gx
chenyc
2025-06-12 7b72ac13a83764a662159d4a49b7fffb90476ecb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
"use strict";
/**
 * @license
 * Copyright 2017 Google Inc. All Rights Reserved.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 * =============================================================================
 */
var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) {
    return new (P || (P = Promise))(function (resolve, reject) {
        function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } }
        function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } }
        function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); }
        step((generator = generator.apply(thisArg, _arguments || [])).next());
    });
};
var __generator = (this && this.__generator) || function (thisArg, body) {
    var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g;
    return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g;
    function verb(n) { return function (v) { return step([n, v]); }; }
    function step(op) {
        if (f) throw new TypeError("Generator is already executing.");
        while (_) try {
            if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t;
            if (y = 0, t) op = [op[0] & 2, t.value];
            switch (op[0]) {
                case 0: case 1: t = op; break;
                case 4: _.label++; return { value: op[1], done: false };
                case 5: _.label++; y = op[1]; op = [0]; continue;
                case 7: op = _.ops.pop(); _.trys.pop(); continue;
                default:
                    if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; }
                    if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; }
                    if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; }
                    if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; }
                    if (t[2]) _.ops.pop();
                    _.trys.pop(); continue;
            }
            op = body.call(thisArg, _);
        } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; }
        if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true };
    }
};
var _this = this;
Object.defineProperty(exports, "__esModule", { value: true });
var tf = require("../index");
var jasmine_util_1 = require("../jasmine_util");
var test_util_1 = require("../test_util");
jasmine_util_1.describeWithFlags('multinomial', jasmine_util_1.ALL_ENVS, function () {
    var NUM_SAMPLES = 1000;
    // Allowed Variance in probability (in %).
    var EPSILON = 0.05;
    var SEED = 3.14;
    it('Flip a fair coin and check bounds', function () { return __awaiter(_this, void 0, void 0, function () {
        var probs, result, outcomeProbs, _a;
        return __generator(this, function (_b) {
            switch (_b.label) {
                case 0:
                    probs = tf.tensor1d([1, 1]);
                    result = tf.multinomial(probs, NUM_SAMPLES, SEED);
                    expect(result.dtype).toBe('int32');
                    expect(result.shape).toEqual([NUM_SAMPLES]);
                    _a = computeProbs;
                    return [4 /*yield*/, result.data()];
                case 1:
                    outcomeProbs = _a.apply(void 0, [_b.sent(), 2]);
                    test_util_1.expectArraysClose(outcomeProbs, [0.5, 0.5], EPSILON);
                    return [2 /*return*/];
            }
        });
    }); });
    it('Flip a two-sided coin with 100% of heads', function () { return __awaiter(_this, void 0, void 0, function () {
        var logits, result, outcomeProbs, _a;
        return __generator(this, function (_b) {
            switch (_b.label) {
                case 0:
                    logits = tf.tensor1d([1, -100]);
                    result = tf.multinomial(logits, NUM_SAMPLES, SEED);
                    expect(result.dtype).toBe('int32');
                    expect(result.shape).toEqual([NUM_SAMPLES]);
                    _a = computeProbs;
                    return [4 /*yield*/, result.data()];
                case 1:
                    outcomeProbs = _a.apply(void 0, [_b.sent(), 2]);
                    test_util_1.expectArraysClose(outcomeProbs, [1, 0], EPSILON);
                    return [2 /*return*/];
            }
        });
    }); });
    it('Flip a two-sided coin with 100% of tails', function () { return __awaiter(_this, void 0, void 0, function () {
        var logits, result, outcomeProbs, _a;
        return __generator(this, function (_b) {
            switch (_b.label) {
                case 0:
                    logits = tf.tensor1d([-100, 1]);
                    result = tf.multinomial(logits, NUM_SAMPLES, SEED);
                    expect(result.dtype).toBe('int32');
                    expect(result.shape).toEqual([NUM_SAMPLES]);
                    _a = computeProbs;
                    return [4 /*yield*/, result.data()];
                case 1:
                    outcomeProbs = _a.apply(void 0, [_b.sent(), 2]);
                    test_util_1.expectArraysClose(outcomeProbs, [0, 1], EPSILON);
                    return [2 /*return*/];
            }
        });
    }); });
    it('Flip a single-sided coin throws error', function () {
        var probs = tf.tensor1d([1]);
        expect(function () { return tf.multinomial(probs, NUM_SAMPLES, SEED); }).toThrowError();
    });
    it('Flip a ten-sided coin and check bounds', function () { return __awaiter(_this, void 0, void 0, function () {
        var numOutcomes, logits, result, outcomeProbs, _a;
        return __generator(this, function (_b) {
            switch (_b.label) {
                case 0:
                    numOutcomes = 10;
                    logits = tf.fill([numOutcomes], 1).as1D();
                    result = tf.multinomial(logits, NUM_SAMPLES, SEED);
                    expect(result.dtype).toBe('int32');
                    expect(result.shape).toEqual([NUM_SAMPLES]);
                    _a = computeProbs;
                    return [4 /*yield*/, result.data()];
                case 1:
                    outcomeProbs = _a.apply(void 0, [_b.sent(), numOutcomes]);
                    expect(outcomeProbs.length).toBeLessThanOrEqual(numOutcomes);
                    return [2 /*return*/];
            }
        });
    }); });
    it('Flip 3 three-sided coins, each coin is 100% biases', function () { return __awaiter(_this, void 0, void 0, function () {
        var numOutcomes, logits, result, outcomeProbs, _a, _b, _c;
        return __generator(this, function (_d) {
            switch (_d.label) {
                case 0:
                    numOutcomes = 3;
                    logits = tf.tensor2d([[-100, -100, 1], [-100, 1, -100], [1, -100, -100]], [3, numOutcomes]);
                    result = tf.multinomial(logits, NUM_SAMPLES, SEED);
                    expect(result.dtype).toBe('int32');
                    expect(result.shape).toEqual([3, NUM_SAMPLES]);
                    _a = computeProbs;
                    return [4 /*yield*/, result.data()];
                case 1:
                    outcomeProbs = _a.apply(void 0, [(_d.sent()).slice(0, NUM_SAMPLES), numOutcomes]);
                    test_util_1.expectArraysClose(outcomeProbs, [0, 0, 1], EPSILON);
                    _b = computeProbs;
                    return [4 /*yield*/, result.data()];
                case 2:
                    // Second coin always gets middle event.
                    outcomeProbs = _b.apply(void 0, [(_d.sent()).slice(NUM_SAMPLES, 2 * NUM_SAMPLES), numOutcomes]);
                    test_util_1.expectArraysClose(outcomeProbs, [0, 1, 0], EPSILON);
                    _c = computeProbs;
                    return [4 /*yield*/, result.data()];
                case 3:
                    // Third coin always gets first event
                    outcomeProbs =
                        _c.apply(void 0, [(_d.sent()).slice(2 * NUM_SAMPLES), numOutcomes]);
                    test_util_1.expectArraysClose(outcomeProbs, [1, 0, 0], EPSILON);
                    return [2 /*return*/];
            }
        });
    }); });
    it('passing Tensor3D throws error', function () {
        var probs = tf.zeros([3, 2, 2]);
        var normalized = true;
        expect(function () { return tf.multinomial(probs, 3, SEED, normalized); })
            .toThrowError();
    });
    it('throws when passed a non-tensor', function () {
        // tslint:disable-next-line:no-any
        expect(function () { return tf.multinomial({}, NUM_SAMPLES, SEED); })
            .toThrowError(/Argument 'logits' passed to 'multinomial' must be a Tensor/);
    });
    it('accepts a tensor-like object for logits (biased coin)', function () { return __awaiter(_this, void 0, void 0, function () {
        var res, outcomeProbs, _a;
        return __generator(this, function (_b) {
            switch (_b.label) {
                case 0:
                    res = tf.multinomial([-100, 1], NUM_SAMPLES, SEED);
                    expect(res.dtype).toBe('int32');
                    expect(res.shape).toEqual([NUM_SAMPLES]);
                    _a = computeProbs;
                    return [4 /*yield*/, res.data()];
                case 1:
                    outcomeProbs = _a.apply(void 0, [_b.sent(), 2]);
                    test_util_1.expectArraysClose(outcomeProbs, [0, 1], EPSILON);
                    return [2 /*return*/];
            }
        });
    }); });
    function computeProbs(events, numOutcomes) {
        var counts = [];
        for (var i = 0; i < numOutcomes; ++i) {
            counts[i] = 0;
        }
        var numSamples = events.length;
        for (var i = 0; i < events.length; ++i) {
            counts[events[i]]++;
        }
        // Normalize counts to be probabilities between [0, 1].
        for (var i = 0; i < counts.length; i++) {
            counts[i] /= numSamples;
        }
        return counts;
    }
});
//# sourceMappingURL=multinomial_test.js.map