQU8sSUFBSSxDQUFDLEdBQUcsRUFBRTtRQUNmLE1BQU0sV0FBVyxHQUFHLEdBQUcsQ0FBQyxXQUFXLENBQUMsS0FBSyxFQUFFLE9BQU8sRUFBRSxFQUFFLENBQUMsQ0FBQyxDQUFDO1FBQ3pELE1BQU0sV0FBVyxHQUFHLEdBQUcsQ0FBQyxXQUFXLENBQUMsS0FBSyxFQUFFLE9BQU8sRUFBRSxFQUFFLENBQUMsQ0FBQyxDQUFDO1FBQ3pELE9BQU8sR0FBRyxDQUFDLEdBQUcsQ0FDVixHQUFHLENBQUMsR0FBRyxDQUFDLEtBQUssRUFBRSxHQUFHLENBQUMsR0FBRyxDQUFDLEdBQUcsQ0FBQyxHQUFHLENBQUMsV0FBVyxFQUFFLFdBQVcsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQyxDQUFDO0lBQ3RFLENBQUMsQ0FBQyxDQUFDO0FBQ0wsQ0FBQztBQUVELE1BQU0sVUFBVSxPQUFPLENBQUMsS0FBYSxFQUFFLEtBQWE7SUFDbEQsT0FBTyxJQUFJLENBQUMsR0FBRyxFQUFFO1FBQ2YsTUFBTSxPQUFPLEdBQUcsR0FBRyxDQUFDLEdBQUcsQ0FBQyxHQUFHLENBQUMsR0FBRyxDQUFDLE9BQU8sRUFBRSxFQUFFLEtBQUssQ0FBQyxDQUFDLENBQUM7UUFDbkQsT0FBTyxHQUFHLENBQUMsSUFBSSxDQUFDLEdBQUcsQ0FBQyxHQUFHLENBQUMsS0FBSyxFQUFFLEdBQUcsQ0FBQyxHQUFHLENBQUMsS0FBSyxFQUFFLE9BQU8sQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQztJQUMvRCxDQUFDLENBQUMsQ0FBQztBQUNMLENBQUM7QUFFRCxNQUFNLFVBQVUsZUFBZSxDQUFDLEtBQWEsRUFBRSxLQUFhO0lBQzFELE9BQU8sSUFBSSxDQUFDLEdBQUcsRUFBRTtRQUNmLE1BQU0sY0FBYyxHQUFHLFdBQVcsQ0FBQyxLQUFLLEVBQUUsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUM5QyxNQUFNLGNBQWMsR0FBRyxXQUFXLENBQUMsS0FBSyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFDOUMsTUFBTSxTQUFTLEdBQUcsR0FBRyxDQUFDLEdBQUcsQ0FBQyxjQUFjLEVBQUUsY0FBYyxDQUFDLENBQUM7UUFDMUQsT0FBTyxHQUFHLENBQUMsR0FBRyxDQUFDLEdBQUcsQ0FBQyxHQUFHLENBQUMsU0FBUyxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQztJQUN6QyxDQUFDLENBQUMsQ0FBQztBQUNMLENBQUM7QUFFRCxNQUFNLENBQUMsTUFBTSxHQUFHLEdBQUcsZ0JBQWdCLENBQUM7QUFDcEMsTUFBTSxDQUFDLE1BQU0sR0FBRyxHQUFHLGdCQUFnQixDQUFDO0FBQ3BDLE1BQU0sQ0FBQyxNQUFNLEdBQUcsR0FBRyxpQkFBaUIsQ0FBQztBQUNyQyxNQUFNLENBQUMsTUFBTSxHQUFHLEdBQUcsaUJBQWlCLENBQUM7QUFDckMsTUFBTSxDQUFDLE1BQU0sSUFBSSxHQUFHLDJCQUEyQixDQUFDO0FBQ2hELE1BQU0sQ0FBQyxNQUFNLElBQUksR0FBRywyQkFBMkIsQ0FBQztBQUNoRCxNQUFNLENBQUMsTUFBTSxJQUFJLEdBQUcsMkJBQTJCLENBQUM7QUFDaEQsTUFBTSxDQUFDLE1BQU0sSUFBSSxHQUFHLDJCQUEyQixDQUFDO0FBQ2hELE1BQU0sQ0FBQyxNQUFNLEdBQUcsR0FBRyx5QkFBeUIsQ0FBQztBQUM3QyxNQUFNLENBQUMsTUFBTSxHQUFHLEdBQUcseUJBQXlCLENBQUM7QUFDN0MsTUFBTSxDQUFDLE1BQU0sTUFBTSxHQUFHLGVBQWUsQ0FBQztBQUV0QyxrREFBa0Q7QUFFbEQsTUFBTSxDQUFDLE1BQU0sU0FBUyxHQUE2QztJQUNqRSxnQkFBZ0I7SUFDaEIsaUJBQWlCO0lBQ2pCLDJCQUEyQjtJQUMzQiwyQkFBMkI7SUFDM0IsWUFBWTtJQUNaLEtBQUs7SUFDTCxnQkFBZ0I7SUFDaEIsT0FBTztJQUNQLHVCQUF1QjtJQUN2Qiw2QkFBNkI7SUFDN0Isa0JBQWtCO0lBQ2xCLHlCQUF5QjtJQUN6QixPQUFPO0lBQ1AsZUFBZTtDQUNoQixDQUFDO0FBRUYsOEVBQThFO0FBQzlFLGtEQUFrRDtBQUNsRCxNQUFNLFVBQVUsR0FBRyxDQUFDLGNBQXFDO0lBQ3ZELElBQUksT0FBTyxjQUFjLEtBQUssUUFBUSxFQUFFO1FBQ3RDLElBQUksY0FBYyxJQUFJLFNBQVMsRUFBRTtZQUMvQixPQUFPLFNBQVMsQ0FBQyxjQUFjLENBQUMsQ0FBQztTQUNsQztRQUNELElBQUksTUFBTSxHQUFHLGdCQUFnQixjQUFjLEVBQUUsQ0FBQztRQUM5QyxJQUFJLGNBQWMsQ0FBQyxXQUFXLEVBQUUsQ0FBQyxRQUFRLENBQUMscUJBQXFCLENBQUMsRUFBRTtZQUNoRSxNQUFNLEdBQUcsZ0JBQWdCLGNBQWMsSUFBSTtnQkFDdkMsdURBQXVEO2dCQUN2RCwrQkFBK0IsQ0FBQztTQUNyQztRQUNELE1BQU0sSUFBSSxVQUFVLENBQUMsTUFBTSxDQUFDLENBQUM7S0FDOUI7U0FBTTtRQUNMLE9BQU8sY0FBYyxDQUFDO0tBQ3ZCO0FBQ0gsQ0FBQyIsInNvdXJjZXNDb250ZW50IjpbIi8qKlxuICogQGxpY2Vuc2VcbiAqIENvcHlyaWdodCAyMDE4IEdvb2dsZSBMTENcbiAqXG4gKiBVc2Ugb2YgdGhpcyBzb3VyY2UgY29kZSBpcyBnb3Zlcm5lZCBieSBhbiBNSVQtc3R5bGVcbiAqIGxpY2Vuc2UgdGhhdCBjYW4gYmUgZm91bmQgaW4gdGhlIExJQ0VOU0UgZmlsZSBvciBhdFxuICogaHR0cHM6Ly9vcGVuc291cmNlLm9yZy9saWNlbnNlcy9NSVQuXG4gKiA9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PVxuICovXG5cbi8qIE9yaWdpbmFsIFNvdXJjZTogbG9zc2VzLnB5ICovXG5pbXBvcnQgKiBhcyB0ZmMgZnJvbSAnQHRlbnNvcmZsb3cvdGZqcy1jb3JlJztcbmltcG9ydCB7VGVuc29yLCBUZW5zb3IxRCwgdGlkeSwgdXRpbH0gZnJvbSAnQHRlbnNvcmZsb3cvdGZqcy1jb3JlJztcblxuaW1wb3J0IHtlcHNpbG9ufSBmcm9tICcuL2JhY2tlbmQvY29tbW9uJztcbmltcG9ydCAqIGFzIEsgZnJvbSAnLi9iYWNrZW5kL3RmanNfYmFja2VuZCc7XG5pbXBvcnQge1ZhbHVlRXJyb3J9IGZyb20gJy4vZXJyb3JzJztcbmltcG9ydCB7TG9zc09yTWV0cmljRm59IGZyb20gJy4vdHlwZXMnO1xuXG4vKipcbiAqIE5vcm1hbGl6ZXMgYSB0ZW5zb3Igd3J0IHRoZSBMMiBub3JtIGFsb25nc2lkZSB0aGUgc3BlY2lmaWVkIGF4aXMuXG4gKiBAcGFyYW0geFxuICogQHBhcmFtIGF4aXMgQXhpcyBhbG9uZyB3aGljaCB0byBwZXJmb3JtIG5vcm1hbGl6YXRpb24uXG4gKi9cbmV4cG9ydCBmdW5jdGlvbiBsMk5vcm1hbGl6ZSh4OiBUZW5zb3IsIGF4aXM/OiBudW1iZXIpOiBUZW5zb3Ige1xuICByZXR1cm4gdGlkeSgoKSA9PiB7XG4gICAgaWYgKHguZHR5cGUgIT09ICdmbG9hdDMyJykge1xuICAgICAgeCA9IHRmYy5jYXN0KHgsICdmbG9hdDMyJyk7XG4gICAgfVxuICAgIGNvbnN0IHNxdWFyZVN1bSA9IHRmYy5zdW0oSy5zcXVhcmUoeCksIGF4aXMsIHRydWUpO1xuICAgIGNvbnN0IGVwc2lsb25UZW5zb3IgPSB0ZmMuZmlsbChzcXVhcmVTdW0uc2hhcGUsIGVwc2lsb24oKSk7XG4gICAgY29uc3Qgbm9ybSA9IHRmYy5zcXJ0KHRmYy5tYXhpbXVtKHNxdWFyZVN1bSwgZXBzaWxvblRlbnNvcikpO1xuICAgIHJldHVybiB0ZmMuZGl2KHgsIG5vcm0pO1xuICB9KTtcbn1cblxuZXhwb3J0IGZ1bmN0aW9uIG1lYW5TcXVhcmVkRXJyb3IoeVRydWU6IFRlbnNvciwgeVByZWQ6IFRlbnNvcik6IFRlbnNvciB7XG4gIHJldHVybiB0aWR5KCgpID0+IHRmYy5tZWFuKEsuc3F1YXJlKHRmYy5zdWIoeVByZWQsIHlUcnVlKSksIC0xKSk7XG59XG5cbmV4cG9ydCBmdW5jdGlvbiBtZWFuQWJzb2x1dGVFcnJvcih5VHJ1ZTogVGVuc29yLCB5UHJlZDogVGVuc29yKTogVGVuc29yIHtcbiAgcmV0dXJuIHRpZHkoKCkgPT4gdGZjLm1lYW4odGZjLmFicyh0ZmMuc3ViKHlQcmVkLCB5VHJ1ZSkpLCAtMSkpO1xufVxuXG5leHBvcnQgZnVuY3Rpb24gbWVhbkFic29sdXRlUGVyY2VudGFnZUVycm9yKFxuICAgIHlUcnVlOiBUZW5zb3IsIHlQcmVkOiBUZW5zb3IpOiBUZW5zb3Ige1xuICByZXR1cm4gdGlkeSgoKSA9PiB7XG4gICAgY29uc3QgZGlmZiA9IHRmYy5zdWIoeVRydWUsIHlQcmVkKTtcbiAgICBjb25zdCBjbGlwcGVkVHJ1ZSA9XG4gICAgICAgIHRmYy5jbGlwQnlWYWx1ZSh0ZmMuYWJzKHlUcnVlKSwgZXBzaWxvbigpLCBOdW1iZXIuTUFYX1ZBTFVFKTtcbiAgICBjb25zdCBhYnNSZXN1bHQgPSB0ZmMuYWJzKHRmYy5kaXYoZGlmZiwgY2xpcHBlZFRydWUpKTtcbiAgICByZXR1cm4gdGZjLm11bCgxMDAsIHRmYy5tZWFuKGFic1Jlc3VsdCwgLTEpKTtcbiAgfSk7XG59XG5cbmV4cG9ydCBmdW5jdGlvbiBtZWFuU3F1YXJlZExvZ2FyaXRobWljRXJyb3IoXG4gICAgeVRydWU6IFRlbnNvciwgeVByZWQ6IFRlbnNvcik6IFRlbnNvciB7XG4gIHJldHVybiB0aWR5KCgpID0+IHtcbiAgICBjb25zdCBjbGlwcGVkUHJlZCA9IHRmYy5jbGlwQnlWYWx1ZSh5UHJlZCwgZXBzaWxvbigpLCBOdW1iZXIuTUFYX1ZBTFVFKTtcbiAgICBjb25zdCBmaXJzdExvZyA9IHRmYy5sb2codGZjLmFkZCgxLCBjbGlwcGVkUHJlZCkpO1xuXG4gICAgY29uc3QgY2xpcHBlZFRydWUgPSB0ZmMuY2xpcEJ5VmFsdWUoeVRydWUsIGVwc2lsb24oKSwgTnVtYmVyLk1BWF9WQUxVRSk7XG4gICAgY29uc3Qgc2Vjb25kTG9nID0gdGZjLmxvZyh0ZmMuYWRkKDEsIGNsaXBwZWRUcnVlKSk7XG5cbiAgICByZXR1cm4gdGZjLm1lYW4oSy5zcXVhcmUodGZjLnN1YihmaXJzdExvZywgc2Vjb25kTG9nKSksIC0xKTtcbiAgfSk7XG59XG5cbmV4cG9ydCBmdW5jdGlvbiBzcXVhcmVkSGluZ2UoeVRydWU6IFRlbnNvciwgeVByZWQ6IFRlbnNvcik6IFRlbnNvciB7XG4gIHJldHVybiB0aWR5KCgpID0+IHtcbiAgICBjb25zdCBtYXhSZXN1bHQgPSB0ZmMubWF4aW11bSgwLCB0ZmMuc3ViKDEsIHRmYy5tdWwoeVRydWUsIHlQcmVkKSkpO1xuICAgIHJldHVybiB0ZmMubWVhbihLLnNxdWFyZShtYXhSZXN1bHQpLCAtMSk7XG4gIH0pO1xufVxuXG5leHBvcnQgZnVuY3Rpb24gaGluZ2UoeVRydWU6IFRlbnNvciwgeVByZWQ6IFRlbnNvcik6IFRlbnNvciB7XG4gIHJldHVybiB0aWR5KCgpID0+IHtcbiAgICBjb25zdCBtYXhSZXN1bHQgPSB0ZmMubWF4aW11bSgwLCB0ZmMuc3ViKDEsIHRmYy5tdWwoeVRydWUsIHlQcmVkKSkpO1xuICAgIHJldHVybiB0ZmMubWVhbihtYXhSZXN1bHQsIC0xKTtcbiAgfSk7XG59XG5cbmV4cG9ydCBmdW5jdGlvbiBjYXRlZ29yaWNhbEhpbmdlKHlUcnVlOiBUZW5zb3IsIHlQcmVkOiBUZW5zb3IpOiBUZW5zb3Ige1xuICByZXR1cm4gdGlkeSgoKSA9PiB7XG4gICAgY29uc3QgcG9zID0gdGZjLnN1bSh0ZmMubXVsKHlUcnVlLCB5UHJlZCksIC0xKTtcbiAgICBjb25zdCBuZWcgPSB0ZmMubWF4KHRmYy5tdWwodGZjLnN1YigxLCB5VHJ1ZSksIHlQcmVkKSwgLTEpO1xuICAgIHJldHVybiB0ZmMubWF4aW11bSgwLCB0ZmMuYWRkKDEsIHRmYy5zdWIobmVnLCBwb3MpKSk7XG4gIH0pO1xufVxuXG4vKipcbiAqIExvZ2FyaXRobSBvZiB0aGUgaHlwZXJib2xpYyBjb3NpbmUgb2YgdGhlIHByZWRpY3Rpb24gZXJyb3IuXG4gKlxuICogYGxvZyhjb3NoKHgpKWAgaXMgYXBwcm94aW1hdGVseSBlcXVhbCB0byBgKHggKiogMikgLyAyYCBmb3Igc21hbGwgYHhgIGFuZFxuICogdG8gYGFicyh4KSAtIGxvZygyKWAgZm9yIGxhcmdlIGB4YC4gVGhpcyBtZWFucyB0aGF0ICdsb2djb3NoJyB3b3JrcyBtb3N0bHlcbiAqIGxpa2UgdGhlIG1lYW4gc3F1YXJlZCBlcnJvciwgYnV0IHdpbGwgbm90IGJlIHNvIHN0cm9uZ2x5IGFmZmVjdGVkIGJ5IHRoZVxuICogb2NjYXNpb25hbCB3aWxkbHkgaW5jb3JyZWN0IHByZWRpY3Rpb24uXG4gKi9cbmV4cG9ydCBmdW5jdGlvbiBsb2djb3NoKHlUcnVlOiBUZW5zb3IsIHlQcmVkOiBUZW5zb3IpOiBUZW5zb3Ige1xuICByZXR1cm4gdGlkeSgoKSA9PiB7XG4gICAgY29uc3QgbG9nMiA9IE1hdGgubG9nKDIpO1xuICAgIGNvbnN0IHByZWRpY3Rpb25EaWZmID0gdGZjLnN1Yih5UHJlZCwgeVRydWUpO1xuICAgIGNvbnN0IGxvZ2Nvc2hSZXN1bHQgPSB0ZmMuc3ViKFxuICAgICAgICB0ZmMuYWRkKHByZWRpY3Rpb25EaWZmLCB0ZmMuc29mdHBsdXModGZjLm11bCgtMiwgcHJlZGljdGlvbkRpZmYpKSksXG4gICAgICAgIGxvZzIpO1xuICAgIHJldHVybiB0ZmMubWVhbihsb2djb3NoUmVzdWx0LCAtMSk7XG4gIH0pO1xufVxuXG5leHBvcnQgZnVuY3Rpb24gY2F0ZWdvcmljYWxDcm9zc2VudHJvcHkoXG4gICAgdGFyZ2V0OiBUZW5zb3IsIG91dHB1dDogVGVuc29yLCBmcm9tTG9naXRzID0gZmFsc2UpOiBUZW5zb3Ige1xuICByZXR1cm4gdGlkeSgoKSA9PiB7XG4gICAgaWYgKGZyb21Mb2dpdHMpIHtcbiAgICAgIG91dHB1dCA9IHRmYy5zb2Z0bWF4KG91dHB1dCk7XG4gICAgfSBlbHNlIHtcbiAgICAgIC8vIHNjYWxlIHByZWRzIHNvIHRoYXQgdGhlIGNsYXNzIHByb2JhYmlsaXRpZXMgb2YgZWFjaCBzYW1wbGUgc3VtIHRvIDEuXG4gICAgICBjb25zdCBvdXRwdXRTdW0gPSB0ZmMuc3VtKG91dHB1dCwgb3V0cHV0LnNoYXBlLmxlbmd0aCAtIDEsIHRydWUpO1xuICAgICAgb3V0cHV0ID0gdGZjLmRpdihvdXRwdXQsIG91dHB1dFN1bSk7XG4gICAgfVxuICAgIG91dHB1dCA9IHRmYy5jbGlwQnlWYWx1ZShvdXRwdXQsIGVwc2lsb24oKSwgMSAtIGVwc2lsb24oKSk7XG4gICAgcmV0dXJuIHRmYy5uZWcodGZjLnN1bShcbiAgICAgICAgdGZjLm11bCh0ZmMuY2FzdCh0YXJnZXQsICdmbG9hdDMyJyksIHRmYy5sb2cob3V0cHV0KSksXG4gICAgICAgIG91dHB1dC5zaGFwZS5sZW5ndGggLSAxKSk7XG4gIH0pO1xufVxuXG4vKipcbiAqIENhdGVnb3JpY2FsIGNyb3NzZW50cm9weSB3aXRoIGludGVnZXIgdGFyZ2V0cy5cbiAqXG4gKiBAcGFyYW0gdGFyZ2V0IEFuIGludGVnZXIgdGVuc29yLlxuICogQHBhcmFtIG91dHB1dCBBIHRlbnNvciByZXN1bHRpbmcgZnJvbSBhIHNvZnRtYXggKHVubGVzcyBgZnJvbUxvZ2l0c2AgaXNcbiAqICBgdHJ1ZWAsIGluIHdoaWNoIGNhc2UgYG91dHB1dGAgaXMgZXhwZWN0ZWQgdG8gYmUgdGhlIGxvZ2l0cykuXG4gKiBAcGFyYW0gZnJvbUxvZ2l0cyBCb29sZWFuLCB3aGV0aGVyIGBvdXRwdXRgIGlzIHRoZSByZXN1bHQgb2YgYSBzb2Z0bWF4LCBvciBpc1xuICogICBhIHRlbnNvciBvZiBsb2dpdHMuXG4gKi9cbmV4cG9ydCBmdW5jdGlvbiBzcGFyc2VDYXRlZ29yaWNhbENyb3NzZW50cm9weShcbiAgICB0YXJnZXQ6IFRlbnNvciwgb3V0cHV0OiBUZW5zb3IsIGZyb21Mb2dpdHMgPSBmYWxzZSk6IFRlbnNvciB7XG4gIHJldHVybiB0aWR5KCgpID0+IHtcbiAgICBjb25zdCBmbGF0VGFyZ2V0ID1cbiAgICAgICAgdGZjLmNhc3QodGZjLmZsb29yKEsuZmxhdHRlbih0YXJnZXQpKSwgJ2ludDMyJykgYXMgVGVuc29yMUQ7XG4gICAgb3V0cHV0ID0gdGZjLmNsaXBCeVZhbHVlKG91dHB1dCwgZXBzaWxvbigpLCAxIC0gZXBzaWxvbigpKTtcbiAgICBjb25zdCBvdXRwdXRTaGFwZSA9IG91dHB1dC5zaGFwZTtcbiAgICBjb25zdCBvbmVIb3RUYXJnZXQgPSB0ZmMucmVzaGFwZShcbiAgICAgICAgdGZjLm9uZUhvdChmbGF0VGFyZ2V0LCBvdXRwdXRTaGFwZVtvdXRwdXRTaGFwZS5sZW5ndGggLSAxXSksXG4gICAgICAgIG91dHB1dFNoYXBlKTtcbiAgICByZXR1cm4gY2F0ZWdvcmljYWxDcm9zc2VudHJvcHkob25lSG90VGFyZ2V0LCBvdXRwdXQsIGZyb21Mb2dpdHMpO1xuICB9KTtcbn1cblxuLyoqXG4gKiBGcm9tIFRlbnNvckZsb3cncyBpbXBsZW1lbnRhdGlvbiBpbiBubl9pbXBsLnB5OlxuICpcbiAqIEZvciBicmV2aXR5LCBsZXQgYHggPSBsb2dpdHNgLCBgeiA9IGxhYmVsc2AuICBUaGUgbG9naXN0aWMgbG9zcyBpc1xuICogICAgICB6ICogLWxvZyhzaWdtb2lkKHgpKSArICgxIC0geikgKiAtbG9nKDEgLSBzaWdtb2lkKHgpKVxuICogICAgPSB6ICogLWxvZygxIC8gKDEgKyBleHAoLXgpKSkgKyAoMSAtIHopICogLWxvZyhleHAoLXgpIC8gKDEgKyBleHAoLXgpKSlcbiAqICAgID0geiAqIGxvZygxICsgZXhwKC14KSkgKyAoMSAtIHopICogKC1sb2coZXhwKC14KSkgKyBsb2coMSArIGV4cCgteCkpKVxuICogICAgPSB6ICogbG9nKDEgKyBleHAoLXgpKSArICgxIC0geikgKiAoeCArIGxvZygxICsgZXhwKC14KSlcbiAqICAgID0gKDEgLSB6KSAqIHggKyBsb2coMSArIGV4cCgteCkpXG4gKiAgICA9IHggLSB4ICogeiArIGxvZygxICsgZXhwKC14KSlcbiAqIEZvciB4IDwgMCwgdG8gYXZvaWQgb3ZlcmZsb3cgaW4gZXhwKC14KSwgd2UgcmVmb3JtdWxhdGUgdGhlIGFib3ZlXG4gKiAgICAgIHggLSB4ICogeiArIGxvZygxICsgZXhwKC14KSlcbiAqICAgID0gbG9nKGV4cCh4KSkgLSB4ICogeiArIGxvZygxICsgZXhwKC14KSlcbiAqICAgID0gLSB4ICogeiArIGxvZygxICsgZXhwKHgpKVxuICogSGVuY2UsIHRvIGVuc3VyZSBzdGFiaWxpdHkgYW5kIGF2b2lkIG92ZXJmbG93LCB0aGUgaW1wbGVtZW50YXRpb24gdXNlcyB0aGlzXG4gKiBlcXVpdmFsZW50IGZvcm11bGF0aW9uXG4gKiAgICBtYXgoeCwgMCkgLSB4ICogeiArIGxvZygxICsgZXhwKC1hYnMoeCkpKVxuICpcbiAqIEBwYXJhbSBsYWJlbHMgVGhlIGxhYmVscy5cbiAqIEBwYXJhbSBsb2dpdHMgVGhlIGxvZ2l0cy5cbiAqL1xuZXhwb3J0IGZ1bmN0aW9uIHNpZ21vaWRDcm9zc0VudHJvcHlXaXRoTG9naXRzKFxuICAgIGxhYmVsczogVGVuc29yLCBsb2dpdHM6IFRlbnNvcik6IFRlbnNvciB7XG4gIGlmICghdXRpbC5hcnJheXNFcXVhbChsYWJlbHMuc2hhcGUsIGxvZ2l0cy5zaGFwZSkpIHtcbiAgICB0aHJvdyBuZXcgVmFsdWVFcnJvcihcbiAgICAgICAgYGxvZ2l0cyBhbmQgbGFiZWxzIG11c3QgaGF2ZSB0aGUgc2FtZSBzaGFwZSwgYnV0IGdvdCBzaGFwZXMgYCArXG4gICAgICAgIGAke0pTT04uc3RyaW5naWZ5KGxhYmVscy5zaGFwZSl9IGFuZCAke0pTT04uc3RyaW5naWZ5KGxvZ2l0cy5zaGFwZSl9YCk7XG4gIH1cbiAgcmV0dXJuIHRpZHkoKCkgPT4ge1xuICAgIC8vIFRoZSBsb2dpc3RpYyBsb3NzIGZvcm11bGEgZnJvbSBhYm92ZSBpc1xuICAgIC8vICAgeCAtIHggKiB6ICsgbG9nKDEgKyBleHAoLXgpKVxuICAgIC8vIEZvciB4IDwgMCwgYSBtb3JlIG51bWVyaWNhbGx5IHN0YWJsZSBmb3JtdWxhIGlzXG4gICAgLy8gICAteCAqIHogKyBsb2coMSArIGV4cCh4KSlcbiAgICAvLyBOb3RlIHRoYXQgdGhlc2UgdHdvIGV4cHJlc3Npb25zIGNhbiBiZSBjb21iaW5lZCBpbnRvIHRoZSBmb2xsb3dpbmc6XG4gICAgLy8gICBtYXgoeCwgMCkgLSB4ICogeiArIGxvZygxICsgZXhwKC1hYnMoeCkpKVxuICAgIGNvbnN0IHJlbHVMb2dpdHMgPSB0ZmMucmVsdShsb2dpdHMpO1xuICAgIGNvbnN0IG5lZ0Fic0xvZ2l0cyA9IHRmYy5uZWcodGZjLmFicyhsb2dpdHMpKTtcbiAgICByZXR1cm4gdGZjLmFkZChcbiAgICAgICAgdGZjLnN1YihyZWx1TG9naXRzLCB0ZmMubXVsKGxvZ2l0cywgbGFiZWxzKSksXG4gICAgICAgIHRmYy5sb2cxcCh0ZmMuZXhwKG5lZ0Fic0xvZ2l0cykpKTtcbiAgfSk7XG59XG5cbmV4cG9ydCBmdW5jdGlvbiBiaW5hcnlDcm9zc2VudHJvcHkoeVRydWU6IFRlbnNvciwgeVByZWQ6IFRlbnNvcik6IFRlbnNvciB7XG4gIHJldHVybiB0aWR5KCgpID0+IHtcbiAgICBsZXQgeTogVGVuc29yO1xuICAgIHkgPSB0ZmMuY2xpcEJ5VmFsdWUoeVByZWQsIGVwc2lsb24oKSwgMSAtIGVwc2lsb24oKSk7XG4gICAgeSA9IHRmYy5sb2codGZjLmRpdih5LCB0ZmMuc3ViKDEsIHkpKSk7XG4gICAgcmV0dXJuIHRmYy5tZWFuKHNpZ21vaWRDcm9zc0VudHJvcHlXaXRoTG9naXRzKHlUcnVlLCB5KSwgLTEpO1xuICB9KTtcbn1cblxuZXhwb3J0IGZ1bmN0aW9uIGt1bGxiYWNrTGVpYmxlckRpdmVyZ2VuY2UoXG4gICAgeVRydWU6IFRlbnNvciwgeVByZWQ6IFRlbnNvcik6IFRlbnNvciB7XG4gIHJldHVybiB0aWR5KCgpID0+IHtcbiAgICBjb25zdCBjbGlwcGVkVHJ1ZSA9IHRmYy5jbGlwQnlWYWx1ZSh5VHJ1ZSwgZXBzaWxvbigpLCAxKTtcbiAgICBjb25zdCBjbGlwcGVkUHJlZCA9IHRmYy5jbGlwQnlWYWx1ZSh5UHJlZCwgZXBzaWxvbigpLCAxKTtcbiAgICByZXR1cm4gdGZjLnN1bShcbiAgICAgICAgdGZjLm11bCh5VHJ1ZSwgdGZjLmxvZyh0ZmMuZGl2KGNsaXBwZWRUcnVlLCBjbGlwcGVkUHJlZCkpKSwgLTEpO1xuICB9KTtcbn1cblxuZXhwb3J0IGZ1bmN0aW9uIHBvaXNzb24oeVRydWU6IFRlbnNvciwgeVByZWQ6IFRlbnNvcik6IFRlbnNvciB7XG4gIHJldHVybiB0aWR5KCgpID0+IHtcbiAgICBjb25zdCBsb2dQcmVkID0gdGZjLmxvZyh0ZmMuYWRkKGVwc2lsb24oKSwgeVByZWQpKTtcbiAgICByZXR1cm4gdGZjLm1lYW4odGZjLnN1Yih5UHJlZCwgdGZjLm11bCh5VHJ1ZSwgbG9nUHJlZCkpLCAtMSk7XG4gIH0pO1xufVxuXG5leHBvcnQgZnVuY3Rpb24gY29zaW5lUHJveGltaXR5KHlUcnVlOiBUZW5zb3IsIHlQcmVkOiBUZW5zb3IpOiBUZW5zb3Ige1xuICByZXR1cm4gdGlkeSgoKSA9PiB7XG4gICAgY29uc3QgdHJ1ZU5vcm1hbGl6ZWQgPSBsMk5vcm1hbGl6ZSh5VHJ1ZSwgLTEpO1xuICAgIGNvbnN0IHByZWROb3JtYWxpemVkID0gbDJOb3JtYWxpemUoeVByZWQsIC0xKTtcbiAgICBjb25zdCB0cnVlWFByZWQgPSB0ZmMubXVsKHRydWVOb3JtYWxpemVkLCBwcmVkTm9ybWFsaXplZCk7XG4gICAgcmV0dXJuIHRmYy5uZWcodGZjLnN1bSh0cnVlWFByZWQsIC0xKSk7XG4gIH0pO1xufVxuXG5leHBvcnQgY29uc3QgbXNlID0gbWVhblNxdWFyZWRFcnJvcjtcbmV4cG9ydCBjb25zdCBNU0UgPSBtZWFuU3F1YXJlZEVycm9yO1xuZXhwb3J0IGNvbnN0IG1hZSA9IG1lYW5BYnNvbHV0ZUVycm9yO1xuZXhwb3J0IGNvbnN0IE1BRSA9IG1lYW5BYnNvbHV0ZUVycm9yO1xuZXhwb3J0IGNvbnN0IG1hcGUgPSBtZWFuQWJzb2x1dGVQZXJjZW50YWdlRXJyb3I7XG5leHBvcnQgY29uc3QgTUFQRSA9IG1lYW5BYnNvbHV0ZVBlcmNlbnRhZ2VFcnJvcjtcbmV4cG9ydCBjb25zdCBtc2xlID0gbWVhblNxdWFyZWRMb2dhcml0aG1pY0Vycm9yO1xuZXhwb3J0IGNvbnN0IE1TTEUgPSBtZWFuU3F1YXJlZExvZ2FyaXRobWljRXJyb3I7XG5leHBvcnQgY29uc3Qga2xkID0ga3VsbGJhY2tMZWlibGVyRGl2ZXJnZW5jZTtcbmV4cG9ydCBjb25zdCBLTEQgPSBrdWxsYmFja0xlaWJsZXJEaXZlcmdlbmNlO1xuZXhwb3J0IGNvbnN0IGNvc2luZSA9IGNvc2luZVByb3hpbWl0eTtcblxuLy8gVE9ETyhtaWNoYWVsdGVycnkpOiBBZGQgZGVzZXJpYWxpemUoKSBmdW5jdGlvbi5cblxuZXhwb3J0IGNvbnN0IGxvc3Nlc01hcDoge1tmdW5jdGlvbk5hbWU6IHN0cmluZ106IExvc3NPck1ldHJpY0ZufSA9IHtcbiAgbWVhblNxdWFyZWRFcnJvcixcbiAgbWVhbkFic29sdXRlRXJyb3IsXG4gIG1lYW5BYnNvbHV0ZVBlcmNlbnRhZ2VFcnJvcixcbiAgbWVhblNxdWFyZWRMb2dhcml0aG1pY0Vycm9yLFxuICBzcXVhcmVkSGluZ2UsXG4gIGhpbmdlLFxuICBjYXRlZ29yaWNhbEhpbmdlLFxuICBsb2djb3NoLFxuICBjYXRlZ29yaWNhbENyb3NzZW50cm9weSxcbiAgc3BhcnNlQ2F0ZWdvcmljYWxDcm9zc2VudHJvcHksXG4gIGJpbmFyeUNyb3NzZW50cm9weSxcbiAga3VsbGJhY2tMZWlibGVyRGl2ZXJnZW5jZSxcbiAgcG9pc3NvbixcbiAgY29zaW5lUHJveGltaXR5XG59O1xuXG4vLyBQb3J0aW5nIG5vdGU6IFRoaXMgZGl2ZXJnZXMgZnJvbSB0aGUgUHlLZXJhcyBpbXBsZW1lbnRhdGlvbiBhbmQgbWF5IG5lZWQgdG9cbi8vIGNoYW5nZSBiYXNlZCBvbiAoZGUpc2VyaWFsaXphdGlvbiByZXF1aXJlbWVudHMuXG5leHBvcnQgZnVuY3Rpb24gZ2V0KGlkZW50aWZpZXJPckZuOiBzdHJpbmd8TG9zc09yTWV0cmljRm4pOiBMb3NzT3JNZXRyaWNGbiB7XG4gIGlmICh0eXBlb2YgaWRlbnRpZmllck9yRm4gPT09ICdzdHJpbmcnKSB7XG4gICAgaWYgKGlkZW50aWZpZXJPckZuIGluIGxvc3Nlc01hcCkge1xuICAgICAgcmV0dXJuIGxvc3Nlc01hcFtpZGVudGlmaWVyT3JGbl07XG4gICAgfVxuICAgIGxldCBlcnJNc2cgPSBgVW5rbm93biBsb3NzICR7aWRlbnRpZmllck9yRm59YDtcbiAgICBpZiAoaWRlbnRpZmllck9yRm4udG9Mb3dlckNhc2UoKS5pbmNsdWRlcygnc29mdG1heGNyb3NzZW50cm9weScpKSB7XG4gICAgICBlcnJNc2cgPSBgVW5rbm93biBsb3NzICR7aWRlbnRpZmllck9yRm59LiBgICtcbiAgICAgICAgICAnVXNlIFwiY2F0ZWdvcmljYWxDcm9zc2VudHJvcHlcIiBhcyB0aGUgc3RyaW5nIG5hbWUgZm9yICcgK1xuICAgICAgICAgICd0Zi5sb3NzZXMuc29mdG1heENyb3NzRW50cm9weSc7XG4gICAgfVxuICAgIHRocm93IG5ldyBWYWx1ZUVycm9yKGVyck1zZyk7XG4gIH0gZWxzZSB7XG4gICAgcmV0dXJuIGlkZW50aWZpZXJPckZuO1xuICB9XG59XG4iXX0=