/**
|
* @license
|
* Copyright 2018 Google Inc. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
import { Scalar, Tensor } from '../tensor';
|
import { Rank, ScalarLike, ShapeMap, TensorLike } from '../types';
|
/**
|
* Converts a sparse representation into a dense tensor.
|
*
|
* Builds an array dense with shape outputShape such that:
|
*
|
* // If sparseIndices is scalar
|
* dense[i] = (i == sparseIndices ? sparseValues : defaultValue)
|
*
|
* // If sparseIndices is a vector, then for each i
|
* dense[sparseIndices[i]] = sparseValues[i]
|
*
|
* // If sparseIndices is an n by d matrix, then for each i in [0, n)
|
* dense[sparseIndices[i][0], ..., sparseIndices[i][d-1]] = sparseValues[i]
|
* All other values in dense are set to defaultValue. If sparseValues is a
|
* scalar, all sparse indices are set to this single value.
|
*
|
* If indices are repeated the final value is summed over all values for those
|
* indices.
|
*
|
* ```js
|
* const indices = tf.tensor1d([4, 5, 6, 1, 2, 3], 'int32');
|
* const values = tf.tensor1d([10, 11, 12, 13, 14, 15], 'float32');
|
* const shape = [8];
|
* tf.sparseToDense(indices, values, shape).print();
|
* ```
|
*
|
* @param sparseIndices A 0-D, 1-D, or 2-D Tensor of type int32.
|
* sparseIndices[i] contains the complete index where sparseValues[i] will be
|
* placed.
|
* @param sparseValues A 0-D or 1-D Tensor. Values
|
* corresponding to each row of sparseIndices, or a scalar value to be used for
|
* all sparse indices.
|
* @param outputShape Shape of the dense output tensor. the type is inferred.
|
* @param defaultValue Scalar. Value to set for indices not specified in
|
* sparseIndices. Defaults to zero.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Normalization'} */
|
declare function sparseToDense_<R extends Rank>(sparseIndices: Tensor | TensorLike, sparseValues: Tensor | TensorLike, outputShape: ShapeMap[R], defaultValue?: Scalar | ScalarLike): Tensor<R>;
|
export declare const sparseToDense: typeof sparseToDense_;
|
export {};
|