"use strict";
|
/**
|
* @license
|
* Copyright 2018 Google Inc. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
Object.defineProperty(exports, "__esModule", { value: true });
|
var engine_1 = require("../engine");
|
var gradients_1 = require("../gradients");
|
var tensor_util_env_1 = require("../tensor_util_env");
|
var operation_1 = require("./operation");
|
/**
|
* Computes the softmax normalized vector given the logits.
|
*
|
* ```js
|
* const a = tf.tensor1d([1, 2, 3]);
|
*
|
* a.softmax().print(); // or tf.softmax(a)
|
* ```
|
*
|
* ```js
|
* const a = tf.tensor2d([2, 4, 6, 1, 2, 3], [2, 3]);
|
*
|
* a.softmax().print(); // or tf.softmax(a)
|
* ```
|
*
|
* @param logits The logits array.
|
* @param dim The dimension softmax would be performed on. Defaults to `-1`
|
* which indicates the last dimension.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Normalization'} */
|
function softmax_(logits, dim) {
|
if (dim === void 0) { dim = -1; }
|
var $logits = tensor_util_env_1.convertToTensor(logits, 'logits', 'softmax', 'float32');
|
if (dim === -1) {
|
dim = $logits.rank - 1;
|
}
|
if (dim !== $logits.rank - 1) {
|
throw Error('Softmax along a non-last dimension is not yet supported. ' +
|
("Logits was rank " + $logits.rank + " and dim was " + dim));
|
}
|
var inputsToSave = [];
|
var outputsToSave = [true];
|
return engine_1.ENGINE.runKernelFunc(function (backend, save) {
|
var y = backend.softmax($logits, dim);
|
save([y]);
|
return y;
|
}, { logits: $logits }, function (dy, saved) {
|
var y = saved[0];
|
var dyTimesY = dy.mul(y);
|
var keepDims = true;
|
return {
|
logits: function () { return dyTimesY.sub(dyTimesY.sum([dim], keepDims).mul(y)); }
|
};
|
}, 'Softmax', { dim: dim }, inputsToSave, outputsToSave);
|
}
|
/**
|
* Computes the log softmax.
|
*
|
* ```js
|
* const a = tf.tensor1d([1, 2, 3]);
|
*
|
* a.logSoftmax().print(); // or tf.logSoftmax(a)
|
* ```
|
*
|
* ```js
|
* const a = tf.tensor2d([2, 4, 6, 1, 2, 3], [2, 3]);
|
*
|
* a.logSoftmax().print(); // or tf.logSoftmax(a)
|
* ```
|
*
|
* @param logits The logits array.
|
* @param axis The dimension softmax would be performed on. Defaults to `-1`
|
* which indicates the last dimension.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Normalization'} */
|
function logSoftmax_(logits, axis) {
|
if (axis === void 0) { axis = -1; }
|
var $logits = tensor_util_env_1.convertToTensor(logits, 'logits', 'logSoftmax');
|
if (axis === -1) {
|
axis = $logits.rank - 1;
|
}
|
if (axis !== $logits.rank - 1) {
|
throw Error('Log Softmax along a non-last dimension is not yet supported. ' +
|
("Logits was rank " + $logits.rank + " and axis was " + axis));
|
}
|
var customOp = gradients_1.customGrad(function (logits, save) {
|
var keepDims = true;
|
var xMax = logits.max(axis, true);
|
var shifted = logits.sub(xMax);
|
var value = shifted.toFloat().sub(shifted.exp().sum(axis, keepDims).log());
|
save([value]);
|
var gradFunc = function (dy, saved) {
|
var value = saved[0];
|
var softmax = value.exp();
|
return dy.sub(dy.sum(axis, keepDims).mul(softmax));
|
};
|
return { value: value, gradFunc: gradFunc };
|
});
|
return customOp($logits);
|
}
|
exports.softmax = operation_1.op({ softmax_: softmax_ });
|
exports.logSoftmax = operation_1.op({ logSoftmax_: logSoftmax_ });
|
//# sourceMappingURL=softmax.js.map
|