gx
chenyc
2025-06-12 7b72ac13a83764a662159d4a49b7fffb90476ecb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
"use strict";
/**
 * @license
 * Copyright 2018 Google LLC. All Rights Reserved.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 * =============================================================================
 */
Object.defineProperty(exports, "__esModule", { value: true });
/**
 * Gets the new shape of the input Tensor after it's been reshaped
 * to:
 * [blockShape[0], ..., blockShape[M-1], batch / prod(blockShape),
 * inputShape[1], ..., inputShape[N-1]]
 *
 * See step 1: https://www.tensorflow.org/api_docs/python/tf/batch_to_space_nd
 */
function getReshaped(inputShape, blockShape, prod, batchToSpace) {
    if (batchToSpace === void 0) { batchToSpace = true; }
    var reshaped = [];
    if (batchToSpace) {
        reshaped = reshaped.concat(blockShape.slice(0));
        reshaped.push(inputShape[0] / prod);
        reshaped = reshaped.concat(inputShape.slice(1));
    }
    else {
        reshaped = reshaped.concat(inputShape[0]);
        var spatialLength = blockShape.length;
        for (var i = 0; i < spatialLength; ++i) {
            reshaped =
                reshaped.concat([inputShape[i + 1] / blockShape[i], blockShape[i]]);
        }
        reshaped = reshaped.concat(inputShape.slice(spatialLength + 1));
    }
    return reshaped;
}
exports.getReshaped = getReshaped;
/**
 * Gets the permutation that will transpose the dimensions of the
 * reshaped tensor to shape:
 *
 * [batch / prod(block_shape),inputShape[1], blockShape[0], ...,
 * inputShape[M], blockShape[M-1],inputShape[M+1], ..., inputShape[N-1]]
 *
 * see step 2: https://www.tensorflow.org/api_docs/python/tf/batch_to_space_nd
 */
function getPermuted(reshapedRank, blockShapeRank, batchToSpace) {
    if (batchToSpace === void 0) { batchToSpace = true; }
    var permuted = [];
    if (batchToSpace) {
        permuted.push(blockShapeRank);
        for (var i = blockShapeRank + 1; i < reshapedRank; ++i) {
            if (i <= 2 * blockShapeRank) {
                permuted.push(i);
                permuted.push(i - (blockShapeRank + 1));
            }
            else {
                permuted.push(i);
            }
        }
    }
    else {
        var permutedBeforeBatch = [];
        var permutedAfterBatch = [];
        for (var i = 1; i < reshapedRank; ++i) {
            if (i >= blockShapeRank * 2 + 1 || i % 2 === 1) {
                permutedAfterBatch.push(i);
            }
            else {
                permutedBeforeBatch.push(i);
            }
        }
        permuted.push.apply(permuted, permutedBeforeBatch);
        permuted.push(0);
        permuted.push.apply(permuted, permutedAfterBatch);
    }
    return permuted;
}
exports.getPermuted = getPermuted;
/**
 * Gets the shape of the reshaped and permuted input Tensor before any cropping
 * is applied.  The new shape will be:
 *
 * [batch / prod(blockShape),inputShape[1] * blockShape[0], ...,
 * inputShape[M] * blockShape[M-1],inputShape[M+1], ..., inputShape[N-1]]
 *
 * See step 3: https://www.tensorflow.org/api_docs/python/tf/batch_to_space_nd
 */
function getReshapedPermuted(inputShape, blockShape, prod, batchToSpace) {
    if (batchToSpace === void 0) { batchToSpace = true; }
    var reshapedPermuted = [];
    if (batchToSpace) {
        reshapedPermuted.push(inputShape[0] / prod);
    }
    else {
        reshapedPermuted.push(inputShape[0] * prod);
    }
    for (var i = 1; i < inputShape.length; ++i) {
        if (i <= blockShape.length) {
            if (batchToSpace) {
                reshapedPermuted.push(blockShape[i - 1] * inputShape[i]);
            }
            else {
                reshapedPermuted.push(inputShape[i] / blockShape[i - 1]);
            }
        }
        else {
            reshapedPermuted.push(inputShape[i]);
        }
    }
    return reshapedPermuted;
}
exports.getReshapedPermuted = getReshapedPermuted;
/**
 * Converts the crops argument into the beginning coordinates of a slice
 * operation.
 */
function getSliceBeginCoords(crops, blockShape) {
    var sliceBeginCoords = [0];
    for (var i = 0; i < blockShape; ++i) {
        sliceBeginCoords.push(crops[i][0]);
    }
    return sliceBeginCoords;
}
exports.getSliceBeginCoords = getSliceBeginCoords;
/**
 * Converts the crops argument into the size of a slice operation.  When
 * combined with getSliceBeginCoords this function allows the reshaped and
 * permuted Tensor to be cropped to its final output shape of:
 *
 * inputShape[1] * blockShape[0] - crops[0,0] - crops[0,1], ...,
 * inputShape[M] * blockShape[M-1] -crops[M-1,0] -
 * crops[M-1,1],inputShape[M+1], ..., inputShape[N-1]]
 *
 * See step 4: https://www.tensorflow.org/api_docs/python/tf/batch_to_space_nd
 */
function getSliceSize(uncroppedShape, crops, blockShape) {
    var sliceSize = uncroppedShape.slice(0, 1);
    for (var i = 0; i < blockShape; ++i) {
        sliceSize.push(uncroppedShape[i + 1] - crops[i][0] - crops[i][1]);
    }
    return sliceSize;
}
exports.getSliceSize = getSliceSize;
//# sourceMappingURL=array_ops_util.js.map