gx
chenyc
2025-06-12 7b72ac13a83764a662159d4a49b7fffb90476ecb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
"use strict";
/**
 * @license
 * Copyright 2018 Google Inc. All Rights Reserved.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 * =============================================================================
 */
Object.defineProperty(exports, "__esModule", { value: true });
var engine_1 = require("../engine");
var tensor_util_env_1 = require("../tensor_util_env");
var util = require("../util");
var conv_util = require("./conv_util");
var operation_1 = require("./operation");
/**
 * Computes a 1D convolution over the input x.
 *
 * @param x The input tensor, of rank 3 or rank 2, of shape
 *     `[batch, width, inChannels]`. If rank 2, batch of 1 is assumed.
 * @param filter The filter, rank 3, of shape
 *     `[filterWidth, inDepth, outDepth]`.
 * @param stride The number of entries by which the filter is moved right at
 *     each step.
 * @param pad The type of padding algorithm.
 *    - `same` and stride 1: output will be of same size as input,
 *       regardless of filter size.
 *    - `valid`: output will be smaller than input if filter is larger
 *       than 1x1.
 *   - For more info, see this guide:
 *     [https://www.tensorflow.org/api_guides/python/nn#Convolution](
 *          https://www.tensorflow.org/api_guides/python/nn#Convolution)
 * @param dataFormat An optional string from "NWC", "NCW". Defaults to "NWC",
 *     the data is stored in the order of [batch, in_width, in_channels]. Only
 *     "NWC" is currently supported.
 * @param dilation The dilation rate in which we sample input values in
 *     atrous convolution. Defaults to `1`. If it is greater than 1, then
 *     stride must be `1`.
 * @param dimRoundingMode The rounding mode used when computing output
 *     dimensions if pad is a number. If none is provided, it will not round
 *     and error if the output is of fractional size.
 */
/** @doc {heading: 'Operations', subheading: 'Convolution'} */
function conv1d_(x, filter, stride, pad, dataFormat, dilation, dimRoundingMode) {
    if (dataFormat === void 0) { dataFormat = 'NWC'; }
    if (dilation === void 0) { dilation = 1; }
    var $x = tensor_util_env_1.convertToTensor(x, 'x', 'conv1d');
    var $filter = tensor_util_env_1.convertToTensor(filter, 'filter', 'conv1d');
    var x3D = $x;
    var reshapedTo3D = false;
    if ($x.rank === 2) {
        reshapedTo3D = true;
        x3D = $x.as3D(1, $x.shape[0], $x.shape[1]);
    }
    util.assert(x3D.rank === 3, function () { return "Error in conv1d: input must be rank 3, but got rank " + x3D.rank + "."; });
    util.assert($filter.rank === 3, function () { return "Error in conv1d: filter must be rank 3, but got rank " +
        ($filter.rank + "."); });
    if (dimRoundingMode != null) {
        util.assert(util.isInt(pad), function () { return "Error in conv1d: pad must be an integer when using, " +
            ("dimRoundingMode " + dimRoundingMode + " but got pad " + pad + "."); });
    }
    util.assert(x3D.shape[2] === $filter.shape[1], function () { return "Error in conv1d: depth of input (" + x3D.shape[2] + ") must match " +
        ("input depth for filter " + $filter.shape[1] + "."); });
    util.assert(conv_util.eitherStridesOrDilationsAreOne(stride, dilation), function () { return 'Error in conv1D: Either stride or dilation must be 1. ' +
        ("Got stride " + stride + " and dilation '" + dilation + "'"); });
    util.assert(dataFormat === 'NWC', function () { return "Error in conv1d: got dataFormat of " + dataFormat + " but only NWC is currently supported."; });
    var filter4D = $filter.as4D(1, $filter.shape[0], $filter.shape[1], $filter.shape[2]);
    var input4D = x3D.as4D(x3D.shape[0], 1, x3D.shape[1], x3D.shape[2]);
    var strides = [1, stride];
    var dilations = [1, dilation];
    var conv2dDataFormat = 'NHWC';
    var res = exports.conv2d(input4D, filter4D, strides, pad, conv2dDataFormat, dilations, dimRoundingMode);
    if (reshapedTo3D) {
        return res.as2D(res.shape[2], res.shape[3]);
    }
    return res.as3D(res.shape[0], res.shape[2], res.shape[3]);
}
/**
 * Computes a 2D convolution over the input x.
 *
 * @param x The input tensor, of rank 4 or rank 3, of shape
 *     `[batch, height, width, inChannels]`. If rank 3, batch of 1 is
 * assumed.
 * @param filter The filter, rank 4, of shape
 *     `[filterHeight, filterWidth, inDepth, outDepth]`.
 * @param strides The strides of the convolution: `[strideHeight,
 * strideWidth]`.
 * @param pad The type of padding algorithm.
 *    - `same` and stride 1: output will be of same size as input,
 *       regardless of filter size.
 *    - `valid`: output will be smaller than input if filter is larger
 *       than 1x1.
 *   - For more info, see this guide:
 *     [https://www.tensorflow.org/api_guides/python/nn#Convolution](
 *          https://www.tensorflow.org/api_guides/python/nn#Convolution)
 * @param dataFormat: An optional string from: "NHWC", "NCHW". Defaults to
 *     "NHWC". Specify the data format of the input and output data. With the
 *     default format "NHWC", the data is stored in the order of: [batch,
 *     height, width, channels].
 * @param dilations The dilation rates: `[dilationHeight, dilationWidth]`
 *     in which we sample input values across the height and width dimensions
 *     in atrous convolution. Defaults to `[1, 1]`. If `dilations` is a single
 *     number, then `dilationHeight == dilationWidth`. If it is greater than
 *     1, then all values of `strides` must be 1.
 * @param dimRoundingMode The rounding mode used when computing output
 *     dimensions if pad is a number. If none is provided, it will not round
 *     and error if the output is of fractional size.
 */
/** @doc {heading: 'Operations', subheading: 'Convolution'} */
function conv2d_(x, filter, strides, pad, dataFormat, dilations, dimRoundingMode) {
    if (dataFormat === void 0) { dataFormat = 'NHWC'; }
    if (dilations === void 0) { dilations = [1, 1]; }
    var $x = tensor_util_env_1.convertToTensor(x, 'x', 'conv2d');
    var $filter = tensor_util_env_1.convertToTensor(filter, 'filter', 'conv2d');
    var x4D = $x;
    var reshapedTo4D = false;
    if ($x.rank === 3) {
        reshapedTo4D = true;
        x4D = $x.as4D(1, $x.shape[0], $x.shape[1], $x.shape[2]);
    }
    util.assert(x4D.rank === 4, function () { return "Error in conv2d: input must be rank 4, but got rank " + x4D.rank + "."; });
    util.assert($filter.rank === 4, function () { return "Error in conv2d: filter must be rank 4, but got rank " +
        ($filter.rank + "."); });
    if (dimRoundingMode != null) {
        util.assert(util.isInt(pad), function () { return "Error in conv2d: pad must be an integer when using, " +
            ("dimRoundingMode " + dimRoundingMode + " but got pad " + pad + "."); });
    }
    var inDepth = dataFormat === 'NHWC' ? x4D.shape[3] : x4D.shape[1];
    util.assert(inDepth === $filter.shape[2], function () { return "Error in conv2d: depth of input (" + inDepth + ") must match " +
        ("input depth for filter " + $filter.shape[2] + "."); });
    util.assert(conv_util.eitherStridesOrDilationsAreOne(strides, dilations), function () { return 'Error in conv2D: Either strides or dilations must be 1. ' +
        ("Got strides " + strides + " and dilations '" + dilations + "'"); });
    var $dataFormat = conv_util.convertConv2DDataFormat(dataFormat);
    var convInfo = conv_util.computeConv2DInfo(x4D.shape, $filter.shape, strides, dilations, pad, dimRoundingMode, false, $dataFormat);
    var grad = function (dy, saved) {
        var _a = saved, $filter = _a[0], x4D = _a[1];
        util.assert(conv_util.tupleValuesAreOne(dilations), function () { return 'Error in gradient of conv2D: dilation rates greater than 1 ' +
            ("are not yet supported in gradients. Got dilations '" + dilations + "'"); });
        return {
            x: function () { return exports.conv2dDerInput(x4D.shape, dy, $filter, strides, pad, dataFormat); },
            filter: function () {
                return exports.conv2dDerFilter(x4D, dy, $filter.shape, strides, pad, dataFormat);
            }
        };
    };
    var inputsToSave = [$filter, x4D];
    var res = engine_1.ENGINE.runKernelFunc(function (backend, save) {
        var res = backend.conv2d(x4D, $filter, convInfo);
        save([$filter, x4D]);
        return res;
    }, { x: x4D, filter: $filter }, grad, 'Conv2D', convInfo, inputsToSave);
    if (reshapedTo4D) {
        return res.as3D(res.shape[1], res.shape[2], res.shape[3]);
    }
    return res;
}
/**
 * Computes the derivative of the input of a 2D convolution.
 *
 * @param xShape The shape of the input: [batch, height, width, inDepth].
 * If length of 3, batch of 1 is assumed.
 * @param dy The derivative of the output, of rank 4 or rank 3 of shape
 *   `[batch, outHeight, outWidth, outDepth]`. If rank 3, batch of 1 is
 * assumed.
 * @param filter The filter, rank 4, of shape
 *     `[filterHeight, filterWidth, inDepth, outDepth]`.
 * @param strides The strides of the convolution: `[strideHeight,
 * strideWidth]`.
 * @param pad The type of padding algorithm used:
 *    - `same` and stride 1: output will be of same size as input,
 *       regardless of filter size.
 *    - `valid`: output will be smaller than input if filter is larger
 *       than 1x1.
 * @param dataFormat: An optional string from: "NHWC", "NCHW". Defaults to
 *     "NHWC". Specify the data format of the input and output data. With the
 *     default format "NHWC", the data is stored in the order of: [batch,
 *     height, width, channels].
 * @param dimRoundingMode The rounding mode used when computing output
 *     dimensions if pad is a number. If none is provided, it will not round
 *     and error if the output is of fractional size.
 */
function conv2dDerInput_(xShape, dy, filter, strides, pad, dataFormat, dimRoundingMode) {
    if (dataFormat === void 0) { dataFormat = 'NHWC'; }
    util.assert(xShape.length === dy.rank, function () { return "Length of inShape " +
        ("(" + xShape.length + ") and rank of dy (" + dy.rank + ") must match"); });
    var xShape4D = xShape;
    var dy4D = dy;
    var reshapedTo4D = false;
    if (dy.rank === 3) {
        reshapedTo4D = true;
        dy4D = dy.as4D(1, dy.shape[0], dy.shape[1], dy.shape[2]);
        xShape4D = [1, xShape[0], xShape[1], xShape[2]];
    }
    util.assert(xShape4D.length === 4, function () {
        return "Error in conv2dDerInput: inShape must be length 4, but got length " +
            (xShape4D.length + ".");
    });
    util.assert(dy4D.rank === 4, function () { return "Error in conv2dDerInput: dy must be rank 4, but got " +
        ("rank " + dy4D.rank); });
    util.assert(filter.rank === 4, function () { return "Error in conv2dDerInput: filter must be rank 4, but got " +
        ("rank " + filter.rank); });
    var inDepth = dataFormat === 'NHWC' ? xShape4D[3] : xShape4D[1];
    var outDepth = dataFormat === 'NHWC' ? dy4D.shape[3] : dy4D.shape[1];
    util.assert(inDepth === filter.shape[2], function () { return "Error in conv2dDerInput: depth of input (" + inDepth + ") must " +
        ("match input depth for filter " + filter.shape[2] + "."); });
    util.assert(outDepth === filter.shape[3], function () { return "Error in conv2dDerInput: depth of output (" + outDepth + ") must " +
        ("match output depth for filter " + filter.shape[3] + "."); });
    if (dimRoundingMode != null) {
        util.assert(util.isInt(pad), function () { return "Error in conv2dDerInput: pad must be an integer when using, " +
            ("dimRoundingMode " + dimRoundingMode + " but got pad " + pad + "."); });
    }
    var dilations = 1;
    var grad = function (ddx, saved) {
        var filter = saved[0], dy4D = saved[1];
        return {
            dy4D: function () { return exports.conv2d(ddx, filter, strides, pad, dataFormat, dilations, dimRoundingMode); },
            filter: function () { return exports.conv2dDerFilter(ddx, dy4D, filter.shape, strides, pad, dataFormat, dimRoundingMode); }
        };
    };
    var $dataFormat = conv_util.convertConv2DDataFormat(dataFormat);
    var convInfo = conv_util.computeConv2DInfo(xShape4D, filter.shape, strides, dilations, pad, dimRoundingMode, false, $dataFormat);
    var res = engine_1.ENGINE.runKernelFunc(function (backend, save) {
        var res = backend.conv2dDerInput(dy4D, filter, convInfo);
        save([filter, dy4D]);
        return res;
    }, { dy4D: dy4D, filter: filter }, grad);
    if (reshapedTo4D) {
        return res.as3D(res.shape[1], res.shape[2], res.shape[3]);
    }
    return res;
}
/**
 * Computes the derivative of the filter of a 2D convolution.
 *
 * @param x The input tensor, of rank 4 or rank 3 of shape
 *     [batch, height, width, inChannels]. If rank 3, batch of 1 is assumed.
 * @param dy The dy image, of rank 4 or rank 3, of shape
 *     [batch, height, width, outDepth]. If rank 3, batch of 1 is assumed.
 * @param filterShape The shape of the filter, length 4,
 *     [filterHeight, filterWidth, inDepth, outDepth].
 * @param strides The strides of the convolution: [strideHeight,
 * strideWidth].
 * @param pad A string from: 'same', 'valid'. The type of padding algorithm
 *     used in the forward prop of the op.
 * @param dataFormat: An optional string from: "NHWC", "NCHW". Defaults to
 *     "NHWC". Specify the data format of the input and output data. With the
 *     default format "NHWC", the data is stored in the order of: [batch,
 *     height, width, channels].
 * @param dimRoundingMode A string from: 'ceil', 'round', 'floor'. The
 *     rounding mode used when computing output dimensions if pad is a
 *     number. If none is provided, it will not round and error if the output
 *     is of fractional size.
 */
function conv2dDerFilter_(x, dy, filterShape, strides, pad, dataFormat, dimRoundingMode) {
    if (dataFormat === void 0) { dataFormat = 'NHWC'; }
    var x4D = x;
    if (x.rank === 3) {
        x4D = x.as4D(1, x.shape[0], x.shape[1], x.shape[2]);
    }
    var dy4D = dy;
    if (dy4D.rank === 3) {
        dy4D = dy.as4D(1, dy.shape[0], dy.shape[1], dy.shape[2]);
    }
    util.assert(x4D.rank === 4, function () { return "Error in conv2dDerFilter: input must be rank 4, but got shape " +
        (x4D.shape + "."); });
    util.assert(dy4D.rank === 4, function () { return "Error in conv2dDerFilter: dy must be rank 4, but got shape " +
        (dy4D.shape + "."); });
    util.assert(filterShape.length === 4, function () { return "Error in conv2dDerFilter: filterShape must be length 4, but got " +
        (filterShape + "."); });
    var inDepth = dataFormat === 'NHWC' ? x4D.shape[3] : x4D.shape[1];
    var outDepth = dataFormat === 'NHWC' ? dy4D.shape[3] : dy4D.shape[1];
    util.assert(inDepth === filterShape[2], function () { return "Error in conv2dDerFilter: depth of input " + inDepth + ") must " +
        ("match input depth in filter (" + filterShape[2] + "."); });
    util.assert(outDepth === filterShape[3], function () { return "Error in conv2dDerFilter: depth of dy (" + outDepth + ") must " +
        ("match output depth for filter (" + filterShape[3] + ")."); });
    if (dimRoundingMode != null) {
        util.assert(util.isInt(pad), function () { return "Error in conv2dDerFilter: pad must be an integer when using, " +
            ("dimRoundingMode " + dimRoundingMode + " but got pad " + pad + "."); });
    }
    var dilations = 1;
    var $dataFormat = conv_util.convertConv2DDataFormat(dataFormat);
    var convInfo = conv_util.computeConv2DInfo(x4D.shape, filterShape, strides, dilations, pad, dimRoundingMode, false, $dataFormat);
    return engine_1.ENGINE.runKernelFunc(function (backend) { return backend.conv2dDerFilter(x4D, dy4D, convInfo); }, { x4D: x4D, dy4D: dy4D });
}
/**
 * Computes the transposed 2D convolution of an image, also known as a
 * deconvolution.
 *
 * @param x The input image, of rank 4 or rank 3, of shape
 *   `[batch, height, width, inDepth]`. If rank 3, batch of 1 is assumed.
 * @param filter The filter, rank 4, of shape
 *     `[filterHeight, filterWidth, outDepth, inDepth]`.
 *     `inDepth` must match `inDepth` in `x`.
 * @param outputShape Output shape, of rank 4 or rank 3:
 *     `[batch, height, width, outDepth]`. If rank 3, batch of 1 is assumed.
 * @param strides The strides of the original convolution:
 *     `[strideHeight, strideWidth]`.
 * @param pad  The type of padding algorithm used in the non-transpose version
 *    of the op.
 * @param dimRoundingMode The rounding mode used when computing output
 *    dimensions if pad is a number. If none is provided, it will not round
 *    and error if the output is of fractional size.
 */
/** @doc {heading: 'Operations', subheading: 'Convolution'} */
function conv2dTranspose_(x, filter, outputShape, strides, pad, dimRoundingMode) {
    var $x = tensor_util_env_1.convertToTensor(x, 'x', 'conv2dTranspose');
    var $filter = tensor_util_env_1.convertToTensor(filter, 'filter', 'conv2dTranspose');
    return conv2dDerInput_(outputShape, $x, $filter, strides, pad, 'NHWC', dimRoundingMode);
}
/**
 * Depthwise 2D convolution.
 *
 * Given a 4D `input` array and a `filter` array of shape
 * `[filterHeight, filterWidth, inChannels, channelMultiplier]` containing
 * `inChannels` convolutional filters of depth 1, this op applies a
 * different filter to each input channel (expanding from 1 channel to
 * `channelMultiplier` channels for each), then concatenates the results
 * together. The output has `inChannels * channelMultiplier` channels.
 *
 * See
 * [https://www.tensorflow.org/api_docs/python/tf/nn/depthwise_conv2d](
 *     https://www.tensorflow.org/api_docs/python/tf/nn/depthwise_conv2d)
 * for more details.
 *
 * @param x The input tensor, of rank 4 or rank 3, of shape
 *     `[batch, height, width, inChannels]`. If rank 3, batch of 1 is
 * assumed.
 * @param filter The filter tensor, rank 4, of shape
 *     `[filterHeight, filterWidth, inChannels, channelMultiplier]`.
 * @param strides The strides of the convolution: `[strideHeight,
 * strideWidth]`. If strides is a single number, then `strideHeight ==
 * strideWidth`.
 * @param pad The type of padding algorithm.
 *   - `same` and stride 1: output will be of same size as input,
 *       regardless of filter size.
 *   - `valid`: output will be smaller than input if filter is larger
 *       than 1x1.
 *   - For more info, see this guide:
 *     [https://www.tensorflow.org/api_guides/python/nn#Convolution](
 *          https://www.tensorflow.org/api_guides/python/nn#Convolution)
 * @param dilations The dilation rates: `[dilationHeight, dilationWidth]`
 *     in which we sample input values across the height and width dimensions
 *     in atrous convolution. Defaults to `[1, 1]`. If `rate` is a single
 *     number, then `dilationHeight == dilationWidth`. If it is greater than
 *     1, then all values of `strides` must be 1.
 * @param dataFormat: An optional string from: "NHWC", "NCHW". Defaults to
 *     "NHWC". Specify the data format of the input and output data. With the
 *     default format "NHWC", the data is stored in the order of: [batch,
 *     height, width, channels]. Only "NHWC" is currently supported.
 * @param dimRoundingMode The rounding mode used when computing output
 *     dimensions if pad is a number. If none is provided, it will not round
 *     and error if the output is of fractional size.
 */
/** @doc {heading: 'Operations', subheading: 'Convolution'} */
function depthwiseConv2d_(x, filter, strides, pad, dataFormat, dilations, dimRoundingMode) {
    if (dataFormat === void 0) { dataFormat = 'NHWC'; }
    if (dilations === void 0) { dilations = [1, 1]; }
    var $x = tensor_util_env_1.convertToTensor(x, 'x', 'depthwiseConv2d');
    var $filter = tensor_util_env_1.convertToTensor(filter, 'filter', 'depthwiseConv2d');
    var x4D = $x;
    var reshapedTo4D = false;
    if ($x.rank === 3) {
        reshapedTo4D = true;
        x4D = $x.as4D(1, $x.shape[0], $x.shape[1], $x.shape[2]);
    }
    util.assert(x4D.rank === 4, function () { return "Error in depthwiseConv2d: input must be rank 4, but got " +
        ("rank " + x4D.rank + "."); });
    util.assert($filter.rank === 4, function () { return "Error in depthwiseConv2d: filter must be rank 4, but got rank " +
        ($filter.rank + "."); });
    util.assert(x4D.shape[3] === $filter.shape[2], function () { return "Error in depthwiseConv2d: number of input channels " +
        ("(" + x4D.shape[3] + ") must match the inChannels dimension in ") +
        ("filter " + $filter.shape[2] + "."); });
    if (dilations == null) {
        dilations = [1, 1];
    }
    util.assert(conv_util.eitherStridesOrDilationsAreOne(strides, dilations), function () {
        return 'Error in depthwiseConv2d: Either strides or dilations must be 1. ' +
            ("Got strides " + strides + " and dilations '" + dilations + "'");
    });
    if (dimRoundingMode != null) {
        util.assert(util.isInt(pad), function () { return "Error in depthwiseConv2d: pad must be an integer when using, " +
            ("dimRoundingMode " + dimRoundingMode + " but got pad " + pad + "."); });
    }
    var convInfo = conv_util.computeConv2DInfo(x4D.shape, $filter.shape, strides, dilations, pad, dimRoundingMode, true /* depthwise */);
    var grad = function (dy, saved) {
        util.assert(conv_util.tupleValuesAreOne(dilations), function () { return 'Error in gradient of depthwiseConv2d: dilation rates ' +
            "greater than 1 are not yet supported. Got dilations " +
            ("'" + dilations + "'"); });
        var x4D = saved[0], $filter = saved[1];
        return {
            x: function () { return exports.depthwiseConv2dDerInput(x4D.shape, dy, $filter, convInfo); },
            filter: function () { return exports.depthwiseConv2dDerFilter(x4D, dy, $filter.shape, convInfo); },
        };
    };
    var inputsToSave = [x4D, $filter];
    var res = engine_1.ENGINE.runKernelFunc(function (backend, save) {
        var res = backend.depthwiseConv2D(x4D, $filter, convInfo);
        save([x4D, $filter]);
        return res;
    }, { x: x4D, filter: $filter }, grad, 'DepthwiseConv2dNative', convInfo, inputsToSave);
    if (reshapedTo4D) {
        return res.as3D(res.shape[1], res.shape[2], res.shape[3]);
    }
    return res;
}
/**
 * 2-D convolution with separable filters.
 *
 * Performs a depthwise convolution that acts separately on channels followed
 * by a pointwise convolution that mixes channels. Note that this is
 * separability between dimensions [1, 2] and 3, not spatial separability
 * between dimensions 1 and 2.
 *
 * See
 * [https://www.tensorflow.org/api_docs/python/tf/nn/separable_conv2d](
 *     https://www.tensorflow.org/api_docs/python/tf/nn/separable_conv2d)
 * for more details.
 *
 * @param x The input tensor, of rank 4 or rank 3, of shape
 *     `[batch, height, width, inChannels]`. If rank 3, batch of 1 is
 * assumed.
 * @param depthwiseFilter The depthwise filter tensor, rank 4, of shape
 *     `[filterHeight, filterWidth, inChannels, channelMultiplier]`. This is
 *     the filter used in the first step.
 * @param pointwiseFilter The pointwise filter tensor, rank 4, of shape
 *     `[1, 1, inChannels * channelMultiplier, outChannels]`. This is
 *     the filter used in the second step.
 * @param strides The strides of the convolution: `[strideHeight,
 * strideWidth]`. If strides is a single number, then `strideHeight ==
 * strideWidth`.
 * @param pad The type of padding algorithm.
 *   - `same` and stride 1: output will be of same size as input,
 *       regardless of filter size.
 *   - `valid`: output will be smaller than input if filter is larger
 *       than 1x1.
 *   - For more info, see this guide:
 *     [https://www.tensorflow.org/api_guides/python/nn#Convolution](
 *          https://www.tensorflow.org/api_guides/python/nn#Convolution)
 * @param dilations The dilation rates: `[dilationHeight, dilationWidth]`
 *     in which we sample input values across the height and width dimensions
 *     in atrous convolution. Defaults to `[1, 1]`. If `rate` is a single
 *     number, then `dilationHeight == dilationWidth`. If it is greater than
 *     1, then all values of `strides` must be 1.
 * @param dataFormat: An optional string from: "NHWC", "NCHW". Defaults to
 *     "NHWC". Specify the data format of the input and output data. With the
 *     default format "NHWC", the data is stored in the order of: [batch,
 *     height, width, channels]. Only "NHWC" is currently supported.
 */
/** @doc {heading: 'Operations', subheading: 'Convolution'} */
function separableConv2d_(x, depthwiseFilter, pointwiseFilter, strides, pad, dilation, dataFormat) {
    if (dilation === void 0) { dilation = [1, 1]; }
    if (dataFormat === void 0) { dataFormat = 'NHWC'; }
    var $x = tensor_util_env_1.convertToTensor(x, 'x', 'separableConv2d');
    var $depthwiseFilter = tensor_util_env_1.convertToTensor(depthwiseFilter, 'depthwiseFilter', 'separableConv2d');
    var $pointwiseFilter = tensor_util_env_1.convertToTensor(pointwiseFilter, 'pointwiseFilter', 'separableConv2d');
    var x4D = $x;
    var reshapedTo4D = false;
    if ($x.rank === 3) {
        reshapedTo4D = true;
        x4D = $x.as4D(1, $x.shape[0], $x.shape[1], $x.shape[2]);
    }
    if (dataFormat === 'NCHW') {
        throw new Error('separableConv2d currently does not support dataFormat NCHW; only ' +
            'NHWC is supported');
    }
    util.assert(x4D.rank === 4, function () { return "Error in separableConv2d: input must be rank 4, but got " +
        ("rank " + x4D.rank + "."); });
    util.assert($depthwiseFilter.rank === 4, function () { return "Error in separableConv2d: depthwise filter must be rank 4, but " +
        ("got rank " + $depthwiseFilter.rank + "."); });
    util.assert($pointwiseFilter.rank === 4, function () { return "Error in separableConv2d: pointwise filter must be rank 4, but " +
        ("got rank " + $depthwiseFilter.rank + "."); });
    util.assert($pointwiseFilter.shape[0] === 1, function () {
        return "Error in separableConv2d: the first dimension of pointwise filter " +
            (" must be 1, but got " + $pointwiseFilter.shape[0] + ".");
    });
    util.assert($pointwiseFilter.shape[1] === 1, function () { return "Error in separableConv2d: the second dimension of pointwise " +
        ("filter must be 1, but got " + $pointwiseFilter.shape[1] + "."); });
    var inChannels = $depthwiseFilter.shape[2];
    var channelMultiplier = $depthwiseFilter.shape[3];
    util.assert($pointwiseFilter.shape[2] === inChannels * channelMultiplier, function () {
        return "Error in separableConv2d: the third dimension of pointwise filter " +
            ("must be " + inChannels * channelMultiplier + ", ") +
            ("but got " + $pointwiseFilter.shape[2] + ".");
    });
    var depthwise = exports.depthwiseConv2d(x4D, $depthwiseFilter, strides, pad, dataFormat, dilation);
    var pointwiseStride = 1;
    var res = exports.conv2d(depthwise, $pointwiseFilter, pointwiseStride, 'valid', dataFormat);
    if (reshapedTo4D) {
        return res.as3D(res.shape[1], res.shape[2], res.shape[3]);
    }
    return res;
}
function parseTupleParam(param) {
    if (typeof param === 'number') {
        return [param, param, param];
    }
    if (param.length === 2) {
        return [param[0], param[1], 1];
    }
    return param;
}
function tupleValuesAreOne(param) {
    var _a = parseTupleParam(param), dimA = _a[0], dimB = _a[1], dimC = _a[2];
    return dimA === 1 && dimB === 1 && dimC === 1;
}
function eitherStridesOrDilationsAreOne(strides, dilations) {
    return tupleValuesAreOne(strides) || tupleValuesAreOne(dilations);
}
function depthwiseConv2dDerInput_(xShape, dy, filter, convInfo) {
    var dy4D = dy;
    var reshapedTo4D = false;
    if (dy.rank === 3) {
        reshapedTo4D = true;
        dy4D = dy.as4D(1, dy.shape[0], dy.shape[1], dy.shape[2]);
    }
    var res = engine_1.ENGINE.runKernelFunc(function (backend) { return backend.depthwiseConv2DDerInput(dy4D, filter, convInfo); }, { dy4D: dy4D });
    if (reshapedTo4D) {
        return res.as3D(res.shape[1], res.shape[2], res.shape[3]);
    }
    return res;
}
function depthwiseConv2dDerFilter_(x, dy, filterShape, convInfo) {
    var x4D = x;
    if (x.rank === 3) {
        x4D = x.as4D(1, x.shape[0], x.shape[1], x.shape[2]);
    }
    var dy4D = dy;
    if (dy4D.rank === 3) {
        dy4D = dy.as4D(1, dy.shape[0], dy.shape[1], dy.shape[2]);
    }
    return engine_1.ENGINE.runKernelFunc(function (backend) { return backend.depthwiseConv2DDerFilter(x4D, dy4D, convInfo); }, { x4D: x4D, dy4D: dy4D });
}
/**
 * Computes a 3D convolution over the input x.
 *
 * @param x The input tensor, of rank 5 or rank 4, of shape
 *     `[batch, depth, height, width, channels]`. If rank 4,
 * batch of 1 is assumed.
 * @param filter The filter, rank 5, of shape
 *     `[filterDepth, filterHeight, filterWidth, inChannels, outChannels]`.
 *      inChannels must match between input and filter.
 * @param strides The strides of the convolution: `[strideDepth, strideHeight,
 * strideWidth]`.
 * @param pad The type of padding algorithm.
 *    - `same` and stride 1: output will be of same size as input,
 *       regardless of filter size.
 *    - `valid`: output will be smaller than input if filter is larger
 *       than 1x1.
 *   - For more info, see this guide:
 *     [https://www.tensorflow.org/api_guides/python/nn#Convolution](
 *          https://www.tensorflow.org/api_guides/python/nn#Convolution)
 * @param dataFormat: An optional string from: "NDHWC", "NCDHW". Defaults to
 *     "NDHWC". Specify the data format of the input and output data. With the
 *     default format "NDHWC", the data is stored in the order of: [batch,
 *     depth, height, width, channels]. Only "NDHWC" is currently supported.
 * @param dilations The dilation rates: `[dilationDepth, dilationHeight,
 *     dilationWidth]` in which we sample input values across the height
 *     and width dimensions in atrous convolution. Defaults to `[1, 1, 1]`.
 *     If `dilations` is a single number, then
 *     `dilationDepth == dilationHeight == dilationWidth`. If it is greater
 *     than 1, then all values of `strides` must be 1.
 */
/** @doc {heading: 'Operations', subheading: 'Convolution'} */
function conv3d_(x, filter, strides, pad, dataFormat, dilations) {
    if (dataFormat === void 0) { dataFormat = 'NDHWC'; }
    if (dilations === void 0) { dilations = [1, 1, 1]; }
    var $x = tensor_util_env_1.convertToTensor(x, 'x', 'conv3d');
    var $filter = tensor_util_env_1.convertToTensor(filter, 'filter', 'conv3d');
    var x5D = $x;
    var reshapedTo5D = false;
    if ($x.rank === 4) {
        reshapedTo5D = true;
        x5D = $x.as5D(1, $x.shape[0], $x.shape[1], $x.shape[2], $x.shape[3]);
    }
    util.assert(x5D.rank === 5, function () { return "Error in conv3d: input must be rank 5, but got rank " + x5D.rank + "."; });
    util.assert($filter.rank === 5, function () { return "Error in conv3d: filter must be rank 5, but got rank " +
        ($filter.rank + "."); });
    util.assert(x5D.shape[4] === $filter.shape[3], function () { return "Error in conv3d: depth of input (" + x5D.shape[4] + ") must match " +
        ("input depth for filter " + $filter.shape[3] + "."); });
    util.assert(eitherStridesOrDilationsAreOne(strides, dilations), function () { return 'Error in conv3D: Either strides or dilations must be 1. ' +
        ("Got strides " + strides + " and dilations '" + dilations + "'"); });
    util.assert(dataFormat === 'NDHWC', function () { return "Error in conv3d: got dataFormat of " + dataFormat + " but only NDHWC is currently supported."; });
    var convInfo = conv_util.computeConv3DInfo(x5D.shape, $filter.shape, strides, dilations, pad);
    var grad = function (dy, saved) {
        util.assert(tupleValuesAreOne(dilations), function () {
            return 'Error in gradient of conv3D: dilation rates greater than 1 are ' +
                ("not yet supported in gradients. Got dilations '" + dilations + "'");
        });
        var x5D = saved[0], $filter = saved[1];
        return {
            x: function () { return conv3dDerInput_(x5D.shape, dy, $filter, strides, pad); },
            $filter: function () { return conv3dDerFilter_(x5D, dy, $filter.shape, strides, pad); }
        };
    };
    var res = engine_1.ENGINE.runKernelFunc(function (backend, save) {
        var res = backend.conv3d(x5D, $filter, convInfo);
        save([x5D, $filter]);
        return res;
    }, { x: x5D, $filter: $filter }, grad);
    if (reshapedTo5D) {
        return res.as4D(res.shape[1], res.shape[2], res.shape[3], res.shape[4]);
    }
    return res;
}
/**
 * Computes the derivative of the input of a 3D convolution.
 *
 * @param xShape The shape of the input: [batch, depth, height, width,
 * in_channels]. If length of 4, batch of 1 is assumed.
 * @param dy The derivative of the output, of rank 5 or rank 4 of shape
 *   `[batch, outDepth, outHeight, outWidth, in_channels]`.
 * If rank 4, batch of 1 is assumed.
 * @param filter The filter, rank 5, of shape
 *     `[filterDepth, filterHeight, filterWidth, inDepth, outDepth]`.
 * @param strides The strides of the convolution: `[strideDepth, strideHeight,
 * strideWidth]`.
 * @param pad The type of padding algorithm used:
 *    - `same` and stride 1: output will be of same size as input,
 *       regardless of filter size.
 *    - `valid`: output will be smaller than input if filter is larger
 *       than 1x1.
 */
function conv3dDerInput_(xShape, dy, filter, strides, pad) {
    util.assert(xShape.length === dy.rank, function () { return "Length of inShape " +
        ("(" + xShape.length + ") and rank of dy (" + dy.rank + ") must match"); });
    var xShape5D = xShape;
    var dy5D = dy;
    var reshapedTo5D = false;
    if (dy.rank === 4) {
        reshapedTo5D = true;
        dy5D = dy.as5D(1, dy.shape[0], dy.shape[1], dy.shape[2], dy.shape[3]);
        xShape5D = [1, xShape[0], xShape[1], xShape[2], xShape[3]];
    }
    var inDepth = xShape5D[4];
    var outDepth = dy5D.shape[4];
    util.assert(xShape5D.length === 5, function () {
        return "Error in conv3dDerInput: inShape must be length 5, but got length " +
            (xShape5D.length + ".");
    });
    util.assert(dy5D.rank === 5, function () { return "Error in conv3dDerInput: dy must be rank 5, but got " +
        ("rank " + dy5D.rank); });
    util.assert(filter.rank === 5, function () { return "Error in conv3dDerInput: filter must be rank 5, but got " +
        ("rank " + filter.rank); });
    util.assert(inDepth === filter.shape[3], function () { return "Error in conv3dDerInput: depth of input (" + inDepth + ") must " +
        ("match input depth for filter " + filter.shape[3] + "."); });
    util.assert(outDepth === filter.shape[4], function () { return "Error in conv3dDerInput: depth of output (" + outDepth + ") must " +
        ("match output depth for filter " + filter.shape[4] + "."); });
    var dilations = 1;
    var convInfo = conv_util.computeConv3DInfo(xShape5D, filter.shape, strides, dilations, pad);
    var res = engine_1.ENGINE.runKernelFunc(function (backend) { return backend.conv3dDerInput(dy5D, filter, convInfo); }, { dy5D: dy5D });
    if (reshapedTo5D) {
        return res.as4D(res.shape[1], res.shape[2], res.shape[3], res.shape[4]);
    }
    return res;
}
/**
 * Computes the derivative of the filter of a 3D convolution.
 *
 * @param x The input tensor, of rank 5 or rank 4 of shape
 *     [batch, depth, height, width, inChannels]. If rank 4, batch of 1 is
 *     assumed.
 * @param dy The dy image, of rank 5 or rank 4, of shape
 *     [batch, depth, height, width, outDepth]. If rank 4, batch of 1 is
 *     assumed.
 * @param filterShape The shape of the filter, length 5,
 *     [filterDepth, filterHeight, filterWidth, inDepth, outDepth].
 * @param strides The strides of the convolution: [strideDepth, strideHeight,
 * strideWidth].
 * @param pad A string from: 'same', 'valid'. The type of padding algorithm
 *     used in the forward prop of the op.
 */
function conv3dDerFilter_(x, dy, filterShape, strides, pad) {
    var x5D = x;
    if (x.rank === 4) {
        x5D = x.as5D(1, x.shape[0], x.shape[1], x.shape[2], x.shape[3]);
    }
    var dy5D = dy;
    if (dy5D.rank === 4) {
        dy5D = dy.as5D(1, dy.shape[0], dy.shape[1], dy.shape[2], dy.shape[3]);
    }
    util.assert(x5D.rank === 5, function () { return "Error in conv3dDerFilter: input must be rank 5, but got shape " +
        (x5D.shape + "."); });
    util.assert(dy5D.rank === 5, function () { return "Error in conv3dDerFilter: dy must be rank 5, but got shape " +
        (dy5D.shape + "."); });
    util.assert(filterShape.length === 5, function () { return "Error in conv3dDerFilter: filterShape must be length 5, but got " +
        (filterShape + "."); });
    util.assert(x5D.shape[4] === filterShape[3], function () { return "Error in conv3dDerFilter: depth of input " + x5D.shape[4] + ") must " +
        ("match input depth in filter (" + filterShape[3] + "."); });
    util.assert(dy5D.shape[4] === filterShape[4], function () { return "Error in conv3dDerFilter: depth of dy (" + dy5D.shape[4] + ") must " +
        ("match output depth for filter (" + filterShape[4] + ")."); });
    var dilations = 1;
    var convInfo = conv_util.computeConv3DInfo(x5D.shape, filterShape, strides, dilations, pad);
    return engine_1.ENGINE.runKernelFunc(function (backend) { return backend.conv3dDerFilter(x5D, dy5D, convInfo); }, { x5D: x5D, dy5D: dy5D });
}
/**
 * Computes the transposed 3D convolution of a volume, also known as a
 * deconvolution.
 *
 * @param x The input image, of rank 5 or rank 4, of shape
 *   `[batch, depth, height, width, inDepth]`. If rank 4, batch of 1 is assumed.
 * @param filter The filter, rank 4, of shape
 *     `[depth, filterHeight, filterWidth, outDepth, inDepth]`.
 *     `inDepth` must match `inDepth` in `x`.
 * @param outputShape Output shape, of rank 5 or rank 4:
 *     `[batch, depth, height, width, outDepth]`. If rank 3, batch of 1 is
 *    assumed.
 * @param strides The strides of the original convolution:
 *     `[strideDepth, strideHeight, strideWidth]`.
 * @param pad  The type of padding algorithm used in the non-transpose version
 *    of the op.
 */
/** @doc {heading: 'Operations', subheading: 'Convolution'} */
function conv3dTranspose_(x, filter, outputShape, strides, pad) {
    var $x = tensor_util_env_1.convertToTensor(x, 'x', 'conv3dTranspose');
    var $filter = tensor_util_env_1.convertToTensor(filter, 'filter', 'conv3dTranspose');
    return conv3dDerInput_(outputShape, $x, $filter, strides, pad);
}
exports.conv1d = operation_1.op({ conv1d_: conv1d_ });
exports.conv2d = operation_1.op({ conv2d_: conv2d_ });
exports.conv3d = operation_1.op({ conv3d_: conv3d_ });
exports.conv2dDerFilter = operation_1.op({ conv2dDerFilter_: conv2dDerFilter_ });
exports.conv2dDerInput = operation_1.op({ conv2dDerInput_: conv2dDerInput_ });
exports.depthwiseConv2d = operation_1.op({ depthwiseConv2d_: depthwiseConv2d_ });
exports.depthwiseConv2dDerInput = operation_1.op({ depthwiseConv2dDerInput_: depthwiseConv2dDerInput_ });
exports.depthwiseConv2dDerFilter = operation_1.op({ depthwiseConv2dDerFilter_: depthwiseConv2dDerFilter_ });
exports.separableConv2d = operation_1.op({ separableConv2d_: separableConv2d_ });
exports.conv2dTranspose = operation_1.op({ conv2dTranspose_: conv2dTranspose_ });
exports.conv3dTranspose = operation_1.op({ conv3dTranspose_: conv3dTranspose_ });
//# sourceMappingURL=conv.js.map