"use strict";
|
/**
|
* @license
|
* Copyright 2018 Google Inc. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
function __export(m) {
|
for (var p in m) if (!exports.hasOwnProperty(p)) exports[p] = m[p];
|
}
|
Object.defineProperty(exports, "__esModule", { value: true });
|
var engine_1 = require("../engine");
|
var tensor_ops_1 = require("../ops/tensor_ops");
|
var util_1 = require("../util");
|
// Utilities needed by backend consumers of tf-core.
|
__export(require("../ops/axis_util"));
|
__export(require("../ops/broadcast_util"));
|
__export(require("../ops/concat_util"));
|
__export(require("../ops/conv_util"));
|
__export(require("../ops/reduce_util"));
|
var types_1 = require("../types");
|
exports.upcastType = types_1.upcastType;
|
function castTensor(x, dtype, backend) {
|
if (dtype === 'complex64') {
|
if (x.dtype === 'complex64') {
|
return x.clone();
|
}
|
var zerosTensor = tensor_ops_1.zeros(x.shape);
|
var floatX = x.toFloat();
|
var result = backend.complex(floatX, zerosTensor);
|
zerosTensor.dispose();
|
floatX.dispose();
|
return result;
|
}
|
if (!util_1.hasEncodingLoss(x.dtype, dtype)) {
|
// We don't change the underlying data, since we cast to higher
|
// precision.
|
return engine_1.ENGINE.makeTensorFromDataId(x.dataId, x.shape, dtype);
|
}
|
if (x.dtype === 'complex64') {
|
var real = backend.real(x);
|
var result = real.cast(dtype);
|
real.dispose();
|
return result;
|
}
|
if (dtype === 'int32') {
|
return backend.int(x);
|
}
|
else if (dtype === 'bool') {
|
var zero = tensor_ops_1.scalar(0, x.dtype);
|
var result = backend.notEqual(x, zero);
|
zero.dispose();
|
return result;
|
}
|
else {
|
throw new Error("Error in Cast: failed to cast " + x.dtype + " to " + dtype);
|
}
|
}
|
exports.castTensor = castTensor;
|
function reshapeTensor(x, shape) {
|
return engine_1.ENGINE.makeTensorFromDataId(x.dataId, shape, x.dtype);
|
}
|
exports.reshapeTensor = reshapeTensor;
|
function linspaceImpl(start, stop, num) {
|
var step = (stop - start) / (num - 1);
|
var values = util_1.makeZerosTypedArray(num, 'float32');
|
values[0] = start;
|
for (var i = 1; i < values.length; i++) {
|
values[i] = values[i - 1] + step;
|
}
|
return tensor_ops_1.tensor1d(values, 'float32');
|
}
|
exports.linspaceImpl = linspaceImpl;
|
//# sourceMappingURL=backend_util.js.map
|