"use strict";
|
/**
|
* @license
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
* =============================================================================
|
*/
|
Object.defineProperty(exports, "__esModule", { value: true });
|
var engine_1 = require("../engine");
|
var kernel_names_1 = require("../kernel_names");
|
var tensor_util_1 = require("../tensor_util");
|
var tensor_util_env_1 = require("../tensor_util_env");
|
var broadcast_util_1 = require("./broadcast_util");
|
var operation_1 = require("./operation");
|
var tensor_ops_1 = require("./tensor_ops");
|
/**
|
* Returns (a - b) * (a - b) element-wise.
|
* Supports broadcasting.
|
*
|
* We also expose `tf.squaredDifferenceStrict` which has the same signature as
|
* this op and asserts that `a` and `b` are the same shape (does not
|
* broadcast).
|
*
|
* ```js
|
* const a = tf.tensor1d([1, 4, 3, 16]);
|
* const b = tf.tensor1d([1, 2, 9, 4]);
|
*
|
* a.squaredDifference(b).print(); // or tf.squaredDifference(a, b)
|
* ```
|
*
|
* ```js
|
* // Broadcast squared difference a with b.
|
* const a = tf.tensor1d([2, 4, 6, 8]);
|
* const b = tf.scalar(5);
|
*
|
* a.squaredDifference(b).print(); // or tf.squaredDifference(a, b)
|
* ```
|
*
|
* @param a The first tensor.
|
* @param b The second tensor. Must have the same type as `a`.
|
*/
|
/** @doc {heading: 'Operations', subheading: 'Arithmetic'} */
|
function squaredDifference_(a, b) {
|
var _a;
|
var $a = tensor_util_env_1.convertToTensor(a, 'a', 'squaredDifference');
|
var $b = tensor_util_env_1.convertToTensor(b, 'b', 'squaredDifference');
|
_a = tensor_util_1.makeTypesMatch($a, $b), $a = _a[0], $b = _a[1];
|
broadcast_util_1.assertAndGetBroadcastShape($a.shape, $b.shape);
|
var der = function (dy, saved) {
|
var $a = saved[0], $b = saved[1];
|
var two = tensor_ops_1.scalar(2);
|
var derA = function () { return dy.mul($a.sub($b).mul(two)); };
|
var derB = function () { return dy.mul($b.sub($a).mul(two)); };
|
return { a: derA, b: derB };
|
};
|
var forward = function (backend, save) {
|
var res = backend.squaredDifference($a, $b);
|
save([$a, $b]);
|
return res;
|
};
|
var inputs = { a: $a, b: $b };
|
var attrs = {};
|
var inputsToSave = [$a, $b];
|
var outputToSave = [];
|
return engine_1.ENGINE.runKernelFunc(forward, inputs, der, kernel_names_1.SquaredDifference, attrs, inputsToSave, outputToSave);
|
}
|
exports.squaredDifference = operation_1.op({ squaredDifference_: squaredDifference_ });
|
//# sourceMappingURL=squared_difference.js.map
|