"use strict";
|
/**
|
* @license
|
* Copyright 2018 Google Inc. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
Object.defineProperty(exports, "__esModule", { value: true });
|
var engine_1 = require("../engine");
|
var tensor_util_env_1 = require("../tensor_util_env");
|
var util = require("../util");
|
var operation_1 = require("./operation");
|
/**
|
* Normalizes the activation of a local neighborhood across or within
|
* channels.
|
*
|
* @param x The input tensor. The 4-D input tensor is treated as a 3-D array
|
* of 1D vectors (along the last dimension), and each vector is
|
* normalized independently.
|
* @param depthRadius The number of adjacent channels in the 1D normalization
|
* window.
|
* @param bias A constant bias term for the basis.
|
* @param alpha A scale factor, usually positive.
|
* @param beta An exponent.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Normalization'} */
|
function localResponseNormalization_(x, depthRadius, bias, alpha, beta) {
|
if (depthRadius === void 0) { depthRadius = 5; }
|
if (bias === void 0) { bias = 1; }
|
if (alpha === void 0) { alpha = 1; }
|
if (beta === void 0) { beta = 0.5; }
|
var $x = tensor_util_env_1.convertToTensor(x, 'x', 'localResponseNormalization');
|
util.assert($x.rank === 4 || $x.rank === 3, function () { return "Error in localResponseNormalization: x must be rank 3 or 4 but got\n rank " + $x.rank + "."; });
|
util.assert(util.isInt(depthRadius), function () { return "Error in localResponseNormalization: depthRadius must be an " +
|
("integer but got depthRadius " + depthRadius + "."); });
|
var x4D = $x;
|
var reshapedTo4D = false;
|
if ($x.rank === 3) {
|
reshapedTo4D = true;
|
x4D = $x.as4D(1, $x.shape[0], $x.shape[1], $x.shape[2]);
|
}
|
var backward = function (dy, saved) {
|
var x4D = saved[0], y = saved[1];
|
return {
|
x4D: function () { return engine_1.ENGINE.runKernelFunc(function (backend) { return backend.LRNGrad(dy, x4D, y, depthRadius, bias, alpha, beta); }, {}); }
|
};
|
};
|
var res = engine_1.ENGINE.runKernelFunc(function (backend, save) {
|
var y = backend.localResponseNormalization4D(x4D, depthRadius, bias, alpha, beta);
|
save([x4D, y]);
|
return y;
|
}, { x4D: x4D }, backward);
|
if (reshapedTo4D) {
|
return res.as3D(res.shape[1], res.shape[2], res.shape[3]);
|
}
|
else {
|
return res;
|
}
|
}
|
exports.localResponseNormalization = operation_1.op({ localResponseNormalization_: localResponseNormalization_ });
|
//# sourceMappingURL=lrn.js.map
|