"use strict";
|
/**
|
* @license
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) {
|
return new (P || (P = Promise))(function (resolve, reject) {
|
function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } }
|
function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } }
|
function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); }
|
step((generator = generator.apply(thisArg, _arguments || [])).next());
|
});
|
};
|
var __generator = (this && this.__generator) || function (thisArg, body) {
|
var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g;
|
return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g;
|
function verb(n) { return function (v) { return step([n, v]); }; }
|
function step(op) {
|
if (f) throw new TypeError("Generator is already executing.");
|
while (_) try {
|
if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t;
|
if (y = 0, t) op = [op[0] & 2, t.value];
|
switch (op[0]) {
|
case 0: case 1: t = op; break;
|
case 4: _.label++; return { value: op[1], done: false };
|
case 5: _.label++; y = op[1]; op = [0]; continue;
|
case 7: op = _.ops.pop(); _.trys.pop(); continue;
|
default:
|
if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; }
|
if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; }
|
if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; }
|
if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; }
|
if (t[2]) _.ops.pop();
|
_.trys.pop(); continue;
|
}
|
op = body.call(thisArg, _);
|
} catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; }
|
if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true };
|
}
|
};
|
var _this = this;
|
Object.defineProperty(exports, "__esModule", { value: true });
|
var tf = require("../index");
|
var jasmine_util_1 = require("../jasmine_util");
|
var http_1 = require("./http");
|
// Test data.
|
var modelTopology1 = {
|
'class_name': 'Sequential',
|
'keras_version': '2.1.4',
|
'config': [{
|
'class_name': 'Dense',
|
'config': {
|
'kernel_initializer': {
|
'class_name': 'VarianceScaling',
|
'config': {
|
'distribution': 'uniform',
|
'scale': 1.0,
|
'seed': null,
|
'mode': 'fan_avg'
|
}
|
},
|
'name': 'dense',
|
'kernel_constraint': null,
|
'bias_regularizer': null,
|
'bias_constraint': null,
|
'dtype': 'float32',
|
'activation': 'linear',
|
'trainable': true,
|
'kernel_regularizer': null,
|
'bias_initializer': { 'class_name': 'Zeros', 'config': {} },
|
'units': 1,
|
'batch_input_shape': [null, 3],
|
'use_bias': true,
|
'activity_regularizer': null
|
}
|
}],
|
'backend': 'tensorflow'
|
};
|
var fetchSpy;
|
var fakeResponse = function (body, contentType, path) {
|
return ({
|
ok: true,
|
json: function () {
|
return Promise.resolve(JSON.parse(body));
|
},
|
arrayBuffer: function () {
|
var buf = body.buffer ?
|
body.buffer :
|
body;
|
return Promise.resolve(buf);
|
},
|
headers: { get: function (key) { return contentType; } },
|
url: path
|
});
|
};
|
var setupFakeWeightFiles = function (fileBufferMap, requestInits) {
|
fetchSpy = spyOn(tf.env().platform, 'fetch')
|
.and.callFake(function (path, init) {
|
if (fileBufferMap[path]) {
|
requestInits[path] = init;
|
return Promise.resolve(fakeResponse(fileBufferMap[path].data, fileBufferMap[path].contentType, path));
|
}
|
else {
|
return Promise.reject('path not found');
|
}
|
});
|
};
|
jasmine_util_1.describeWithFlags('http-load fetch', jasmine_util_1.NODE_ENVS, function () {
|
var requestInits;
|
// tslint:disable-next-line:no-any
|
var originalFetch;
|
// simulate a fetch polyfill, this needs to be non-null for spyOn to work
|
beforeEach(function () {
|
// tslint:disable-next-line:no-any
|
originalFetch = global.fetch;
|
// tslint:disable-next-line:no-any
|
global.fetch = function () { };
|
requestInits = {};
|
});
|
afterAll(function () {
|
// tslint:disable-next-line:no-any
|
global.fetch = originalFetch;
|
});
|
it('1 group, 2 weights, 1 path', function () { return __awaiter(_this, void 0, void 0, function () {
|
var weightManifest1, floatData, handler, modelArtifacts;
|
return __generator(this, function (_a) {
|
switch (_a.label) {
|
case 0:
|
weightManifest1 = [{
|
paths: ['weightfile0'],
|
weights: [
|
{
|
name: 'dense/kernel',
|
shape: [3, 1],
|
dtype: 'float32',
|
},
|
{
|
name: 'dense/bias',
|
shape: [2],
|
dtype: 'float32',
|
}
|
]
|
}];
|
floatData = new Float32Array([1, 3, 3, 7, 4]);
|
setupFakeWeightFiles({
|
'./model.json': {
|
data: JSON.stringify({
|
modelTopology: modelTopology1,
|
weightsManifest: weightManifest1,
|
format: 'tfjs-layers',
|
generatedBy: '1.15',
|
convertedBy: '1.3.1',
|
userDefinedMetadata: {}
|
}),
|
contentType: 'application/json'
|
},
|
'./weightfile0': { data: floatData, contentType: 'application/octet-stream' },
|
}, requestInits);
|
handler = tf.io.http('./model.json');
|
return [4 /*yield*/, handler.load()];
|
case 1:
|
modelArtifacts = _a.sent();
|
expect(modelArtifacts.modelTopology).toEqual(modelTopology1);
|
expect(modelArtifacts.weightSpecs).toEqual(weightManifest1[0].weights);
|
expect(modelArtifacts.format).toEqual('tfjs-layers');
|
expect(modelArtifacts.generatedBy).toEqual('1.15');
|
expect(modelArtifacts.convertedBy).toEqual('1.3.1');
|
expect(modelArtifacts.userDefinedMetadata).toEqual({});
|
expect(new Float32Array(modelArtifacts.weightData)).toEqual(floatData);
|
return [2 /*return*/];
|
}
|
});
|
}); });
|
it('throw exception if no fetch polyfill', function () {
|
// tslint:disable-next-line:no-any
|
delete global.fetch;
|
try {
|
tf.io.http('./model.json');
|
}
|
catch (err) {
|
expect(err.message).toMatch(/Unable to find fetch polyfill./);
|
}
|
});
|
});
|
// Turned off for other browsers due to:
|
// https://github.com/tensorflow/tfjs/issues/426
|
jasmine_util_1.describeWithFlags('http-save', jasmine_util_1.CHROME_ENVS, function () {
|
// Test data.
|
var weightSpecs1 = [
|
{
|
name: 'dense/kernel',
|
shape: [3, 1],
|
dtype: 'float32',
|
},
|
{
|
name: 'dense/bias',
|
shape: [1],
|
dtype: 'float32',
|
}
|
];
|
var weightData1 = new ArrayBuffer(16);
|
var artifacts1 = {
|
modelTopology: modelTopology1,
|
weightSpecs: weightSpecs1,
|
weightData: weightData1,
|
format: 'layers-model',
|
generatedBy: 'TensorFlow.js v0.0.0',
|
convertedBy: null
|
};
|
var requestInits = [];
|
beforeEach(function () {
|
requestInits = [];
|
spyOn(tf.env().platform, 'fetch')
|
.and.callFake(function (path, init) {
|
if (path === 'model-upload-test' ||
|
path === 'http://model-upload-test') {
|
requestInits.push(init);
|
return Promise.resolve(new Response(null, { status: 200 }));
|
}
|
else {
|
return Promise.reject(new Response(null, { status: 404 }));
|
}
|
});
|
});
|
it('Save topology and weights, default POST method', function (done) {
|
var testStartDate = new Date();
|
var handler = tf.io.getSaveHandlers('http://model-upload-test')[0];
|
handler.save(artifacts1)
|
.then(function (saveResult) {
|
expect(saveResult.modelArtifactsInfo.dateSaved.getTime())
|
.toBeGreaterThanOrEqual(testStartDate.getTime());
|
// Note: The following two assertions work only because there is no
|
// non-ASCII characters in `modelTopology1` and `weightSpecs1`.
|
expect(saveResult.modelArtifactsInfo.modelTopologyBytes)
|
.toEqual(JSON.stringify(modelTopology1).length);
|
expect(saveResult.modelArtifactsInfo.weightSpecsBytes)
|
.toEqual(JSON.stringify(weightSpecs1).length);
|
expect(saveResult.modelArtifactsInfo.weightDataBytes)
|
.toEqual(weightData1.byteLength);
|
expect(requestInits.length).toEqual(1);
|
var init = requestInits[0];
|
expect(init.method).toEqual('POST');
|
var body = init.body;
|
var jsonFile = body.get('model.json');
|
var jsonFileReader = new FileReader();
|
jsonFileReader.onload = function (event) {
|
// tslint:disable-next-line:no-any
|
var modelJSON = JSON.parse(event.target.result);
|
expect(modelJSON.modelTopology).toEqual(modelTopology1);
|
expect(modelJSON.weightsManifest.length).toEqual(1);
|
expect(modelJSON.weightsManifest[0].weights).toEqual(weightSpecs1);
|
var weightsFile = body.get('model.weights.bin');
|
var weightsFileReader = new FileReader();
|
weightsFileReader.onload = function (event) {
|
// tslint:disable-next-line:no-any
|
var weightData = event.target.result;
|
expect(new Uint8Array(weightData))
|
.toEqual(new Uint8Array(weightData1));
|
done();
|
};
|
weightsFileReader.onerror = function (ev) {
|
done.fail(weightsFileReader.error.message);
|
};
|
weightsFileReader.readAsArrayBuffer(weightsFile);
|
};
|
jsonFileReader.onerror = function (ev) {
|
done.fail(jsonFileReader.error.message);
|
};
|
jsonFileReader.readAsText(jsonFile);
|
})
|
.catch(function (err) {
|
done.fail(err.stack);
|
});
|
});
|
it('Save topology only, default POST method', function (done) {
|
var testStartDate = new Date();
|
var handler = tf.io.getSaveHandlers('http://model-upload-test')[0];
|
var topologyOnlyArtifacts = { modelTopology: modelTopology1 };
|
handler.save(topologyOnlyArtifacts)
|
.then(function (saveResult) {
|
expect(saveResult.modelArtifactsInfo.dateSaved.getTime())
|
.toBeGreaterThanOrEqual(testStartDate.getTime());
|
// Note: The following two assertions work only because there is no
|
// non-ASCII characters in `modelTopology1` and `weightSpecs1`.
|
expect(saveResult.modelArtifactsInfo.modelTopologyBytes)
|
.toEqual(JSON.stringify(modelTopology1).length);
|
expect(saveResult.modelArtifactsInfo.weightSpecsBytes).toEqual(0);
|
expect(saveResult.modelArtifactsInfo.weightDataBytes).toEqual(0);
|
expect(requestInits.length).toEqual(1);
|
var init = requestInits[0];
|
expect(init.method).toEqual('POST');
|
var body = init.body;
|
var jsonFile = body.get('model.json');
|
var jsonFileReader = new FileReader();
|
jsonFileReader.onload = function (event) {
|
// tslint:disable-next-line:no-any
|
var modelJSON = JSON.parse(event.target.result);
|
expect(modelJSON.modelTopology).toEqual(modelTopology1);
|
// No weights should have been sent to the server.
|
expect(body.get('model.weights.bin')).toEqual(null);
|
done();
|
};
|
jsonFileReader.onerror = function (event) {
|
done.fail(jsonFileReader.error.message);
|
};
|
jsonFileReader.readAsText(jsonFile);
|
})
|
.catch(function (err) {
|
done.fail(err.stack);
|
});
|
});
|
it('Save topology and weights, PUT method, extra headers', function (done) {
|
var testStartDate = new Date();
|
var handler = tf.io.http('model-upload-test', {
|
requestInit: {
|
method: 'PUT',
|
headers: { 'header_key_1': 'header_value_1', 'header_key_2': 'header_value_2' }
|
}
|
});
|
handler.save(artifacts1)
|
.then(function (saveResult) {
|
expect(saveResult.modelArtifactsInfo.dateSaved.getTime())
|
.toBeGreaterThanOrEqual(testStartDate.getTime());
|
// Note: The following two assertions work only because there is no
|
// non-ASCII characters in `modelTopology1` and `weightSpecs1`.
|
expect(saveResult.modelArtifactsInfo.modelTopologyBytes)
|
.toEqual(JSON.stringify(modelTopology1).length);
|
expect(saveResult.modelArtifactsInfo.weightSpecsBytes)
|
.toEqual(JSON.stringify(weightSpecs1).length);
|
expect(saveResult.modelArtifactsInfo.weightDataBytes)
|
.toEqual(weightData1.byteLength);
|
expect(requestInits.length).toEqual(1);
|
var init = requestInits[0];
|
expect(init.method).toEqual('PUT');
|
// Check headers.
|
expect(init.headers).toEqual({
|
'header_key_1': 'header_value_1',
|
'header_key_2': 'header_value_2'
|
});
|
var body = init.body;
|
var jsonFile = body.get('model.json');
|
var jsonFileReader = new FileReader();
|
jsonFileReader.onload = function (event) {
|
// tslint:disable-next-line:no-any
|
var modelJSON = JSON.parse(event.target.result);
|
expect(modelJSON.format).toEqual('layers-model');
|
expect(modelJSON.generatedBy).toEqual('TensorFlow.js v0.0.0');
|
expect(modelJSON.convertedBy).toEqual(null);
|
expect(modelJSON.modelTopology).toEqual(modelTopology1);
|
expect(modelJSON.weightsManifest.length).toEqual(1);
|
expect(modelJSON.weightsManifest[0].weights).toEqual(weightSpecs1);
|
var weightsFile = body.get('model.weights.bin');
|
var weightsFileReader = new FileReader();
|
weightsFileReader.onload = function (event) {
|
// tslint:disable-next-line:no-any
|
var weightData = event.target.result;
|
expect(new Uint8Array(weightData))
|
.toEqual(new Uint8Array(weightData1));
|
done();
|
};
|
weightsFileReader.onerror = function (event) {
|
done.fail(weightsFileReader.error.message);
|
};
|
weightsFileReader.readAsArrayBuffer(weightsFile);
|
};
|
jsonFileReader.onerror = function (event) {
|
done.fail(jsonFileReader.error.message);
|
};
|
jsonFileReader.readAsText(jsonFile);
|
})
|
.catch(function (err) {
|
done.fail(err.stack);
|
});
|
});
|
it('404 response causes Error', function (done) {
|
var handler = tf.io.getSaveHandlers('http://invalid/path')[0];
|
handler.save(artifacts1)
|
.then(function (saveResult) {
|
done.fail('Calling http at invalid URL succeeded ' +
|
'unexpectedly');
|
})
|
.catch(function (err) {
|
done();
|
});
|
});
|
it('getLoadHandlers with one URL string', function () {
|
var handlers = tf.io.getLoadHandlers('http://foo/model.json');
|
expect(handlers.length).toEqual(1);
|
expect(handlers[0] instanceof http_1.HTTPRequest).toEqual(true);
|
});
|
it('Existing body leads to Error', function () {
|
expect(function () { return tf.io.http('model-upload-test', {
|
requestInit: { body: 'existing body' }
|
}); }).toThrowError(/requestInit is expected to have no pre-existing body/);
|
});
|
it('Empty, null or undefined URL paths lead to Error', function () {
|
expect(function () { return tf.io.http(null); })
|
.toThrowError(/must not be null, undefined or empty/);
|
expect(function () { return tf.io.http(undefined); })
|
.toThrowError(/must not be null, undefined or empty/);
|
expect(function () { return tf.io.http(''); })
|
.toThrowError(/must not be null, undefined or empty/);
|
});
|
it('router', function () {
|
expect(http_1.httpRouter('http://bar/foo') instanceof http_1.HTTPRequest).toEqual(true);
|
expect(http_1.httpRouter('https://localhost:5000/upload') instanceof http_1.HTTPRequest)
|
.toEqual(true);
|
expect(http_1.httpRouter('localhost://foo')).toBeNull();
|
expect(http_1.httpRouter('foo:5000/bar')).toBeNull();
|
});
|
});
|
jasmine_util_1.describeWithFlags('parseUrl', jasmine_util_1.BROWSER_ENVS, function () {
|
it('should parse url with no suffix', function () {
|
var url = 'http://google.com/file';
|
var _a = http_1.parseUrl(url), prefix = _a[0], suffix = _a[1];
|
expect(prefix).toEqual('http://google.com/');
|
expect(suffix).toEqual('');
|
});
|
it('should parse url with suffix', function () {
|
var url = 'http://google.com/file?param=1';
|
var _a = http_1.parseUrl(url), prefix = _a[0], suffix = _a[1];
|
expect(prefix).toEqual('http://google.com/');
|
expect(suffix).toEqual('?param=1');
|
});
|
it('should parse url with multiple serach params', function () {
|
var url = 'http://google.com/a?x=1/file?param=1';
|
var _a = http_1.parseUrl(url), prefix = _a[0], suffix = _a[1];
|
expect(prefix).toEqual('http://google.com/a?x=1/');
|
expect(suffix).toEqual('?param=1');
|
});
|
});
|
jasmine_util_1.describeWithFlags('http-load', jasmine_util_1.BROWSER_ENVS, function () {
|
describe('JSON model', function () {
|
var requestInits;
|
beforeEach(function () {
|
requestInits = {};
|
});
|
it('1 group, 2 weights, 1 path', function () { return __awaiter(_this, void 0, void 0, function () {
|
var weightManifest1, floatData, handler, modelArtifacts;
|
return __generator(this, function (_a) {
|
switch (_a.label) {
|
case 0:
|
weightManifest1 = [{
|
paths: ['weightfile0'],
|
weights: [
|
{
|
name: 'dense/kernel',
|
shape: [3, 1],
|
dtype: 'float32',
|
},
|
{
|
name: 'dense/bias',
|
shape: [2],
|
dtype: 'float32',
|
}
|
]
|
}];
|
floatData = new Float32Array([1, 3, 3, 7, 4]);
|
setupFakeWeightFiles({
|
'./model.json': {
|
data: JSON.stringify({
|
modelTopology: modelTopology1,
|
weightsManifest: weightManifest1,
|
format: 'tfjs-graph-model',
|
generatedBy: '1.15',
|
convertedBy: '1.3.1',
|
userDefinedMetadata: {}
|
}),
|
contentType: 'application/json'
|
},
|
'./weightfile0': { data: floatData, contentType: 'application/octet-stream' },
|
}, requestInits);
|
handler = tf.io.http('./model.json');
|
return [4 /*yield*/, handler.load()];
|
case 1:
|
modelArtifacts = _a.sent();
|
expect(modelArtifacts.modelTopology).toEqual(modelTopology1);
|
expect(modelArtifacts.weightSpecs).toEqual(weightManifest1[0].weights);
|
expect(modelArtifacts.format).toEqual('tfjs-graph-model');
|
expect(modelArtifacts.generatedBy).toEqual('1.15');
|
expect(modelArtifacts.convertedBy).toEqual('1.3.1');
|
expect(modelArtifacts.userDefinedMetadata).toEqual({});
|
expect(new Float32Array(modelArtifacts.weightData)).toEqual(floatData);
|
expect(Object.keys(requestInits).length).toEqual(2);
|
// Assert that fetch is invoked with `window` as the context.
|
expect(fetchSpy.calls.mostRecent().object).toEqual(window);
|
return [2 /*return*/];
|
}
|
});
|
}); });
|
it('1 group, 2 weights, 1 path, with requestInit', function () { return __awaiter(_this, void 0, void 0, function () {
|
var weightManifest1, floatData, handler, modelArtifacts;
|
return __generator(this, function (_a) {
|
switch (_a.label) {
|
case 0:
|
weightManifest1 = [{
|
paths: ['weightfile0'],
|
weights: [
|
{
|
name: 'dense/kernel',
|
shape: [3, 1],
|
dtype: 'float32',
|
},
|
{
|
name: 'dense/bias',
|
shape: [2],
|
dtype: 'float32',
|
}
|
]
|
}];
|
floatData = new Float32Array([1, 3, 3, 7, 4]);
|
setupFakeWeightFiles({
|
'./model.json': {
|
data: JSON.stringify({
|
modelTopology: modelTopology1,
|
weightsManifest: weightManifest1
|
}),
|
contentType: 'application/json'
|
},
|
'./weightfile0': { data: floatData, contentType: 'application/octet-stream' },
|
}, requestInits);
|
handler = tf.io.http('./model.json', { requestInit: { headers: { 'header_key_1': 'header_value_1' } } });
|
return [4 /*yield*/, handler.load()];
|
case 1:
|
modelArtifacts = _a.sent();
|
expect(modelArtifacts.modelTopology).toEqual(modelTopology1);
|
expect(modelArtifacts.weightSpecs).toEqual(weightManifest1[0].weights);
|
expect(new Float32Array(modelArtifacts.weightData)).toEqual(floatData);
|
expect(Object.keys(requestInits).length).toEqual(2);
|
expect(Object.keys(requestInits).length).toEqual(2);
|
expect(requestInits['./model.json'].headers['header_key_1'])
|
.toEqual('header_value_1');
|
expect(requestInits['./weightfile0'].headers['header_key_1'])
|
.toEqual('header_value_1');
|
expect(fetchSpy.calls.mostRecent().object).toEqual(window);
|
return [2 /*return*/];
|
}
|
});
|
}); });
|
it('1 group, 2 weight, 2 paths', function () { return __awaiter(_this, void 0, void 0, function () {
|
var weightManifest1, floatData1, floatData2, handler, modelArtifacts;
|
return __generator(this, function (_a) {
|
switch (_a.label) {
|
case 0:
|
weightManifest1 = [{
|
paths: ['weightfile0', 'weightfile1'],
|
weights: [
|
{
|
name: 'dense/kernel',
|
shape: [3, 1],
|
dtype: 'float32',
|
},
|
{
|
name: 'dense/bias',
|
shape: [2],
|
dtype: 'float32',
|
}
|
]
|
}];
|
floatData1 = new Float32Array([1, 3, 3]);
|
floatData2 = new Float32Array([7, 4]);
|
setupFakeWeightFiles({
|
'./model.json': {
|
data: JSON.stringify({
|
modelTopology: modelTopology1,
|
weightsManifest: weightManifest1
|
}),
|
contentType: 'application/json'
|
},
|
'./weightfile0': { data: floatData1, contentType: 'application/octet-stream' },
|
'./weightfile1': { data: floatData2, contentType: 'application/octet-stream' }
|
}, requestInits);
|
handler = tf.io.http('./model.json');
|
return [4 /*yield*/, handler.load()];
|
case 1:
|
modelArtifacts = _a.sent();
|
expect(modelArtifacts.modelTopology).toEqual(modelTopology1);
|
expect(modelArtifacts.weightSpecs).toEqual(weightManifest1[0].weights);
|
expect(new Float32Array(modelArtifacts.weightData))
|
.toEqual(new Float32Array([1, 3, 3, 7, 4]));
|
return [2 /*return*/];
|
}
|
});
|
}); });
|
it('2 groups, 2 weight, 2 paths', function () { return __awaiter(_this, void 0, void 0, function () {
|
var weightsManifest, floatData1, floatData2, handler, modelArtifacts;
|
return __generator(this, function (_a) {
|
switch (_a.label) {
|
case 0:
|
weightsManifest = [
|
{
|
paths: ['weightfile0'],
|
weights: [{
|
name: 'dense/kernel',
|
shape: [3, 1],
|
dtype: 'float32',
|
}]
|
},
|
{
|
paths: ['weightfile1'],
|
weights: [{
|
name: 'dense/bias',
|
shape: [2],
|
dtype: 'float32',
|
}],
|
}
|
];
|
floatData1 = new Float32Array([1, 3, 3]);
|
floatData2 = new Float32Array([7, 4]);
|
setupFakeWeightFiles({
|
'./model.json': {
|
data: JSON.stringify({ modelTopology: modelTopology1, weightsManifest: weightsManifest }),
|
contentType: 'application/json'
|
},
|
'./weightfile0': { data: floatData1, contentType: 'application/octet-stream' },
|
'./weightfile1': { data: floatData2, contentType: 'application/octet-stream' }
|
}, requestInits);
|
handler = tf.io.http('./model.json');
|
return [4 /*yield*/, handler.load()];
|
case 1:
|
modelArtifacts = _a.sent();
|
expect(modelArtifacts.modelTopology).toEqual(modelTopology1);
|
expect(modelArtifacts.weightSpecs)
|
.toEqual(weightsManifest[0].weights.concat(weightsManifest[1].weights));
|
expect(new Float32Array(modelArtifacts.weightData))
|
.toEqual(new Float32Array([1, 3, 3, 7, 4]));
|
return [2 /*return*/];
|
}
|
});
|
}); });
|
it('2 groups, 2 weight, 2 paths, Int32 and Uint8 Data', function () { return __awaiter(_this, void 0, void 0, function () {
|
var weightsManifest, floatData1, floatData2, handler, modelArtifacts;
|
return __generator(this, function (_a) {
|
switch (_a.label) {
|
case 0:
|
weightsManifest = [
|
{
|
paths: ['weightfile0'],
|
weights: [{
|
name: 'fooWeight',
|
shape: [3, 1],
|
dtype: 'int32',
|
}]
|
},
|
{
|
paths: ['weightfile1'],
|
weights: [{
|
name: 'barWeight',
|
shape: [2],
|
dtype: 'bool',
|
}],
|
}
|
];
|
floatData1 = new Int32Array([1, 3, 3]);
|
floatData2 = new Uint8Array([7, 4]);
|
setupFakeWeightFiles({
|
'path1/model.json': {
|
data: JSON.stringify({ modelTopology: modelTopology1, weightsManifest: weightsManifest }),
|
contentType: 'application/json'
|
},
|
'path1/weightfile0': { data: floatData1, contentType: 'application/octet-stream' },
|
'path1/weightfile1': { data: floatData2, contentType: 'application/octet-stream' }
|
}, requestInits);
|
handler = tf.io.http('path1/model.json');
|
return [4 /*yield*/, handler.load()];
|
case 1:
|
modelArtifacts = _a.sent();
|
expect(modelArtifacts.modelTopology).toEqual(modelTopology1);
|
expect(modelArtifacts.weightSpecs)
|
.toEqual(weightsManifest[0].weights.concat(weightsManifest[1].weights));
|
expect(new Int32Array(modelArtifacts.weightData.slice(0, 12)))
|
.toEqual(new Int32Array([1, 3, 3]));
|
expect(new Uint8Array(modelArtifacts.weightData.slice(12, 14)))
|
.toEqual(new Uint8Array([7, 4]));
|
return [2 /*return*/];
|
}
|
});
|
}); });
|
it('topology only', function () { return __awaiter(_this, void 0, void 0, function () {
|
var handler, modelArtifacts;
|
return __generator(this, function (_a) {
|
switch (_a.label) {
|
case 0:
|
setupFakeWeightFiles({
|
'./model.json': {
|
data: JSON.stringify({ modelTopology: modelTopology1 }),
|
contentType: 'application/json'
|
},
|
}, requestInits);
|
handler = tf.io.http('./model.json');
|
return [4 /*yield*/, handler.load()];
|
case 1:
|
modelArtifacts = _a.sent();
|
expect(modelArtifacts.modelTopology).toEqual(modelTopology1);
|
expect(modelArtifacts.weightSpecs).toBeUndefined();
|
expect(modelArtifacts.weightData).toBeUndefined();
|
return [2 /*return*/];
|
}
|
});
|
}); });
|
it('weights only', function () { return __awaiter(_this, void 0, void 0, function () {
|
var weightsManifest, floatData1, floatData2, handler, modelArtifacts;
|
return __generator(this, function (_a) {
|
switch (_a.label) {
|
case 0:
|
weightsManifest = [
|
{
|
paths: ['weightfile0'],
|
weights: [{
|
name: 'fooWeight',
|
shape: [3, 1],
|
dtype: 'int32',
|
}]
|
},
|
{
|
paths: ['weightfile1'],
|
weights: [{
|
name: 'barWeight',
|
shape: [2],
|
dtype: 'float32',
|
}],
|
}
|
];
|
floatData1 = new Int32Array([1, 3, 3]);
|
floatData2 = new Float32Array([-7, -4]);
|
setupFakeWeightFiles({
|
'path1/model.json': {
|
data: JSON.stringify({ weightsManifest: weightsManifest }),
|
contentType: 'application/json'
|
},
|
'path1/weightfile0': { data: floatData1, contentType: 'application/octet-stream' },
|
'path1/weightfile1': { data: floatData2, contentType: 'application/octet-stream' }
|
}, requestInits);
|
handler = tf.io.http('path1/model.json');
|
return [4 /*yield*/, handler.load()];
|
case 1:
|
modelArtifacts = _a.sent();
|
expect(modelArtifacts.modelTopology).toBeUndefined();
|
expect(modelArtifacts.weightSpecs)
|
.toEqual(weightsManifest[0].weights.concat(weightsManifest[1].weights));
|
expect(new Int32Array(modelArtifacts.weightData.slice(0, 12)))
|
.toEqual(new Int32Array([1, 3, 3]));
|
expect(new Float32Array(modelArtifacts.weightData.slice(12, 20)))
|
.toEqual(new Float32Array([-7, -4]));
|
return [2 /*return*/];
|
}
|
});
|
}); });
|
it('Missing modelTopology and weightsManifest leads to error', function (done) { return __awaiter(_this, void 0, void 0, function () {
|
var handler;
|
return __generator(this, function (_a) {
|
setupFakeWeightFiles({
|
'path1/model.json': { data: JSON.stringify({}), contentType: 'application/json' }
|
}, requestInits);
|
handler = tf.io.http('path1/model.json');
|
handler.load()
|
.then(function (modelTopology1) {
|
done.fail('Loading from missing modelTopology and weightsManifest ' +
|
'succeeded unexpectedly.');
|
})
|
.catch(function (err) {
|
expect(err.message)
|
.toMatch(/contains neither model topology or manifest/);
|
done();
|
});
|
return [2 /*return*/];
|
});
|
}); });
|
it('with fetch rejection leads to error', function (done) { return __awaiter(_this, void 0, void 0, function () {
|
var handler, data, err_1;
|
return __generator(this, function (_a) {
|
switch (_a.label) {
|
case 0:
|
setupFakeWeightFiles({
|
'path1/model.json': { data: JSON.stringify({}), contentType: 'text/html' }
|
}, requestInits);
|
handler = tf.io.http('path2/model.json');
|
_a.label = 1;
|
case 1:
|
_a.trys.push([1, 3, , 4]);
|
return [4 /*yield*/, handler.load()];
|
case 2:
|
data = _a.sent();
|
expect(data).toBeDefined();
|
done.fail('Loading with fetch rejection succeeded unexpectedly.');
|
return [3 /*break*/, 4];
|
case 3:
|
err_1 = _a.sent();
|
done();
|
return [3 /*break*/, 4];
|
case 4: return [2 /*return*/];
|
}
|
});
|
}); });
|
});
|
it('Overriding BrowserHTTPRequest fetchFunc', function () { return __awaiter(_this, void 0, void 0, function () {
|
function customFetch(input, init) {
|
return __awaiter(this, void 0, void 0, function () {
|
return __generator(this, function (_a) {
|
fetchInputs.push(input);
|
fetchInits.push(init);
|
if (input === './model.json') {
|
return [2 /*return*/, new Response(JSON.stringify({
|
modelTopology: modelTopology1,
|
weightsManifest: weightManifest1
|
}), { status: 200, headers: { 'content-type': 'application/json' } })];
|
}
|
else if (input === './weightfile0') {
|
return [2 /*return*/, new Response(floatData, {
|
status: 200,
|
headers: { 'content-type': 'application/octet-stream' }
|
})];
|
}
|
else {
|
return [2 /*return*/, new Response(null, { status: 404 })];
|
}
|
return [2 /*return*/];
|
});
|
});
|
}
|
var weightManifest1, floatData, fetchInputs, fetchInits, handler, modelArtifacts;
|
return __generator(this, function (_a) {
|
switch (_a.label) {
|
case 0:
|
weightManifest1 = [{
|
paths: ['weightfile0'],
|
weights: [
|
{
|
name: 'dense/kernel',
|
shape: [3, 1],
|
dtype: 'float32',
|
},
|
{
|
name: 'dense/bias',
|
shape: [2],
|
dtype: 'float32',
|
}
|
]
|
}];
|
floatData = new Float32Array([1, 3, 3, 7, 4]);
|
fetchInputs = [];
|
fetchInits = [];
|
handler = tf.io.http('./model.json', { requestInit: { credentials: 'include' }, fetchFunc: customFetch });
|
return [4 /*yield*/, handler.load()];
|
case 1:
|
modelArtifacts = _a.sent();
|
expect(modelArtifacts.modelTopology).toEqual(modelTopology1);
|
expect(modelArtifacts.weightSpecs).toEqual(weightManifest1[0].weights);
|
expect(new Float32Array(modelArtifacts.weightData)).toEqual(floatData);
|
expect(fetchInputs).toEqual(['./model.json', './weightfile0']);
|
expect(fetchInits.length).toEqual(2);
|
expect(fetchInits[0].credentials).toEqual('include');
|
expect(fetchInits[1].credentials).toEqual('include');
|
return [2 /*return*/];
|
}
|
});
|
}); });
|
});
|
//# sourceMappingURL=http_test.js.map
|