gx
chenyc
2025-06-12 7b72ac13a83764a662159d4a49b7fffb90476ecb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
/**
 * @license
 * Copyright 2019 Google LLC. All Rights Reserved.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 * =============================================================================
 */
import { Tensor, Tensor3D, Tensor4D } from '../tensor';
import { TensorLike } from '../types';
import { Activation } from './fused_util';
/**
 * Computes the dot product of two matrices with optional activation and bias.
 *
 * ```js
 * const a = tf.tensor2d([-1, -2], [1, 2]);
 * const b = tf.tensor2d([1, 2, 3, 4], [2, 2]);
 * const bias = tf.tensor2d([1, 2], [1, 2]);
 *
 * tf.fused.matMul({a, b, bias, activation: 'relu'}).print();
 * ```
 *
 * @param obj An object with the following properties:
 * - `a` First matrix in dot product operation.
 * - `b` Second matrix in dot product operation.
 * - `transposeA` If true, `a` is transposed before multiplication.
 * - `transposeB` If true, `b` is transposed before multiplication.
 * - `bias` Matrix to be added to the result.
 * - `activation` Name of activation kernel (defaults to `linear`).
 * - `preluActivationWeights` Tensor of prelu weights.
 */
declare function fusedMatMul_<T extends Tensor>({ a, b, transposeA, transposeB, bias, activation, preluActivationWeights }: {
    a: T | TensorLike;
    b: T | TensorLike;
    transposeA?: boolean;
    transposeB?: boolean;
    bias?: Tensor | TensorLike;
    activation?: Activation;
    preluActivationWeights?: Tensor;
}): T;
/**
 * Computes a 2D convolution over the input x, optionally fused with adding a
 * bias and applying an activation.
 *
 * ```js
 * const inputDepth = 2;
 * const inShape = [2, 2, 2, inputDepth];
 * const outputDepth = 2;
 * const fSize = 1;
 * const pad = 0;
 * const strides = 1;
 *
 * const x = tf.tensor4d( [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
 * 16], inShape);
 * const w = tf.tensor4d([-1, 1, -2, 0.5], [fSize, fSize, inputDepth,
 * outputDepth]);
 *
 * tf.fused.conv2d({ x, filter: w, strides, pad, dataFormat: 'NHWC',
 * dilations: [1, 1], bias: tf.scalar(5), activation: 'relu' }).print();
 * ```
 *
 * @param obj An object with the following properties:
 * @param x The input tensor, of rank 4 or rank 3, of shape
 *     `[batch, height, width, inChannels]`. If rank 3, batch of 1 is
 * assumed.
 * @param filter The filter, rank 4, of shape
 *     `[filterHeight, filterWidth, inDepth, outDepth]`.
 * @param strides The strides of the convolution: `[strideHeight,
 * strideWidth]`.
 * @param pad The type of padding algorithm.
 *   - `same` and stride 1: output will be of same size as input,
 *       regardless of filter size.
 *   - `valid` output will be smaller than input if filter is larger
 *       than 1x1.
 *   - For more info, see this guide:
 *     [https://www.tensorflow.org/api_guides/python/nn#Convolution](
 *          https://www.tensorflow.org/api_guides/python/nn#Convolution)
 * @param dataFormat An optional string from: "NHWC", "NCHW". Defaults to
 *     "NHWC". Specify the data format of the input and output data. With the
 *     default format "NHWC", the data is stored in the order of: [batch,
 *     height, width, channels]. Only "NHWC" is currently supported.
 * @param dilations The dilation rates: `[dilationHeight, dilationWidth]`
 *     in which we sample input values across the height and width dimensions
 *     in atrous convolution. Defaults to `[1, 1]`. If `dilations` is a single
 *     number, then `dilationHeight == dilationWidth`. If it is greater than
 *     1, then all values of `strides` must be 1.
 * @param dimRoundingMode The rounding mode used when computing output
 *     dimensions if pad is a number. If none is provided, it will not round
 *     and error if the output is of fractional size.
 * @param bias Tensor to be added to the result.
 * @param activation Name of activation kernel (defaults to `linear`) to be
 *     applied
 *      after biasAdd.
 * @param preluActivationWeights Tensor of prelu weights to be applied as part
 *     of a `prelu` activation, typically the same shape as `x`.
 */
declare function fusedConv2d_<T extends Tensor3D | Tensor4D>({ x, filter, strides, pad, dataFormat, dilations, dimRoundingMode, bias, activation, preluActivationWeights }: {
    x: T | TensorLike;
    filter: Tensor4D | TensorLike;
    strides: [number, number] | number;
    pad: 'valid' | 'same' | number;
    dataFormat?: 'NHWC' | 'NCHW';
    dilations?: [number, number] | number;
    dimRoundingMode?: 'floor' | 'round' | 'ceil';
    bias?: Tensor | TensorLike;
    activation?: Activation;
    preluActivationWeights?: Tensor;
}): T;
/**
 * Computes depthwise 2D convolution, optionally fused with adding a
 * bias and applying an activation.
 *
 * Given a 4D `input` array and a `filter` array of shape
 * `[filterHeight, filterWidth, inChannels, channelMultiplier]` containing
 * `inChannels` convolutional filters of depth 1, this op applies a
 * different filter to each input channel (expanding from 1 channel to
 * `channelMultiplier` channels for each), then concatenates the results
 * together. The output has `inChannels * channelMultiplier` channels.
 *
 * See
 * [https://www.tensorflow.org/api_docs/python/tf/nn/depthwise_conv2d](
 *     https://www.tensorflow.org/api_docs/python/tf/nn/depthwise_conv2d)
 * for more details.
 *
 * @param obj An object with the following properties:
 * @param x The input tensor, of rank 4 or rank 3, of shape
 *     `[batch, height, width, inChannels]`. If rank 3, batch of 1 is
 * assumed.
 * @param filter The filter tensor, rank 4, of shape
 *     `[filterHeight, filterWidth, inChannels, channelMultiplier]`.
 * @param strides The strides of the convolution: `[strideHeight,
 * strideWidth]`. If strides is a single number, then `strideHeight ==
 * strideWidth`.
 * @param pad The type of padding algorithm.
 *   - `same` and stride 1: output will be of same size as input,
 *       regardless of filter size.
 *   - `valid`: output will be smaller than input if filter is larger
 *       than 1x1.
 *   - For more info, see this guide:
 *     [https://www.tensorflow.org/api_guides/python/nn#Convolution](
 *          https://www.tensorflow.org/api_guides/python/nn#Convolution)
 * @param dilations The dilation rates: `[dilationHeight, dilationWidth]`
 *     in which we sample input values across the height and width dimensions
 *     in atrous convolution. Defaults to `[1, 1]`. If `rate` is a single
 *     number, then `dilationHeight == dilationWidth`. If it is greater than
 *     1, then all values of `strides` must be 1.
 * @param dataFormat: An optional string from: "NHWC", "NCHW". Defaults to
 *     "NHWC". Specify the data format of the input and output data. With the
 *     default format "NHWC", the data is stored in the order of: [batch,
 *     height, width, channels]. Only "NHWC" is currently supported.
 * @param dimRoundingMode The rounding mode used when computing output
 *     dimensions if pad is a number. If none is provided, it will not round
 *     and error if the output is of fractional size.
 * @param bias Tensor to be added to the result.
 * @param activation Name of activation kernel (defaults to `linear`).
 * @param preluActivationWeights Tensor of prelu weights to be applied as part
 *     of a `prelu` activation, typically the same shape as `x`.
 */
declare function fusedDepthwiseConv2d_<T extends Tensor3D | Tensor4D>({ x, filter, strides, pad, dataFormat, dilations, dimRoundingMode, bias, activation, preluActivationWeights }: {
    x: T | TensorLike;
    filter: Tensor4D | TensorLike;
    strides: [number, number] | number;
    pad: 'valid' | 'same' | number;
    dataFormat?: 'NHWC' | 'NCHW';
    dilations?: [number, number] | number;
    dimRoundingMode?: 'floor' | 'round' | 'ceil';
    bias?: Tensor | TensorLike;
    activation?: Activation;
    preluActivationWeights?: Tensor;
}): T;
export declare const matMul: typeof fusedMatMul_;
export declare const conv2d: typeof fusedConv2d_;
export declare const depthwiseConv2d: typeof fusedDepthwiseConv2d_;
export { Activation };