"use strict";
|
/**
|
* @license
|
* Copyright 2018 Google Inc. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
Object.defineProperty(exports, "__esModule", { value: true });
|
var engine_1 = require("../engine");
|
var tensor_util_env_1 = require("../tensor_util_env");
|
var util = require("../util");
|
var array_ops_1 = require("./array_ops");
|
var conv_util = require("./conv_util");
|
var operation_1 = require("./operation");
|
/**
|
* Computes the 2D max pooling of an image.
|
*
|
* @param x The input tensor, of rank 4 or rank 3 of shape
|
* `[batch, height, width, inChannels]`. If rank 3, batch of 1 is assumed.
|
* @param filterSize The filter size: `[filterHeight, filterWidth]`. If
|
* `filterSize` is a single number, then `filterHeight == filterWidth`.
|
* @param strides The strides of the pooling: `[strideHeight, strideWidth]`. If
|
* `strides` is a single number, then `strideHeight == strideWidth`.
|
* @param dilations The dilation rates: `[dilationHeight, dilationWidth]`
|
* in which we sample input values across the height and width dimensions
|
* in dilated pooling. Defaults to `[1, 1]`. If `dilations` is a single
|
* number, then `dilationHeight == dilationWidth`. If it is greater than
|
* 1, then all values of `strides` must be 1.
|
* @param pad The type of padding algorithm.
|
* - `same` and stride 1: output will be of same size as input,
|
* regardless of filter size.
|
* - `valid`: output will be smaller than input if filter is larger
|
* than 1x1.
|
* - For more info, see this guide:
|
* [https://www.tensorflow.org/api_guides/python/nn#Convolution](
|
* https://www.tensorflow.org/api_guides/python/nn#Convolution)
|
* @param dimRoundingMode The rounding mode used when computing output
|
* dimensions if pad is a number. If none is provided, it will not round
|
* and error if the output is of fractional size.
|
*/
|
function maxPoolImpl_(x, filterSize, strides, dilations, pad, dimRoundingMode) {
|
var $x = tensor_util_env_1.convertToTensor(x, 'x', 'maxPool');
|
var x4D = $x;
|
var reshapedTo4D = false;
|
if ($x.rank === 3) {
|
reshapedTo4D = true;
|
x4D = $x.as4D(1, $x.shape[0], $x.shape[1], $x.shape[2]);
|
}
|
if (dilations == null) {
|
dilations = [1, 1];
|
}
|
util.assert(x4D.rank === 4, function () { return "Error in maxPool: input must be rank 4 but got rank " + x4D.rank + "."; });
|
util.assert(conv_util.eitherStridesOrDilationsAreOne(strides, dilations), function () { return 'Error in maxPool: Either strides or dilations must be 1. ' +
|
("Got strides " + strides + " and dilations '" + dilations + "'"); });
|
if (dimRoundingMode != null) {
|
util.assert(util.isInt(pad), function () { return "Error in maxPool: pad must be an integer when using, " +
|
("dimRoundingMode " + dimRoundingMode + " but got pad " + pad + "."); });
|
}
|
var convInfo = conv_util.computePool2DInfo(x4D.shape, filterSize, strides, dilations, pad, dimRoundingMode);
|
if (convInfo.filterWidth === 1 && convInfo.filterHeight === 1 &&
|
util.arraysEqual(convInfo.inShape, convInfo.outShape)) {
|
return $x.clone();
|
}
|
var grad = function (dy, saved) {
|
var x4D = saved[0], y = saved[1];
|
return {
|
x: function () { return maxPoolBackprop(dy, x4D, y, filterSize, strides, dilations, pad); }
|
};
|
};
|
var inputsToSave = [x4D];
|
var res = engine_1.ENGINE.runKernelFunc(function (backend, save) {
|
var y = backend.maxPool(x4D, convInfo);
|
save([x4D, y]);
|
return y;
|
}, { x: x4D }, grad, 'MaxPool', convInfo, inputsToSave);
|
if (reshapedTo4D) {
|
return res.as3D(res.shape[1], res.shape[2], res.shape[3]);
|
}
|
return res;
|
}
|
/**
|
* Computes the 2D max pooling of an image.
|
*
|
* @param x The input tensor, of rank 4 or rank 3 of shape
|
* `[batch, height, width, inChannels]`. If rank 3, batch of 1 is assumed.
|
* @param filterSize The filter size: `[filterHeight, filterWidth]`. If
|
* `filterSize` is a single number, then `filterHeight == filterWidth`.
|
* @param strides The strides of the pooling: `[strideHeight, strideWidth]`. If
|
* `strides` is a single number, then `strideHeight == strideWidth`.
|
* @param pad The type of padding algorithm.
|
* - `same` and stride 1: output will be of same size as input,
|
* regardless of filter size.
|
* - `valid`: output will be smaller than input if filter is larger
|
* than 1x1.
|
* - For more info, see this guide:
|
* [https://www.tensorflow.org/api_guides/python/nn#Convolution](
|
* https://www.tensorflow.org/api_guides/python/nn#Convolution)
|
* @param dimRoundingMode The rounding mode used when computing output
|
* dimensions if pad is a number. If none is provided, it will not round
|
* and error if the output is of fractional size.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Convolution'} */
|
function maxPool_(x, filterSize, strides, pad, dimRoundingMode) {
|
return maxPoolImpl_(x, filterSize, strides, 1, pad, dimRoundingMode);
|
}
|
/**
|
* Computes the 2D average pooling of an image.
|
*
|
* @param x The input tensor, of rank 4 or rank 3 of shape
|
* `[batch, height, width, inChannels]`. If rank 3, batch of 1 is assumed.
|
* @param filterSize The filter size: `[filterHeight, filterWidth]`. If
|
* `filterSize` is a single number, then `filterHeight == filterWidth`.
|
* @param strides The strides of the pooling: `[strideHeight, strideWidth]`. If
|
* `strides` is a single number, then `strideHeight == strideWidth`.
|
* @param dilations The dilation rates: `[dilationHeight, dilationWidth]`
|
* in which we sample input values across the height and width dimensions
|
* in dilated pooling. Defaults to `[1, 1]`. If `dilations` is a single
|
* number, then `dilationHeight == dilationWidth`. If it is greater than
|
* 1, then all values of `strides` must be 1.
|
* @param pad The type of padding algorithm:
|
* - `same` and stride 1: output will be of same size as input,
|
* regardless of filter size.
|
* - `valid`: output will be smaller than input if filter is larger
|
* than 1x1.
|
* - For more info, see this guide:
|
* [https://www.tensorflow.org/api_guides/python/nn#Convolution](
|
* https://www.tensorflow.org/api_guides/python/nn#Convolution)
|
* @param dimRoundingMode The rounding mode used when computing output
|
* dimensions if pad is a number. If none is provided, it will not round
|
* and error if the output is of fractional size.
|
*/
|
function avgPoolImpl_(x, filterSize, strides, dilations, pad, dimRoundingMode) {
|
var $x = tensor_util_env_1.convertToTensor(x, 'x', 'avgPool', 'float32');
|
if (dilations == null) {
|
dilations = [1, 1];
|
}
|
util.assert(conv_util.eitherStridesOrDilationsAreOne(strides, dilations), function () { return 'Error in avgPool: Either strides or dilations must be 1. ' +
|
("Got strides " + strides + " and dilations '" + dilations + "'"); });
|
var x4D = $x;
|
var reshapedTo4D = false;
|
if ($x.rank === 3) {
|
reshapedTo4D = true;
|
x4D = $x.as4D(1, $x.shape[0], $x.shape[1], $x.shape[2]);
|
}
|
util.assert(x4D.rank === 4, function () { return "Error in avgPool: x must be rank 4 but got rank " + x4D.rank + "."; });
|
if (dimRoundingMode != null) {
|
util.assert(util.isInt(pad), function () { return "Error in avgPool: pad must be an integer when using, " +
|
("dimRoundingMode " + dimRoundingMode + " but got pad " + pad + "."); });
|
}
|
var convInfo = conv_util.computePool2DInfo(x4D.shape, filterSize, strides, dilations, pad, dimRoundingMode);
|
if (convInfo.filterWidth === 1 && convInfo.filterHeight === 1 &&
|
util.arraysEqual(convInfo.inShape, convInfo.outShape)) {
|
return $x.clone();
|
}
|
var grad = function (dy) {
|
return {
|
x: function () { return avgPoolBackprop(dy, x4D, filterSize, strides, dilations, pad); }
|
};
|
};
|
var res = engine_1.ENGINE.runKernelFunc(function (backend) { return backend.avgPool(x4D, convInfo); }, { x: x4D }, grad, 'AvgPool', convInfo);
|
res = res.cast($x.dtype);
|
if (reshapedTo4D) {
|
return res.as3D(res.shape[1], res.shape[2], res.shape[3]);
|
}
|
return res;
|
}
|
/**
|
* Computes the 2D average pooling of an image.
|
*
|
* @param x The input tensor, of rank 4 or rank 3 of shape
|
* `[batch, height, width, inChannels]`. If rank 3, batch of 1 is assumed.
|
* @param filterSize The filter size: `[filterHeight, filterWidth]`. If
|
* `filterSize` is a single number, then `filterHeight == filterWidth`.
|
* @param strides The strides of the pooling: `[strideHeight, strideWidth]`. If
|
* `strides` is a single number, then `strideHeight == strideWidth`.
|
* @param pad The type of padding algorithm:
|
* - `same` and stride 1: output will be of same size as input,
|
* regardless of filter size.
|
* - `valid`: output will be smaller than input if filter is larger
|
* than 1x1.
|
* - For more info, see this guide:
|
* [https://www.tensorflow.org/api_guides/python/nn#Convolution](
|
* https://www.tensorflow.org/api_guides/python/nn#Convolution)
|
* @param dimRoundingMode The rounding mode used when computing output
|
* dimensions if pad is a number. If none is provided, it will not round
|
* and error if the output is of fractional size.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Convolution'} */
|
function avgPool_(x, filterSize, strides, pad, dimRoundingMode) {
|
return avgPoolImpl_(x, filterSize, strides, 1, pad, dimRoundingMode);
|
}
|
/**
|
* Performs an N-D pooling operation
|
*
|
* @param input The input tensor, of rank 4 or rank 3 of shape
|
* `[batch, height, width, inChannels]`. If rank 3, batch of 1 is assumed.
|
* @param windowShape The filter size: `[filterHeight, filterWidth]`. If
|
* `filterSize` is a single number, then `filterHeight == filterWidth`.
|
* @param poolingType The type of pooling, either 'max' or 'avg'.
|
* @param pad The type of padding algorithm:
|
* - `same` and stride 1: output will be of same size as input,
|
* regardless of filter size.
|
* - `valid`: output will be smaller than input if filter is larger
|
* than 1x1.
|
* - For more info, see this guide:
|
* [https://www.tensorflow.org/api_guides/python/nn#Convolution](
|
* https://www.tensorflow.org/api_guides/python/nn#Convolution)
|
* @param dilations The dilation rates: `[dilationHeight, dilationWidth]`
|
* in which we sample input values across the height and width dimensions
|
* in dilated pooling. Defaults to `[1, 1]`. If `dilationRate` is a single
|
* number, then `dilationHeight == dilationWidth`. If it is greater than
|
* 1, then all values of `strides` must be 1.
|
* @param strides The strides of the pooling: `[strideHeight, strideWidth]`. If
|
* `strides` is a single number, then `strideHeight == strideWidth`.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Convolution'} */
|
function pool_(input, windowShape, poolingType, pad, dilations, strides) {
|
if (dilations == null) {
|
dilations = [1, 1];
|
}
|
if (strides == null) {
|
strides = 1;
|
}
|
if (pad === 0) {
|
pad = 'valid';
|
}
|
var $x = tensor_util_env_1.convertToTensor(input, 'x', 'maxPool');
|
var x4D = $x;
|
var reshapedTo4D = false;
|
if ($x.rank === 3) {
|
reshapedTo4D = true;
|
x4D = $x.as4D(1, $x.shape[0], $x.shape[1], $x.shape[2]);
|
}
|
util.assert(conv_util.eitherStridesOrDilationsAreOne(strides, dilations), function () { return 'Error in pool: Either strides or dilations must be 1. ' +
|
("Got strides " + strides + " and dilations '" + dilations + "'"); });
|
var convInfo = conv_util.computePool2DInfo(x4D.shape, windowShape, strides, dilations, pad);
|
var dilation = [convInfo.dilationHeight, convInfo.dilationWidth];
|
// The following implementation does batchToSpace(pool(spaceToBatch(x)))
|
// whenever dilation > 1 since the TF kernels do not support dilation > 1.
|
// tslint:disable-next-line:max-line-length
|
// https://github.com/tensorflow/tensorflow/blob/50f6bb67dc98c9b74630b6047aae7a4f8a40fd02/tensorflow/python/ops/nn_ops.py#L1037
|
var basePadding;
|
if (pad === 'same') {
|
basePadding = withSpaceToBatchBasePaddings([convInfo.filterHeight, convInfo.filterWidth], dilation);
|
}
|
else {
|
basePadding = [[0, 0], [0, 0]];
|
}
|
var isDilationOne = dilation[0] === 1 && dilation[1] === 1;
|
var _a = requiredSpaceToBatchPaddings([convInfo.inHeight, convInfo.inWidth], dilation, basePadding), adjustedPadding = _a[0], adjustedCrops = _a[1];
|
var convertedPad = isDilationOne ? pad : 'valid';
|
var convertedX = isDilationOne ? x4D : array_ops_1.spaceToBatchND(x4D, dilation, adjustedPadding);
|
var forwardOp = poolingType === 'avg' ?
|
function () { return avgPoolImpl_(convertedX, windowShape, strides, 1 /* dilation */, convertedPad); } :
|
function () { return maxPoolImpl_(convertedX, windowShape, strides, 1 /* dilation */, convertedPad); };
|
var y = forwardOp();
|
var res = isDilationOne ? y : array_ops_1.batchToSpaceND(y, dilation, adjustedCrops);
|
if (reshapedTo4D) {
|
return res.as3D(res.shape[1], res.shape[2], res.shape[3]);
|
}
|
return res;
|
}
|
/**
|
* Computes the backprop of a 2D max pool.
|
*
|
* @param dy The dy error, of rank 4 or rank 3 of shape
|
* [batchSize, height, width, channels]. If rank 3, batch of 1 is
|
* assumed.
|
* @param input The original input image, of rank 4, of shape
|
* [batchSize, height, width, channels].
|
* @param output The original output image, of rank 4, of shape
|
* [batchSize, outHeight, outWidth, channels].
|
* @param filterSize The filter size: `[filterHeight, filterWidth]`. If
|
* `filterSize` is a single number, then `filterHeight == filterWidth`.
|
* @param strides The strides of the pooling: `[strideHeight, strideWidth]`. If
|
* `strides` is a single number, then `strideHeight == strideWidth`.
|
* @param pad A string from: 'same', 'valid'. The type of padding algorithm
|
* used in the forward prop of the op.
|
* @param dimRoundingMode A string from: 'ceil', 'round', 'floor'. The
|
* rounding mode used when computing output dimensions if pad is a
|
* number. If none is provided, it will not round and error if the output
|
* is of fractional size.
|
*/
|
function maxPoolBackprop(dy, input, output, filterSize, strides, dilations, pad, dimRoundingMode) {
|
var $dy = tensor_util_env_1.convertToTensor(dy, 'dy', 'maxPoolBackprop');
|
var $input = tensor_util_env_1.convertToTensor(input, 'input', 'maxPoolBackprop');
|
var $output = tensor_util_env_1.convertToTensor(output, 'output', 'maxPoolBackprop');
|
util.assert($input.rank === $dy.rank, function () { return "Rank of input (" + $input.rank + ") does not match rank of dy " +
|
("(" + $dy.rank + ")"); });
|
if (dilations == null) {
|
dilations = [1, 1];
|
}
|
util.assert(conv_util.eitherStridesOrDilationsAreOne(strides, dilations), function () {
|
return 'Error in maxPoolBackProp: Either strides or dilations must be 1. ' +
|
("Got strides " + strides + " and dilations '" + dilations + "'");
|
});
|
util.assert($dy.rank === 4, function () { return "Error in maxPoolBackprop: dy must be rank 4 but got rank " +
|
($dy.rank + "."); });
|
util.assert($input.rank === 4, function () { return "Error in maxPoolBackprop: input must be rank 4 but got rank " +
|
($input.rank + "."); });
|
if (dimRoundingMode != null) {
|
util.assert(util.isInt(pad), function () { return "Error in maxPoolBackprop: pad must be an integer when using, " +
|
("dimRoundingMode " + dimRoundingMode + " but got pad " + pad + "."); });
|
}
|
var convInfo = conv_util.computePool2DInfo($input.shape, filterSize, strides, dilations, pad, dimRoundingMode);
|
var res = engine_1.ENGINE.runKernelFunc(function (backend) { return backend.maxPoolBackprop($dy, $input, $output, convInfo); }, { $dy: $dy, $input: $input });
|
return res;
|
}
|
/**
|
* Computes the backprop of an 2D avg pool.
|
*
|
* @param dy The dy error, of rank 4 or rank 3 of shape
|
* [batchSize, height, width, channels]. If rank 3, batch of 1 is
|
* assumed.
|
* @param input The input image, of rank 4 or rank 3 of shape
|
* [batchSize, height, width, channels]. If rank 3, batch of 1 is
|
* assumed.
|
* @param filterSize The filter size: `[filterHeight, filterWidth]`. If
|
* `filterSize` is a single number, then `filterHeight == filterWidth`.
|
* @param strides The strides of the pooling: `[strideHeight, strideWidth]`. If
|
* `strides` is a single number, then `strideHeight == strideWidth`.
|
* @param pad A string from: 'same', 'valid'. The type of padding algorithm
|
* used in the forward prop of the op.
|
*/
|
function avgPoolBackprop(dy, input, filterSize, strides, dilations, pad) {
|
var $dy = tensor_util_env_1.convertToTensor(dy, 'dy', 'avgPoolBackprop');
|
var $input = tensor_util_env_1.convertToTensor(input, 'input', 'avgPoolBackprop');
|
util.assert($input.rank === $dy.rank, function () { return "Rank of input (" + $input.rank + ") does not match rank of dy (" + $dy.rank + ")"; });
|
if (dilations == null) {
|
dilations = [1, 1];
|
}
|
util.assert(conv_util.eitherStridesOrDilationsAreOne(strides, dilations), function () {
|
return 'Error in avgPoolBackprop: Either strides or dilations must be 1. ' +
|
("Got strides " + strides + " and dilations '" + dilations + "'");
|
});
|
var input4D = $input;
|
var dy4D = $dy;
|
var reshapedTo4D = false;
|
if ($input.rank === 3) {
|
reshapedTo4D = true;
|
input4D = $input.as4D(1, $input.shape[0], $input.shape[1], $input.shape[2]);
|
dy4D = $dy.as4D(1, $dy.shape[0], $dy.shape[1], $dy.shape[2]);
|
}
|
util.assert(dy4D.rank === 4, function () { return "Error in avgPoolBackprop: dy must be rank 4 but got rank " +
|
(dy4D.rank + "."); });
|
util.assert(input4D.rank === 4, function () { return "Error in avgPoolBackprop: input must be rank 4 but got rank " +
|
(input4D.rank + "."); });
|
var convInfo = conv_util.computePool2DInfo(input4D.shape, filterSize, strides, dilations, pad);
|
var res = engine_1.ENGINE.runKernelFunc(function (backend) { return backend.avgPoolBackprop(dy4D, input4D, convInfo); }, { dy4D: dy4D, input4D: input4D });
|
if (reshapedTo4D) {
|
return res.as3D(res.shape[1], res.shape[2], res.shape[3]);
|
}
|
return res;
|
}
|
// Helper function to compute crops and paddings for pool with dilation > 1.
|
// tslint:disable-next-line:max-line-length
|
// https://github.com/tensorflow/tensorflow/blob/50f6bb67dc98c9b74630b6047aae7a4f8a40fd02/tensorflow/python/ops/array_ops.py#L2184
|
function requiredSpaceToBatchPaddings(inputShape, blockShape, basePadding) {
|
var padStart = basePadding.map(function (b) { return b[0]; });
|
var origPadEnd = basePadding.map(function (b) { return b[1]; });
|
var fullInputShape = inputShape.concat(padStart, origPadEnd);
|
var padEndExtra = blockShape.map(function (b, i) { return (b - fullInputShape[i] % b) % b; });
|
var padEnd = origPadEnd.map(function (s, i) { return s + padEndExtra[i]; });
|
var paddings = blockShape.map(function (_, i) { return [padStart[i], padEnd[i]]; });
|
var crops = blockShape.map(function (_, i) { return [0, padEndExtra[i]]; });
|
return [paddings, crops];
|
}
|
// Helper function to compute base paddings for pool with dilation > 1.
|
// tslint:disable-next-line:max-line-length
|
// https://github.com/tensorflow/tensorflow/blob/50f6bb67dc98c9b74630b6047aae7a4f8a40fd02/tensorflow/python/ops/nn_ops.py#L524
|
function withSpaceToBatchBasePaddings(filterShape, dilation) {
|
// Spatial dimensions of the filters and the upsampled filters in which we
|
// introduce (rate - 1) zeros between consecutive filter values.
|
var dilatedFilterShape = filterShape.map(function (s, i) {
|
return s + (s - 1) * (dilation[i] - 1);
|
});
|
var padExtraShape = dilatedFilterShape.map(function (s) { return s - 1; });
|
// When padding is odd, we pad more at end, following the same
|
// convention as conv2d.
|
var padExtraStart = padExtraShape.map(function (s) { return Math.floor(s / 2); });
|
var padExtraEnd = padExtraShape.map(function (s, i) { return s - padExtraStart[i]; });
|
return padExtraShape.map(function (_, i) {
|
return [padExtraStart[i], padExtraEnd[i]];
|
});
|
}
|
/**
|
* Computes the 3D average pooling.
|
*
|
* ```js
|
* const x = tf.tensor5d([1, 2, 3, 4, 5, 6, 7, 8], [1, 2, 2, 2, 1]);
|
* const result = tf.avgPool3d(x, 2, 1, 'valid');
|
* result.print();
|
* ```
|
*
|
* @param x The input tensor, of rank 5 or rank 4 of shape
|
* `[batch, depth, height, width, inChannels]`.
|
* @param filterSize The filter size:
|
* `[filterDepth, filterHeight, filterWidth]`.
|
* If `filterSize` is a single number,
|
* then `filterDepth == filterHeight == filterWidth`.
|
* @param strides The strides of the pooling:
|
* `[strideDepth, strideHeight, strideWidth]`.
|
* If `strides` is a single number,
|
* then `strideDepth == strideHeight == strideWidth`.
|
* @param pad The type of padding algorithm.
|
* - `same` and stride 1: output will be of same size as input,
|
* regardless of filter size.
|
* - `valid`: output will be smaller than input if filter is larger
|
* than 1*1x1.
|
* - For more info, see this guide:
|
* [https://www.tensorflow.org/api_guides/python/nn#Convolution](
|
* https://www.tensorflow.org/api_guides/python/nn#Convolution)
|
* @param dimRoundingMode The rounding mode used when computing output
|
* dimensions if pad is a number. If none is provided, it will not round
|
* and error if the output is of fractional size.
|
* @param dataFormat An optional string from: "NDHWC", "NCDHW". Defaults to
|
* "NDHWC". Specify the data format of the input and output data. With the
|
* default format "NDHWC", the data is stored in the order of: [batch,
|
* depth, height, width, channels]. Only "NDHWC" is currently supported.
|
* @param dilations The dilation rates:
|
* `[dilationDepth, dilationHeight, dilationWidth]`
|
* in which we sample input values across the depth, height and width
|
* dimensions in dilated pooling.
|
* Defaults to `[1, 1, 1]`. If `dilations` is a single number,
|
* then `dilationDepth == dilationHeight == dilationWidth`.
|
* If it is greater than 1, then all values of `strides` must be 1.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Convolution'} */
|
function avgPool3d_(x, filterSize, strides, pad, dimRoundingMode, dataFormat, dilations) {
|
if (dataFormat === void 0) { dataFormat = 'NDHWC'; }
|
var $x = tensor_util_env_1.convertToTensor(x, 'x', 'avgPool3d', 'float32');
|
var x5D = $x;
|
var reshapedTo5D = false;
|
if ($x.rank === 4) {
|
reshapedTo5D = true;
|
x5D = $x.as5D(1, $x.shape[0], $x.shape[1], $x.shape[2], $x.shape[3]);
|
}
|
if (dilations == null) {
|
dilations = [1, 1, 1];
|
}
|
util.assert(x5D.rank === 5, function () { return "Error in avgPool3d: x must be rank 5 but got rank " + x5D.rank + "."; });
|
util.assert(dataFormat === 'NDHWC', function () { return "Error in avgPool3d: Only NDHWC is currently supported, " +
|
("but got dataFormat of " + dataFormat); });
|
util.assert(conv_util.eitherStridesOrDilationsAreOne(strides, dilations), function () { return 'Error in avgPool3d: Either strides or dilations must be 1. ' +
|
("Got strides " + strides + " and dilations '" + dilations + "'"); });
|
if (dimRoundingMode != null) {
|
util.assert(util.isInt(pad), function () { return "Error in avgPool3d: pad must be an integer when using, " +
|
("dimRoundingMode " + dimRoundingMode + " but got pad " + pad + "."); });
|
}
|
var convInfo = conv_util.computePool3DInfo(x5D.shape, filterSize, strides, dilations, pad, dimRoundingMode, dataFormat);
|
var grad = function (dy) {
|
return {
|
x: function () { return avgPool3dBackprop(dy, x5D, filterSize, strides, dilations, pad, dimRoundingMode); }
|
};
|
};
|
var res = engine_1.ENGINE.runKernelFunc(function (backend) { return backend.avgPool3d(x5D, convInfo); }, { x: x5D }, grad);
|
res = res.cast(x5D.dtype);
|
if (reshapedTo5D) {
|
return res.as4D(res.shape[1], res.shape[2], res.shape[3], res.shape[4]);
|
}
|
return res;
|
}
|
/**
|
* Computes the backprop of a 3d avg pool.
|
*
|
* @param dy The dy error, of rank 5 of shape
|
* [batchSize, depth, height, width, channels].
|
* assumed.
|
* @param input The original input image, of rank 5 or rank4 of shape
|
* [batchSize, depth, height, width, channels].
|
* @param filterSize The filter size:
|
* `[filterDepth, filterHeight, filterWidth]`.
|
* `filterSize` is a single number,
|
* then `filterDepth == filterHeight == filterWidth`.
|
* @param strides The strides of the pooling:
|
* `[strideDepth, strideHeight, strideWidth]`. If
|
* `strides` is a single number, then `strideHeight == strideWidth`.
|
* @param dilations The dilation rates:
|
* `[dilationDepth, dilationHeight, dilationWidth]`
|
* in which we sample input values across the depth, height and width
|
* dimensions in dilated pooling.
|
* Defaults to `[1, 1, 1]`. If `dilations` is a single number,
|
* then `dilationDepth == dilationHeight == dilationWidth`.
|
* If it is greater than 1, then all values of `strides` must be 1.
|
* @param pad A string from: 'same', 'valid'. The type of padding algorithm
|
* used in the forward prop of the op.
|
* @param dimRoundingMode A string from: 'ceil', 'round', 'floor'. The
|
* rounding mode used when computing output dimensions if pad is a
|
* number. If none is provided, it will not round and error if the output
|
* is of fractional size.
|
*/
|
function avgPool3dBackprop(dy, input, filterSize, strides, dilations, pad, dimRoundingMode) {
|
var $dy = tensor_util_env_1.convertToTensor(dy, 'dy', 'avgPool3dBackprop');
|
var $input = tensor_util_env_1.convertToTensor(input, 'input', 'avgPool3dBackprop');
|
var dy5D = $dy;
|
var input5D = $input;
|
var reshapedTo5D = false;
|
if ($input.rank === 4) {
|
reshapedTo5D = true;
|
dy5D = $dy.as5D(1, $dy.shape[0], $dy.shape[1], $dy.shape[2], $dy.shape[3]);
|
input5D = $input.as5D(1, $input.shape[0], $input.shape[1], $input.shape[2], $input.shape[3]);
|
}
|
util.assert(dy5D.rank === 5, function () { return "Error in avgPool3dBackprop: dy must be rank 5 but got rank " +
|
(dy5D.rank + "."); });
|
util.assert(input5D.rank === 5, function () { return "Error in avgPool3dBackprop: input must be rank 5 but got rank " +
|
(input5D.rank + "."); });
|
if (dilations == null) {
|
dilations = [1, 1, 1];
|
}
|
util.assert(conv_util.eitherStridesOrDilationsAreOne(strides, dilations), function () { return 'Error in avgPool3dBackprop: Either strides or dilations ' +
|
("must be 1. Got strides " + strides + " and dilations '" + dilations + "'"); });
|
if (dimRoundingMode != null) {
|
util.assert(util.isInt(pad), function () { return "Error in maxPool3dBackprop: pad must be an integer when " +
|
("using, dimRoundingMode " + dimRoundingMode + " but got pad " + pad + "."); });
|
}
|
var convInfo = conv_util.computePool3DInfo(input5D.shape, filterSize, strides, dilations, pad, dimRoundingMode);
|
var res = engine_1.ENGINE.runKernelFunc(function (backend) { return backend.avgPool3dBackprop(dy5D, input5D, convInfo); }, { dy5D: dy5D, input5D: input5D });
|
if (reshapedTo5D) {
|
return res.as4D(res.shape[1], res.shape[2], res.shape[3], res.shape[4]);
|
}
|
return res;
|
}
|
/**
|
* Computes the 3D max pooling.
|
*
|
* ```js
|
* const x = tf.tensor5d([1, 2, 3, 4, 5, 6, 7, 8], [1, 2, 2, 2, 1]);
|
* const result = tf.maxPool3d(x, 2, 1, 'valid');
|
* result.print();
|
* ```
|
*
|
* @param x The input tensor, of rank 5 or rank 4 of shape
|
* `[batch, depth, height, width, inChannels]`.
|
* @param filterSize The filter size:
|
* `[filterDepth, filterHeight, filterWidth]`.
|
* If `filterSize` is a single number,
|
* then `filterDepth == filterHeight == filterWidth`.
|
* @param strides The strides of the pooling:
|
* `[strideDepth, strideHeight, strideWidth]`.
|
* If `strides` is a single number,
|
* then `strideDepth == strideHeight == strideWidth`.
|
* @param pad The type of padding algorithm.
|
* - `same` and stride 1: output will be of same size as input,
|
* regardless of filter size.
|
* - `valid`: output will be smaller than input if filter is larger
|
* than 1*1x1.
|
* - For more info, see this guide:
|
* [https://www.tensorflow.org/api_guides/python/nn#Convolution](
|
* https://www.tensorflow.org/api_guides/python/nn#Convolution)
|
* @param dimRoundingMode The rounding mode used when computing output
|
* dimensions if pad is a number. If none is provided, it will not round
|
* and error if the output is of fractional size.
|
* @param dataFormat An optional string from: "NDHWC", "NCDHW". Defaults to
|
* "NDHWC". Specify the data format of the input and output data. With the
|
* default format "NDHWC", the data is stored in the order of: [batch,
|
* depth, height, width, channels]. Only "NDHWC" is currently supported.
|
* @param dilations The dilation rates:
|
* `[dilationDepth, dilationHeight, dilationWidth]`
|
* in which we sample input values across the depth, height and width
|
* dimensions in dilated pooling.
|
* Defaults to `[1, 1, 1]`. If `dilations` is a single number,
|
* then `dilationDepth == dilationHeight == dilationWidth`.
|
* If it is greater than 1, then all values of `strides` must be 1.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Convolution'} */
|
function maxPool3d_(x, filterSize, strides, pad, dimRoundingMode, dataFormat, dilations) {
|
if (dataFormat === void 0) { dataFormat = 'NDHWC'; }
|
var $x = tensor_util_env_1.convertToTensor(x, 'x', 'maxPool3d');
|
var x5D = $x;
|
var reshapedTo5D = false;
|
if ($x.rank === 4) {
|
reshapedTo5D = true;
|
x5D = $x.as5D(1, $x.shape[0], $x.shape[1], $x.shape[2], $x.shape[3]);
|
}
|
if (dilations == null) {
|
dilations = [1, 1, 1];
|
}
|
util.assert(x5D.rank === 5, function () { return "Error in maxPool3d: x must be rank 5 but got rank " + x5D.rank + "."; });
|
util.assert(dataFormat === 'NDHWC', function () { return "Error in maxPool3d: Only NDHWC is currently supported, " +
|
("but got dataFormat of " + dataFormat); });
|
util.assert(conv_util.eitherStridesOrDilationsAreOne(strides, dilations), function () { return 'Error in maxPool3d: Either strides or dilations must be 1. ' +
|
("Got strides " + strides + " and dilations '" + dilations + "'"); });
|
if (dimRoundingMode != null) {
|
util.assert(util.isInt(pad), function () { return "Error in maxPool3d: pad must be an integer when using, " +
|
("dimRoundingMode " + dimRoundingMode + " but got pad " + pad + "."); });
|
}
|
var convInfo = conv_util.computePool3DInfo(x5D.shape, filterSize, strides, dilations, pad, dimRoundingMode, dataFormat);
|
var grad = function (dy, saved) {
|
var x5D = saved[0], y = saved[1];
|
return {
|
x: function () { return maxPool3dBackprop(dy, x5D, y, filterSize, strides, dilations, pad, dimRoundingMode); }
|
};
|
};
|
var res = engine_1.ENGINE.runKernelFunc(function (backend, save) {
|
var y = backend.maxPool3d(x5D, convInfo);
|
save([x5D, y]);
|
return y;
|
}, { x: x5D }, grad);
|
if (reshapedTo5D) {
|
return res.as4D(res.shape[1], res.shape[2], res.shape[3], res.shape[4]);
|
}
|
return res;
|
}
|
/**
|
* Computes the backprop of a 3d max pool.
|
*
|
* @param dy The dy error, of rank 5 of shape
|
* [batchSize, depth, height, width, channels].
|
* assumed.
|
* @param input The original input image, of rank 5 or rank 4 of shape
|
* [batchSize, depth, height, width, channels].
|
* @param output The original output image, of rank 5 of shape
|
* [batchSize, outDepth, outHeight, outWidth, channels].
|
* @param filterSize The filter size:
|
* `[filterDepth, filterHeight, filterWidth]`.
|
* `filterSize` is a single number,
|
* then `filterDepth == filterHeight == filterWidth`.
|
* @param strides The strides of the pooling:
|
* `[strideDepth, strideHeight, strideWidth]`. If
|
* `strides` is a single number, then `strideHeight == strideWidth`.
|
* @param dilations The dilation rates:
|
* `[dilationDepth, dilationHeight, dilationWidth]`
|
* in which we sample input values across the depth, height and width
|
* dimensions in dilated pooling.
|
* Defaults to `[1, 1, 1]`. If `dilations` is a single number,
|
* then `dilationDepth == dilationHeight == dilationWidth`.
|
* If it is greater than 1, then all values of `strides` must be 1.
|
* @param pad A string from: 'same', 'valid'. The type of padding algorithm
|
* used in the forward prop of the op.
|
* @param dimRoundingMode A string from: 'ceil', 'round', 'floor'. The
|
* rounding mode used when computing output dimensions if pad is a
|
* number. If none is provided, it will not round and error if the output
|
* is of fractional size.
|
*/
|
function maxPool3dBackprop(dy, input, output, filterSize, strides, dilations, pad, dimRoundingMode) {
|
var $dy = tensor_util_env_1.convertToTensor(dy, 'dy', 'maxPool3dBackprop');
|
var $input = tensor_util_env_1.convertToTensor(input, 'input', 'maxPool3dBackprop');
|
var $output = tensor_util_env_1.convertToTensor(output, 'output', 'maxPool3dBackprop');
|
var dy5D = $dy;
|
var input5D = $input;
|
var output5D = $output;
|
var reshapedTo5D = false;
|
if ($input.rank === 4) {
|
reshapedTo5D = true;
|
dy5D = $dy.as5D(1, $dy.shape[0], $dy.shape[1], $dy.shape[2], $dy.shape[3]);
|
input5D = $input.as5D(1, $input.shape[0], $input.shape[1], $input.shape[2], $input.shape[3]);
|
output5D = $output.as5D(1, $output.shape[0], $output.shape[1], $output.shape[2], $output.shape[3]);
|
}
|
util.assert(dy5D.rank === 5, function () { return "Error in maxPool3dBackprop: dy must be rank 5 but got rank " +
|
(dy5D.rank + "."); });
|
util.assert(input5D.rank === 5, function () { return "Error in maxPool3dBackprop: input must be rank 5 but got rank " +
|
(input5D.rank + "."); });
|
util.assert(output5D.rank === 5, function () { return "Error in maxPool3dBackprop: output must be rank 5 but got rank " +
|
(output5D.rank + "."); });
|
if (dilations == null) {
|
dilations = [1, 1, 1];
|
}
|
util.assert(conv_util.eitherStridesOrDilationsAreOne(strides, dilations), function () { return 'Error in maxPool3dBackprop: Either strides or dilations ' +
|
("must be 1. Got strides " + strides + " and dilations '" + dilations + "'"); });
|
if (dimRoundingMode != null) {
|
util.assert(util.isInt(pad), function () { return "Error in maxPool3dBackprop: pad must be an integer when " +
|
("using, dimRoundingMode " + dimRoundingMode + " but got pad " + pad + "."); });
|
}
|
var convInfo = conv_util.computePool3DInfo(input5D.shape, filterSize, strides, dilations, pad, dimRoundingMode);
|
var res = engine_1.ENGINE.runKernelFunc(function (backend) { return backend.maxPool3dBackprop(dy5D, input5D, output5D, convInfo); }, { dy5D: dy5D, input5D: input5D });
|
if (reshapedTo5D) {
|
return res.as4D(res.shape[1], res.shape[2], res.shape[3], res.shape[4]);
|
}
|
return res;
|
}
|
exports.maxPool = operation_1.op({ maxPool_: maxPool_ });
|
exports.avgPool = operation_1.op({ avgPool_: avgPool_ });
|
exports.pool = operation_1.op({ pool_: pool_ });
|
exports.maxPool3d = operation_1.op({ maxPool3d_: maxPool3d_ });
|
exports.avgPool3d = operation_1.op({ avgPool3d_: avgPool3d_ });
|
//# sourceMappingURL=pool.js.map
|